

Cocoa® Programming

By Scott Anguish, Erik M. Buck, Donald A. Yacktman

Publisher: Sams Publishing

Pub Date: September 20, 2002

ISBN: 0-672-32230-7

Pages: 1272

 Copyright

 About the Authors

 Acknowledgments

 We Want to Hear From You!

 Reader Services

 Introduction

 Intended Audience

 Conventions

 Learn By Example

 Part I: Overview

 Chapter 1. Cocoa and Mac OS X

 Understanding When to Use Cocoa

 Understanding Cocoa's Role in Mac OS X

 What You Need to Use Cocoa

 What's Included in Cocoa

 Summary

 Chapter 2. Cocoa Language Options

 Object Orientation

 Java

 Objective-C

 Other Languages

 Choosing a Language for Use with Cocoa

 The Use of Objective-C in This Book

 Summary

http://www.informit.com/safari/author_bio.asp?ISBN=0672322307
http://www.informit.com/safari/author_bio.asp?ISBN=0672322307
http://www.informit.com/safari/author_bio.asp?ISBN=0672322307

 Chapter 3. Using Apple's Developer Tools

 Obtaining Apple's Developer Tools

 Project Builder

 Interface Builder

 Frameworks

 Samples

 Terminal

 Other Tools

 Summary

 Chapter 4. Objective-C

 Why Learn Objective-C?

 Additions to C

 Apple's Extensions

 The NSObject Base Class

 Runtime Functions

 Objective-C++

 Summary

 Chapter 5. Cocoa Conventions

 Naming

 Initializers

 Managing Memory

 Accessors

 Using Memory Zones

 Encoding and Decoding

 Summary

 Chapter 6. Cocoa Design Patterns

 Understanding Design Patterns

 A Catalog of Cocoa Design Patterns

 Summary

 Part II: The Cocoa Frameworks

 Chapter 7. Foundation Framework Overview

 Mutability

 Class Clusters

 Typed Storage

 Collections

 Property Lists

 Run Loops and Timers

 Support Types

 String Processing

 Bundles

 File System Access

 Defaults System

 Notifications

 Related Core Foundation

 Summary

 Chapter 8. The Application Kit Framework Overview

 Events and the Run Loop

 Responders

 NSApplication Overview

 NSWindow Overview

 NSView Overview

 Delegates

 Target-Action Paradigm

 Archived Objects and Nibs

 NSWindowController Overview

 Multidocument Applications

 Undo and Redo

 Menu Validation

 Spell Checking

 Summary

 Chapter 9. Applications, Windows, and Screens

 The New Image Viewer

 Working with NSWindow

 Working with NSApplication

 Modal Loops

 Working with Sheets

 Working with Drawers

 Working with Screens

 Working with Panels

 Summary

 Chapter 10. Views and Controls

 Controls

 Simple Views and Controls

 Container Views and Controls

 Compound Controls

 Summary

 Chapter 11. The Cocoa Text System

 Using the High-Level Text Classes

 The Text System Architecture

 Managing Fonts

 Text Input

 Summary

 Chapter 12. Custom Views and Graphics Part I

 The Quartz Graphics Model

 Quartz Graphics Via the Application Kit

 Using the NSBezierPath Class

 Modifying Drawing

 Summary

 Chapter 13. Custom Views and Graphics Part II

 Using NSGraphicsContext

 Coordinate System Transformations

 Drawing Points and Rectangles

 Optimizing Drawing

 Summary

 Chapter 14. Custom Views and Graphics Part III

 Images and Bitmaps

 Drawing Text

 Summary

 Chapter 15. Events and Cursors

 Event Handling in Custom NSView Subclasses

 Managing Cursors

 Summary

 Chapter 16. Menus

 Standard Menu Layouts

 NSMenu Class

 NSMenuItem Class

 Menu Validation

 Contextual Menus

 Dock Menus

 Deprecated Functionality

 Summary

 Chapter 17. Color

 NSColor Class

 Color Wells

 Color Panels

 Customizing the Color Panel

 NSColorList Class

 Summary

 Chapter 18. Advanced Views and Controls

 NSTableView, NSOutlineView, and NSBrowser Concepts

 Table Views

 Outline Views

 Browsers

 Combo Boxes

 Custom Controls

 Toolbars

 Status Bars

 NSQuickDrawView Class

 Summary

 Chapter 19. Using Pasteboards

 Pasteboard Concepts

 Implementing Cut, Copy, and Paste

 Implementing Drag and Drop

 Implementing Services

 Summary

 Chapter 20. Adding Online Help

 Apple Help

 ToolTips

 Context-Sensitive Help (NSHelpManager)

 Summary

 Chapter 21. Multimedia

 Sound

 QuickTime

 3D Graphics

 Summary

 Chapter 22. Integrating with the Operating System

 Getting System Information

 Authentication and Security

 Communicating with the Workspace

 Summary

 Chapter 23. Networking

 NSURL and NSURLHandle

 Email Messages

 Directory Services

 Interapplication Programming

 Summary

 Chapter 24. Subprocesses and Threads

 Choosing Between Subprocesses and Threads

 Using the NSTask Class

 Using the NSThread Class

 Locking

 Threading Issues

 Summary

 Chapter 25. Printing

 Basic Printing

 Overview of the Printing Classes

 NSView's Printing Support

 Printing and Pagination Example

 Printing in NSDocument-Based Applications

 Summary

 Part III: Cocoa Techniques

 Chapter 26. Application Requirements, Design, and Documentation

 Designing an Application with Requirements

 Designing TransparentTetris

 Implementing the Design

 Using AutoDoc

 Summary

 Chapter 27. Creating Custom Frameworks

 Creating and Using a Framework

 Header Files

 Providing Backward Compatibility

 Debugging Frameworks

 Summary

 Chapter 28. Distributing Applications

 Package Directories

 Using Disk Images

 Application Installation

 Summary

 Part IV: Appendixes

 Appendix A. Unleashing the Objective-C Runtime

 Objective-C Objects

 Messaging with IMPs and Selectors

 Common Runtime Functions

 Forwarding, Distributed Objects, and Proxies

 Examples

 Summary

 Appendix B. Optimizing and Finding Memory Leaks

 Optimizing Applications

 Finding Memory Leaks

 Summary

 Appendix C. Finding Third-Party Resources

 Apple-Provided Documentation

 Example Code

 Web Sites

 Mailing Lists

 Summary

 Appendix D. Cocoa Additions in Mac OS X Version 10.2

 Quartz Extreme

 Handwriting Recognition

 Address Book and vCard

 Universal Access

 Updated Tools

 Framework Enhancements

 Summary

 Index

Book: Cocoa® Programming

Copyright

Copyright © 2003 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

Library of Congress Catalog Card Number: 2001089381

Printed in the United States of America

First Printing: September 2002

05 04 03 02 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an "as is" basis. The
author(s) and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book.

Credits

Executive Editor

Jeff Schultz

Acquisitions Editor

Betsy Brown

Development Editor

Susan Hobbs

Managing Editor

Charlotte Clapp

Project Editors

Elizabeth Finney

Katelyn Cozatt

Copy Editor

Chip Gardner

Indexer

Chris Barrick

Proofreaders

Andrea Dugan

Jody Larsen

Technical Editors

John Ray

Steve Munt

Team Coordinator

Amy Patton

Interior Designer

Gary Adair

Cover Designer

Alan Clements

Page Layout

D&G Limited, LLC

Book: Cocoa® Programming

About the Authors

Scott Anguish (sanguish@digifix.com) started developing for the Macintosh in 1984.
Upon seeing the NeXT development environment in 1992 he was hooked on the
possibilities of a unified imaging model and a pure object-oriented system. In 1994, after
several years of NeXT development, he created Stepwise, a portal for information related
to NeXT technologies. Today, Stepwise serves as a hub for Apple's Mac OS X technology
platform as well as Cocoa and WebObjects development. During the day he works to build
better technology for the Center for Educational Technology at Middlebury College using
Cocoa and WebObjects, of course.

Erik M. Buck (embassociates@qwest.net) is President of EMB & Associates, Inc., a
technology leader in the aerospace and entertainment software industries. He is a
contributor to Stepwise and has been developing software with Cocoa and its predecessor
technologies, OPENSTEP and NeXTSTEP, professionally since 1989. Mr. Buck holds a
BS in Computer Science from the University of Dayton.

Donald A. Yacktman (don@illumineX.com) has been using Cocoa and its predecessor
technologies, OPENSTEP and NeXTSTEP, professionally since 1991. He is currently the
Vice President of Development at illumineX, inc. illumineX is both an independent
software vendor of Cocoa-based Mac OS X software and a WebObjects consulting firm.
Mr. Yacktman is a member of the Stepwise editorial staff and the principal contributor to
the MiscKit, a premier source of information and reusable software for the OPENSTEP
and Cocoa communities. He holds BS and MS degrees in Electrical and Computer
Engineering from Brigham Young University and has been programming professionally
since 1981.

mailto:sanguish@digifix.com
mailto:embassociates@qwest.net
mailto:don@illumineX.com

Book: Cocoa® Programming

Acknowledgments

Scott Anguish

I would like to thank my wife Dorothy and my kids, Simon and Tori, for their love and
support while I was working on this project. This book would have been much thinner if
not for the heroic efforts of Don and Erik. I'd also like to thank the folks who contribute to
the community and Stepwise in particular. I too have a long list of Cocoa programmers and
developers who should be thanked both outside of Apple and within. I hope that we can
continue this journey of Cocoa development for years to come.

Erik M. Buck

I would like to thank my wife Michelle and family for their support, which made writing
the book both possible and enjoyable. I would also like to thank Don Yacktman, Scott
Anguish, and the many supportive people who contribute to Stepwise and the community
of Cocoa developers. Finally, I would like to thank the Cocoa programmers and enthusiasts
for whom this book was written. It is my sincere hope that this book will both accelerate
the process of learning Cocoa and help make using Cocoa fun.

Don Yacktman

I would like to thank my wife Marcie for her patience and support during the writing of this
book. The support of my entire family is also greatly appreciated. I would also like to thank
my co-workers at illumineX, especially CEO Gary Longsine, for their patience and
understanding. Without the support of Marcie and Gary, this book would not have been
possible. Many thanks are offered to the numerous friends at Apple who have taken time to
verify facts in this book. Finally, I would like to thank all the people who helped me learn
the skills used and described in this book. The people who have offered help and guidance
over the years are too numerous to list, but this book exists in part because of their
contributions.

Book: Cocoa® Programming

We Want to Hear From You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what areas
you'd like to see us publish in, and any other words of wisdom you're willing to pass our
way.

You can email or write me directly to let me know what you did or didn't like about this
book-as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book's title and authors as well as your name
and phone or email address. I will carefully review your comments and share them with the
authors and editors who worked on the book.

Email: opensource@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

mailto:opensource@samspublishing.com

Book: Cocoa® Programming

Reader Services

For more information about this book or others from Sams Publishing, visit our Web site at
www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of the book in
the Search box to find the book you're looking for.

http://www.samspublishing.com/

Book: Cocoa® Programming

Introduction

Software development for Mac OS X can be a great joy. The advanced programming tools
and frameworks now provided by Apple astound many programmers. When programmers
delve into the object-oriented technology called Cocoa, which is part of every Mac OS X
system, they often describe the experience as life-changing. Claims of massive productivity
increases are common. Developers describe Cocoa as eye-opening. Cocoa demonstrates the
true power of object-oriented programming in a way that few programmers have
experienced when using other technologies. Cocoa enables programmers to focus on the
unique value of their applications by eliminating almost all the drudgery traditionally
necessary when making complex graphical applications. The Cocoa technology
exemplifies some of the best software design ever seen. Beyond providing tremendous
functionality out of the box, the Cocoa technology inspires programmers to follow Apple's
example and design excellent software.

Apple acquired much of the Cocoa technology in the last days of 1996 when Apple merged
with a company called NeXT. When first seen publicly in 1988, the technology was called
NeXTSTEP. Over the years NeXTSTEP became OPENSTEP, then Rhapsody, then Yellow
Box, and finally Cocoa. Each name change brought additional features and maturity. Apple
has significantly expanded and enhanced Cocoa for Mac OS X.

Although there are many ways to program an Apple computer, this book focuses on the
Cocoa environment. Using Cocoa is the most advanced and arguably the most productive
way to program a Macintosh-it's also the most fun. In presentations to developers, Apple
representatives describe Cocoa as the future. Apple recommends that all new software
development for the Mac use Cocoa.

This book contains all of the information necessary to build complex Cocoa applications.
The major Cocoa concepts are explained and demonstrated with example code. With this
book, an experienced developer can become immediately productive with Cocoa and Mac
OS X.

Book: Cocoa® Programming
Section: Introduction

Intended Audience

This book is intended for intermediate and advanced programmers who are familiar with C
programming and many of the concepts of object-oriented programming. No prior
experience with Mac OS X or other Apple products is required, but the reader must have
access to a computer running Mac OS X and the Apple-provided development tools to use
the example programs. Object orientation and a small set of object-oriented extensions to
the C language are explained in this book, but this book is not a substitute for a
comprehensive language reference or books solely dedicated to object technology. The two
computer languages that Apple suggests for use with Cocoa are Java and Objective-C. Java
is discussed, but the examples in this book are primarily implemented with Objective-C.
Objective-C is the language in which Cocoa was written, and the reasons for choosing
Objective-C are presented in the book.

Programmers familiar with other development technology including PowerPlant, Mac App,
MFC/Win32, and Java Swing might experience culture shock when first learning Cocoa.
Even though the core of Cocoa has been in use for more than a decade, it is still
revolutionary. Revolutions do not always occur without discomfort, but few programmers
ever look back after experiencing Cocoa. A common question posed after learning Cocoa
is "why haven't we been doing it this way all along."

Book: Cocoa® Programming
Section: Introduction

Conventions

The following typographical conventions are used throughout this book.

Italic type is used for introducing new terms and usage notes.

Monospace type is used for code examples, command-line output, filenames and file
system paths, data types, URLs, and symbolic constants.

Bold Monospace type is used for required user input in examples.

Italic Monospace type is used to designate a placeholder for user input.

Book: Cocoa® Programming
Section: Introduction

Learn By Example

Each major topic in this book is accompanied by a self-contained example. Examining and
modifying the examples is often the best way to learn a new development environment and
technology. Readers are encouraged to play with example code, experiment, and test their
understanding. In many cases, the code in the examples can be copied into a new project to
provide a jump-start. The authors have more than 30 years of collective experience with
this technology. The examples embody the best practices, common programming idioms,
and wisdom acquired by the authors.

There is a web site associated with this book at http://www.cocoaprogramming.net/. All the
example code found in this book and more can be obtained from the Web site. The code is
organized on the Web site by chapter and example name. Any updates to the material in
this book, including errata, can be found there.

http://www.cocoaprogramming.net/

Book: Cocoa® Programming

Part I: Overview

IN THIS PART

 1 Cocoa and Mac OS X

 2 Cocoa Language Options

 3 Using Apple's Developer Tools

 4 Objective-C

 5 Cocoa Conventions

 6 Cocoa Design Patterns

Book: Cocoa® Programming
Section: Part I: Overview

Chapter 1. Cocoa and Mac OS X

IN THIS CHAPTER

● Understanding When to Use Cocoa
● Understanding Cocoa's Role in Mac OS X
● What You Need to Use Cocoa
● What's Included in Cocoa

Cocoa is a collection of software objects that implements almost all features common to
Mac OS X applications. Programmers extend the Cocoa objects to implement application-
specific features. The Cocoa objects are reused in every Cocoa application so that
programmers can concentrate on adding unique value with each line of code rather than
constantly reimplementing common features or struggling to access operating system
services. Significant applications can be built with very little code.

Cocoa is the result of continuous evolution from the software development environment of
NeXTSTEP, which was first released to the public in 1988. Cocoa takes advantage of
common object-oriented design patterns and best practices. In fact, many of the common
design patterns were first recognized in NeXTSTEP. Cocoa design patterns are described
in Chapter 6, "Cocoa Design Patterns."

Cocoa is distinguished from other object-oriented development environments in several
ways: Cocoa is mature, consistent, and broad. Cocoa is based on a cross-platform
specification and has evolved from a cross-platform implementation. Cocoa is
extraordinarily extensible, flexible, and dynamic in part because of Objective-C, the
language used to implement it. Objective-C is described in Chapter 4, "Objective-C."
Cocoa emphasizes the reuse of objects, dynamic loading of objects, and messaging
between objects.

Many developers enjoy huge programmer productivity improvements by using Cocoa
instead of other technologies. Several ground-breaking applications were originally
developed with NeXTSTEP, including Apple's own Interface Builder, Lotus Improv, and
the first World Wide Web browser. The initial implementations of the famous games
Doom and Quake, and the custom development tools for the games were written using the
predecessors to Cocoa. Developers such as Tim Berners-Lee, who invented the World
Wide Web, claim that they could not have created cutting edge applications as easily if
they had to use other technologies. The obstacles to overcome in other environments would
have hampered the innovations.

NOTE

Screen shots of the first Web browser and commentary from Berners-Lee are
available at http://www.w3.org/People/Berners-Lee/WorldWideWeb.html.

http://www.w3.org/People/Berners-Lee/WorldWideWeb.html

Book: Cocoa® Programming
Section: Chapter 1. Cocoa and Mac OS X

Understanding When to Use Cocoa

To understand why you would choose to use Cocoa, it is necessary to briefly explain the
alternatives. Apple supports three principal software development environments for
producing Mac OS X applications. The supported environments are Cocoa, Carbon, and
100% Pure Java. Each environment has strengths and weaknesses, and a developer's choice
of environment is influenced by many factors.

Carbon

Carbon consists primarily of a subset of the traditional procedural Application
Programming Interfaces (API)s used to program Mac computers. Apple updated, and in
some cases, enhanced the C libraries used to program Macs before OS X. Carbon provides
access to the modern and powerful features of OS X in a way that preserves compatibility
with most of the software written for earlier Mac operating systems. Applications written
using Carbon work on Mac OS 8 or Mac OS 9 with compatibility libraries installed, and on
Mac OS X. Apple provides a free application called CarbonDater that analyzes software
for compatibility with Carbon. In many cases, programmers can easily convert old
applications written for the Mac to work with Carbon on OS X.

Cocoa applications do not work with Mac operating systems prior to OS X. If compatibility
with Mac OS 8 or 9 is required, Carbon might be the best choice. On OS X, one advantage
of Cocoa is that Cocoa programs written with the Objective-C language can freely call the
C-based Carbon APIs. It is much more difficult for Carbon applications to benefit from
Cocoa features. In some cases, Apple has already implemented Cocoa objects that shield
programmers from underlying Carbon implementations.

The difficulty accessing Cocoa features from Carbon is expected to decline over time.
Carbon is slowly gaining access to traditional Cocoa features. Cocoa solutions to common
programming problems are preferred, and Apple has already exposed some parts of Cocoa
to Carbon programs. For example, the Core Foundation API is used extensively in Carbon
applications. Core Foundation is a procedural interface to the features of Cocoa objects. In
some cases, Core Foundation functions are derived from previously private internal
implementations of Cocoa objects.

Java

Java is both programming language and a set of cross-platform libraries. Mac OS X comes
with a complete implementation of Sun's Java 2 Standard Edition version 1.3.1. Apple's
Java Virtual Machine was developed in cooperation with Sun and uses many Sun
technologies including Sun's Hot Spot JIT (Just In Time) compiler. 100% Pure Java

applications can be developed on OS X using Apple's developer tools or third-party tools.

100% Pure Java applications are portable to many different operating systems. If
portability is the primary requirement for a software project, 100% Pure Java might be the
best development technology.

Java can be used to develop Cocoa applications, but the resulting applications only work on
Mac OS X. The objects that comprise Cocoa are written in Objective-C, but Apple
provides a technology called the Java Bridge that enables relatively seamless use of Cocoa
objects from Java code and vise versa. Objective-C was one of the major influences that
shaped the design of the Java language. Java and Objective-C have many similarities under
the surface. Using Java to write Cocoa applications is explained in more detail in Chapter
2, "Cocoa Language Options."

Cocoa

Cocoa is the most mature development environment for OS X, as well as the most
productive technology for implementing many types of applications. The cheapest, fastest,
and most bug-free lines of code in any application are the lines a programmer didn't have to
write. Cocoa's pervasive use and reuse of objects dramatically reduces the number of lines
of code in applications. By following the example set by Cocoa, many developers achieve
high levels of reuse with their own custom objects.

A simple comparison is the TextEdit application shipped with OS X versus the SimpleText
Carbon example that Apple provides with their developer tools. TextEdit is a Cocoa
application implemented in 1354 lines of code, whereas SimpleText is implemented in
5231 lines of code. TextEdit has many more features and fewer limitations than
SimpleText, yet TextEdit requires approximately 1/4 the number of lines of code. Cocoa
programmers often claim a 5-1 productivity advantage over alternative technologies,
however, the TextEdit verses SimpleText comparison indicates a much greater advantage
than 5-1.

Cocoa is the most flexible software development technology for Mac OS X. Cocoa is
written in Objective-C, and that provides several advantages. Objective-C is a small
superset of ANSI C. Objective-C programs can seamlessly use all the C libraries available
in OS X, including Carbon and traditional Unix libraries. A variant of Objective-C called
Objective-C++ includes support for direct use of C++ libraries along with Cocoa. Apple's
Java bridge technology enables Java programs to use Cocoa, and allows Objective-C
Cocoa applications to use existing Java libraries. Apple has even provided access to Cocoa
from AppleScript, therefore, it is possible to write full-featured applications using
AppleScript and Cocoa. Cocoa is the only development environment for Mac OS X that
directly enables use of all other system components.

Cocoa is the most extensible software-development technology for Mac OS X. It is
possible to add features to the objects provided by Cocoa without access to the source code

for Cocoa. All Cocoa applications can take advantage of the addition without even being
recompiled. It is possible to selectively replace Cocoa objects with custom versions. Cocoa
provides powerful features for dynamically loading objects such as plug-ins. The dynamic
loading capabilities of Cocoa are only partly available to Carbon programs. It is even
possible to completely change the user interface of a Cocoa application without access to
the application's source code.

Book: Cocoa® Programming
Section: Chapter 1. Cocoa and Mac OS X

Understanding Cocoa's Role in Mac OS X

Mac OS X traces its heritage to earlier Mac operating systems and to versions of Unix.
Mac OS X melds the two operating systems into one.

Mac OS X uses the layered architecture shown in Figure 1.1. Cocoa is implemented to
enable access to all the features of OS X. Cocoa applications can use the Quartz, OpenGL,
and QuickTime graphics systems supported by Mac OS X. Cocoa provides high-level,
object-oriented components that use Quartz and advanced font rendering capabilities built
on top of Quartz. Cocoa objects exist to access OpenGL and QuickTime. Traditional Mac
features are accessed through objects that internally use the Carbon API. Cocoa directly
uses features provided by Darwin.

Figure 1.1. Mac OS X uses a layered architecture.

Cocoa contains objects that use the networking and file system features of Darwin. Many
Cocoa objects are implemented to use the Core Foundation components of Darwin. The
Objective-C language runtime used by Cocoa is implemented in Darwin.

Quartz

Quartz is the term used to collectively identify the advanced 2D graphics capabilities of OS
X, which are built on top of Darwin. Quartz consists of a window server process and a
powerful library of 2D drawing functions based on Adobe's PDF imaging model.

The window server is a process that runs in the background and controls display access by
applications. The window server provides device-independent color capabilities and color
correction for displays. The window server manages the layering of windows owned by
different applications and implements features such as translucency and live-window
dragging. The window server can reposition windows, apply translucent drop shadows, and
layer translucent windows without interrupting other applications. The window server also
provides limited direct access to the video frame buffer for games, OpenGL, and
QuickTime.

In addition to the window server, Quartz provides a graphics-programming API called
Core Graphics. Core Graphics provides functions and data types that can be used from any
of the programming environments supported by Mac OS X. In essence, Core Graphics is
an API for producing graphics compatible with the powerful cross-platform Portable
Document Format (PDF) standard from Adobe.

Core Graphics provides device-independent vector and bitmap graphics operations with
support for antialiasing and transparency. Core graphics has set a new high standard for the
presentation quality of graphics on a computer screen. Almost any graphics drawn with
Core Foundation can be saved as PDF files for viewing on any computer with a PDF
viewer. PDF is rapidly becoming the preferred format for What You See Is What You Get
(WYSIWYG) printing and publishing.

Cocoa's use of Quartz and 2D graphics is described in Chapter 12, "Custom Views and
Graphics: Part I," through Chapter 15, "Events and Cursors."

OpenGL

OpenGL is a standard cross-platform API for hardware accelerated 2D and 3D graphics.
Mac OS X features optimized OpenGL drivers, and every recent Mac computer ships with
hardware accelerated 3D graphics support. OpenGL is one of the most widely adopted
graphics standards. It is available for Unix and Microsoft Windows in addition to OS X.
Code that uses OpenGL can be very portable and produces consistent results across many
platforms. OpenGL is frequently used to implement games, medical imaging software, and
engineering applications. Cocoa includes an object for interfacing with OpenGL.

QuickTime

QuickTime is an Apple proprietary cross-platform technology for creating and presenting
video, animation, sound, music, and virtual reality environments. QuickTime is extensible
and supported for versions Mac OS 8 and higher, as well as all recent versions of Microsoft
Windows. Mac OS X provides up-to-date QuickTime support including programming
APIs, real-time streaming, and viewers.

QuickTime supports common graphics file formats for still images and video. QuickTime
can be used with popular Internet protocols for streaming media, and plug-ins exist for
most Web browsers including Internet Explorer, Netscape Navigator, and America Online.
Cocoa provides an object that enables the use of QuickTime from Cocoa applications.
Apple provides sample reusable objects that extend Cocoa's built-in support for QuickTime
and enable the creation of simple movie editors without writing any code at all.

Darwin

Darwin is Apple's name for the lowest-level components in Mac OS X. Cocoa is
implemented using the features of Darwin. Darwin consists of components that provide
core essential services. The Mach kernel is the heart of Darwin. Device drivers, file
systems, networking, Unix APIs, support for kernel extension, the Objective-C language
runtime, and key programming APIs are all part of Darwin.

Darwin source code is available from Apple under the terms of Apple's flexible open-
source license. By registering with Apple, any developer can download the Darwin source
code. Ports of Darwin already exist for the Intel x86 family of processors. By making
Darwin open source, Apple has empowered the broad community of Unix developers to
inspect and enhance the lowest-level core of Mac OS X. Third-party developers have
already contributed security enhancements and other features back to Apple.

Mach

Mach is the core of Mac OS X, and every software development technology in Mac OS X
uses the features of Mach. The version of Mach used in OS X is based on Mach 3.0. Mach
schedules CPU usage, supports symmetric multiprocessing with multiple CPUs, provides
memory protection and dynamic virtual memory, provides real-time features, and
implements an interprocess messaging system used by higher-level components to
interface with the kernel.

Cocoa objects that manage processes, threads, and interprocess communication use
features of Mach directly in their implementations. All Cocoa objects benefit from the
memory protection, dynamic virtual memory, and real-time features provided by Mach.

Device Drivers

In some cases, Cocoa objects use the features of operating system device drivers directly.
For example, Cocoa provides support for digital graphic tablets, mouse scroll wheels, and
multiple mouse buttons by interoperating with the relevant device drivers. Device drivers
for OS X are built as Mach kernel extensions. New device drivers can be dynamically
loaded into a running Mach kernel. There is no need to recompile the kernel or even shut
down the machine to install new device drivers.

BSD

Many Cocoa objects use traditional Unix features in their implementation on Mac OS X.
The Darwin component called Berkley Standard Distribution (BSD) refers the University
of California-Berkley standard distribution of Unix. The Berkley variant is one of the
major branches on the Unix family tree. Several free implementations of BSD Unix are
available. Apple uses code from some of the free versions in OS X and has contributed
back to them as well. Mac OS X's Unix features are principally based on standard BSD 4.4
with networking components from FreeBSD 3.2.

Networking

Cocoa provides objects that enable seamless access to networking features of the operating
system. Darwin includes networking support implemented as extensions to the Mach
kernel. Most of the networking components are based on the network support architecture
implemented in FreeBSD 3.2. Most of the POSIX standard API to access networking
features via sockets is supported. Sockets-based communication originated with early
versions of BSD Unix and has since become the most common technique. Sockets are
supported by every recent version of Unix and Microsoft Windows.

File Systems

Cocoa relies on Darwin for file system support. Cocoa provides objects that abstract file
system-specific issues. Cocoa programs work regardless of the underlying file system. The
abstraction is particularly important because modern operating systems such as Mac OS X
support so many different file systems. Avoiding the need to write code to handle different
file system issues is an advantage of Cocoa.

Darwin includes advanced file system support implemented in a layer outside the Mach
kernel. Mac OS X already supports Unix File System (UFS), Hierarchical File System plus
(HFS+), ISO 9660, File Allocated Table (FAT), Network File System (NFS), Web-based
Distributed Authoring and Versioning (WebDAV), and Universal Disk Format (UDF).
UFS is a common Unix file system. HFS+ is the native file system used by prior Mac
operating systems. HFS+ is the file system recommended by Apple because it best
preserves compatibility with software written for prior Mac operating systems. The ISO
9660 file system is standard and commonly used on CD-ROMS. The FAT file system is
used by Microsoft DOS and some Microsoft Windows installations. NFS implements a
standard protocol for accessing file systems on one machine from another over a network.
WebDAV is the file system implemented as extensions to the HTTP protocol. Apple uses
WebDAV to provide remote access to each user's iDisk. An iDisk is simply storage
allocated on a hard disk on a server at Apple. Mac users can use the storage to share files
with other people over the Internet. UDF is a file system intended to replace the ISO 9660
file system. UDF is primarily used on DVDs.

Objective-C Runtime

One of the most critical features of Darwin that is used by Cocoa is Apple's Objective-C
runtime. Cocoa is written in Objective-C. Apple uses the open source GNU Compiler
Collection (gcc) compiler and provides the basic compiler and development tools for use
with Darwin as a free download in source code or binary form. gcc is part of the Free
Software Foundation's GNU project. The gcc compiler collection comes with Objective-C
support, and a GNU Objective-C runtime that is slightly different from the one shipped
with Apple's Darwin. Apple has stated plans to keep their own version of gcc synchronized
with the standard GNU version and possibly unify the two Objective-C runtimes in the
future.

Parts of Core Foundation

Darwin includes part of the implementation of the Core Foundation procedural APIs. Core
Foundation is used by many of the higher-level APIs of Mac OS X includ-ing Cocoa.
Chapter 7, "Foundation Framework Overview," includes a brief introduction to the Core
Foundation. The fact that some source code for Core Foundation is available with Darwin
opens opportunities for third parties to inspect and enhance key elements of OS X's
software development infrastructure.

Book: Cocoa® Programming
Section: Chapter 1. Cocoa and Mac OS X

What You Need to Use Cocoa

Apple provides everything needed to develop Cocoa applications for Mac OS X. Apple's
developer tools are shipped on a CD-ROM in the same box with the Mac OS X operating
system CD-ROM. Cocoa can be used with Java, AppleScript, C++, and other languages,
but knowledge of C is required in most cases. The Cocoa objects are written in Objective-C.

This book provides an introduction to Objective-C for programmers who are already
familiar with C. Objective-C consists of a small set of extensions to ANSI standard C. C
programmers with experience using one or more object-oriented languages can learn
Objective-C very quickly. When Objective-C is familiar, the more daunting task of
learning the large and sometimes complex Cocoa frameworks begins.

The Cocoa frameworks are an excellent example of the power of object-oriented
programming and Objective-C. Even though Cocoa is large and provides many features, it
is consistent. The consistency helps programmers learn new parts of Cocoa by extending
knowledge already gained. After a while, programmers often find themselves reusing
Cocoa designs and programming idioms in their own code. Many programmers reaction to
Cocoa is "why was software ever written another way?"

Book: Cocoa® Programming
Section: Chapter 1. Cocoa and Mac OS X

What's Included in Cocoa

Cocoa is composed of frameworks that contain libraries of objects and related resources,
data types, functions, header files, and documentation. The two major Cocoa frameworks
are the Foundation framework and the Application Kit framework. Figure 1.2 shows the
Cocoa frameworks and the Mac OS X system components used by the frameworks.

Figure 1.2. Cocoa contains layered frameworks of objects.

The Foundation framework, shown in Figure 1.2, contains nongraphical objects that are
useful in every Cocoa application. The Foundation framework uses the services provided
by Darwin, and provides a foundation for other frameworks and applications to extend.

The Application Kit framework is built using the Foundation framework and OS X's
graphics services that are, in turn, built on top of Darwin. The Application Kit provides
graphical objects and graphical user interface elements. The Application Kit framework
provides the look and feel of Mac OS X Cocoa applications. The Yellow Box version of
the Application Kit provided Microsoft Windows, OpenStep, or traditional Mac OS looks
on each platform, but the Application Kit on OS X only supports Apple's Aqua look and
feel.

Cocoa is implemented in Objective-C. Objective-C is a dynamic language that supports a
style of flexible programming well-suited to creating reusable objects and accommodating
evolutionary change. Cocoa applications consist of interconnected objects. Apple provides
some of the objects, and others are provided by other vendors. Finally, applications contain
custom application-specific objects. The objects communicate with each other by sending
messages, and all objects are equal. The objects that Apple provides are not special in any
way. Custom objects, third-party objects, and Apple's objects all work together even
though they are developed independently.

Apple provides several applications that contribute to the productivity of Cocoa
programmers. Not surprisingly, most of Apple's own developer tools are Cocoa
applications. Mac OS X is built using Cocoa applications. Even the Apple tools used to
write Carbon and Java programs are Cocoa applications.

Book: Cocoa® Programming
Section: Chapter 1. Cocoa and Mac OS X

Summary

Cocoa is an advanced, mature, flexible, and extensible software development technology
that uses frameworks of objects and related resources. Cocoa has a legacy of cross-
platform support. Cocoa applications have access to all features of Mac OS X. Cocoa
provides large programmer productivity advantages compared to other technologies
available for software development on Mac OS X, but Cocoa applications only run on Mac
OS X. Carbon and 100% Pure Java are alternative technologies that support multiple
platforms.

The rest of this book explores Cocoa software development in detail. You'll start with
Chapter 2, "Cocoa Language Options," which covers the range of languages used to
develop Cocoa applications.

Book: Cocoa® Programming
Section: Part I: Overview

Chapter 2. Cocoa Language Options

IN THIS CHAPTER

● Object Orientation
● Java
● Objective-C
● Other Languages
● Choosing a Language for Use with Cocoa
● The Use of Objective-C in This Book

Cocoa is a collection of object-oriented components written in the Objective-C language.
Objective-C is a flexible and dynamic language that adds object-oriented extensions to
ANSI standard C. Because of the flexibility of Objective-C, the Cocoa components can be
used by a wide variety of languages besides Objective-C. The key language elements
needed to use Cocoa are support for dynamic object orientation and compatibility with the
C programming language.

This chapter describes the general features of all languages that can be used with Cocoa,
and a brief overview of object-oriented terminology. Details about the most common
languages used with Cocoa are provided. The available language options are explained
along with some of the advantages and disadvantages of different languages. This book
primarily uses the Objective-C language, and this chapter explains why.

Java and many scripting languages provide the required language features to use Cocoa
directly. Other languages such as C and C++ are not sufficiently dynamic to use Cocoa
objects directly. C and C++ programs can access Cocoa in two ways: They can use Cocoa
indirectly via the C-based Objective-C runtime, or they can be recompiled using the
Objective-C and Objective-C++ language compilers.

Details about using the Objective-C runtime from C or C++ without using the Objective-C
language syntax are provided in Appendix A, "Unleashing the Objective-C Runtime."
Because Objective-C is an extension of standard C and can compile all C programs, the
best way to use Cocoa from C code is to actually use Objective-C. Parts of a program can
be standard C (perhaps for portability reasons), whereas other parts can use Objective-C's
object-oriented extensions to access Cocoa. A variant of Objective-C called Objective-C++
provides the same object-oriented extensions to C++ that Objective-C provides to standard
C. The best way to mix C++ code and Cocoa is to use Objective-C++.

Book: Cocoa® Programming
Section: Chapter 2. Cocoa Language Options

Object Orientation

Cocoa is a collection of objects. To understand how various languages use Cocoa, a brief
explanation of objects and object orientation is needed. Object-oriented languages must use
objects in a way that is compatible with Cocoa to be integrated with Cocoa. For example,
Java is an object-oriented language that interfaces well with Cocoa. C++ is an object-
oriented language that provides a model of objects incompatible with Cocoa.

The goals of object orientation are to make writing software easier, cheaper, and faster. The
principal way that object orientation achieves its goals is through software reuse. The idea
is that software can be organized into objects that are individually reusable. Each time a
new software project begins, substantial parts of the project can be implemented using
existing software objects. In theory, the only new code that is written for a project is the
code that is truly unique to that project and cannot be shared by other projects.

By reusing objects, programmers hope to reduce the amount of new code written for each
project and, therefore, finish the project faster. Reused objects are already well-tested in
other projects. By reusing objects, programmers avoid bugs that might be created in new
code. Existing objects that implement complex logic are used to make creating software for
a new project easier. The idea is that the most complex and difficult to write code is
provided by existing objects. Reusing objects is simpler than rewriting the logic
implemented by the objects.

Encapsulation

Encapsulation is one of the principal ideas of object orientation. Encapsulation means that
data and the logic that operates on the data are grouped together. Data is only modified via
the operations encapsulated with the data. Encapsulation aids reuse and simplifies software
maintenance. Encapsulation also ensures that related data and logic can be easily identified
in one project and reused in another. Because data and logic are encapsulated together, it is
not necessary to grab a line of code here and a data structure definition there, or search all
the source code in a project for necessary lines of code to reuse just one feature of a
project. Encapsulation aids software maintenance by localizing problem solutions. If a bug
is detected, or a new feature must be added, encapsulation ensures that there is only one
place in the code where changes are made. Without encapsulation, fixing a bug, or adding a
feature might require changes to many different parts of a software project.

Modularity

Modularity is related to encapsulation. Modularity is the practice of implementing a
software project in multiple modules. A module is a self-contained input to a compiler. The

idea is that modules of code and data can be developed and compiled independently. The
separately compiled modules are brought together to complete a project. In many cases,
each module encapsulates some data and logic. Apple's Objective-C compiler enables the
use of multiple modules to encapsulate one set of data and operations. It is also possible to
implement multiple units of encapsulation in one module, but it is usually a bad practice.

Classes

In most object-oriented languages, something called a class is the basis of encapsulation.
Each class encapsulates some data and all operations upon that data. Operations on data are
sometimes called behaviors. Classes are implemented in one or more modules. Classes
formalize the ideas of encapsulation, and in some languages the compiler enforces that
encapsulation. The compiler prevents code that is not part of a class from modifying the
data managed by the class. Classes are related to instances and inheritance.

Instances

A class is in some respects an abstract idea. A class describes data and operations on that
data, but a class by itself is usually just an idea. For example, imagine a class called
Control that describes certain characteristics of all graphical user interface elements.
Those characteristics might include color and position. The class Control is not any
particular user interface element, it describes all user interface elements. A particular
button is an "instance" of the class Control. An instance of the class Control has a
color and a position as described by the Control class.

A class describes data and behavior. An instance actually stores the data described by a
class. There can be any number of instances of a class. The behaviors defined in a class are
applied to instance's data.

NOTE

You will learn more about abstract classes and abstract Cocoa classes in
Chapters 4 and 7. Chapter 4 also introduces the details of Objective-C as well
as class methods versus instance methods. If these concepts are confusing to
you now, you'll get more details in these two chapters.

Objects

Both classes and instances can be called objects. Classes are objects that describe instances.
Instances are objects that store data described by a class. Object is a general term that
applies to encapsulated data and logic and has different implications in different languages.
Almost every object-oriented language endows objects with capabilities beyond just

encapsulation, such as support for specialization.

Specialization

Object orientation promotes software reuse. Software objects from one project can be used
in another project. But what happens when a new project needs an object similar to one that
already exists, but needs just a few changes? The existing object can be specialized rather
than starting from scratch to create a new object that meets the exact needs of the new
project. Specialization is a technique for altering parts of the data and behavior of an
existing object while reusing other parts. There are two types of specialization: instance-
based and class-based. Cocoa uses both class-based specialization and instance-based
specialization extensively.

Instance-based specialization is a technique for changing the behavior of just one instance
object without necessarily modifying the behavior of other instances of the same class.

Class-based specialization applies changes to classes. The most common technique is to
create a new class that includes all the data and operations of another class while adding
additional data and new behaviors. Instances of the new class store the additional data and
have the additional behaviors along with the data and behaviors of instances of the original
class.

Inheritance

Inheritance is the most common form of class-based specialization. If a class called
Button includes the data and behaviors of class Control, class Button is said to
inherit from class Control. The terms subclass and superclass describe the inheritance
relationship. Button is a subclass of Control. A subclass inherits all of the data and
behavior of its superclass. In this example, Control is Button's superclass. If class
Button inherits from class Control, an instance of Button can be used in any context
that an instance of Control is required.

Some languages such as C++ support multiple inheritance. Multiple inheritance means that
a class has all the data and behavior described by two or more super classes. Java and
Objective-C do not support multiple inheritance, and Cocoa does not use multiple
inheritance.

Messages

Messages are one way that objects can communicate with each other. Messages enable
objects to request that other objects invoke behaviors. A user interface object might send
the isEnabled message to a Control instance as a way to request that the Control
instance returns a YES or NO value. A message is an abstract idea and few assumptions are
made about messages. For example, a message can be sent to an anonymous object. The

sender of the message might not know the class of the receiver. The receiver might not
even be in the same program as the sender. Messages promote object reuse by minimizing
the dependencies between objects. The less one object knows about another, the better
chance the objects can be reused separately. Messaging enables communication between
objects without dependencies.

Many object-oriented languages do not directly support messaging. Messaging is one of the
dynamic features of Objective-C that are essential to the implementation of Cocoa.
Messaging is described in Chapter 4, and the technical implementation of messaging is
described in Appendix A.

Polymorphism

Polymorphism is another technique that enables the reuse of software objects.
Polymorphism allows the software that uses an object to work regardless of the specific
class of the object. In other words, polymorphism enables an object to send the same
message to different receivers without knowing precisely what behavior will be invoked by
the message when it is received.

All messages in Objective-C use polymorphism. In many cases it is not possible for the
sender of an Objective-C message to know the class of the object that receives the
message. Each receiver will invoke different behaviors upon receipt of the message. Java
and C++ also support polymorphism to various degrees. Along the spectrum of flexibility,
C++ compilers require detailed knowledge about all objects whose behaviors are used.
Objective-C does not require any knowledge about the objects that are used at compile
time. Java falls between the two extremes.

Book: Cocoa® Programming
Section: Chapter 2. Cocoa Language Options

Java

Java is one of the most popular programming languages used today. The designers of Java
credit Objective-C as one of the influences that led to the creation of Java. In addition to
the Java language syntax, Java provides standard libraries of objects and a standard runtime
environment called the Java Virtual Machine (JVM). Apple supports the use of Java when
creating Cocoa applications. Java implements classes, inheritance, and polymorphism in
ways that are compatible with Cocoa. Java has several compelling features not shared by
other languages used with Cocoa.

Automatic Garbage Collection

Dynamic memory management is one of the most difficult aspects of programming. The
Java language and the JVM include technology called automatic garbage collection.
Automatic garbage collection is a technique for automatically reusing dynamically
allocated memory that is no longer being used by the objects that reserved it. Java
programmers can usually ignore the issues of dynamic memory management because the
language and JVM take care of that for them. However, to get the best possible
performance with Java applications, programmers must still be sensitive to dynamic
memory allocation issues. Objective-C does not have the same degree of support for
automatic garbage collection.

Interfaces

Java includes a language feature called an interface. An interface specifies a set of
behaviors that an object can invoke. Objects can have multiple interfaces. To promote
reuse of objects, it is important that each object depend as little as possible on other
objects. Java interfaces can be used to minimize the dependencies between objects. A Java
object can be constructed so that it works with any other object that implements a particular
interface without needing to know the class or other information about the other object.
The less an object knows about other objects, the less likely it is to depend on the other
objects.

Java interfaces are similar to Objective-C protocols. Cocoa uses protocols extensively.
When Java is used with Cocoa, many of Cocoa's protocols are accessed with equivalent
Java interfaces.

Security and Safety

Security was one of the design goals of Java. The JVM ensures that Java objects
downloaded over the Internet cannot directly harm the computer on which they are run.

Most computer languages do not have any security features and, therefore, it is not as safe
to download and use objects written with other languages.

The Java Bridge

Apple provides a technology called the Java Bridge. The Java Bridge enables seamless
interaction between Java objects and the Objective-C-based Cocoa objects. Java objects
can specialize Objective-C objects. The Java Bridge handles issues such as the different
dynamic memory management conventions between Java and Objective-C. Java programs
that use Cocoa objects only run on Mac OS X.

100% Pure Java

Java is a cross-platform language because of the Java Virtual Machine. Any computer with
a recent version of the JVM can run Java programs even if the programs were written on a
different type of computer. Mac OS X includes an up to date JVM implementation and
standard libraries.

Java programs that only use Java's standard libraries are called 100% Pure Java programs.
Such programs run on any computer with an up to date Java implementation. Mac OS X is
an excellent platform for writing 100% Pure Java applications. However, if a Java program
uses Cocoa, it will not work on operating systems other than Mac OS X.

JavaBeans

The Java language includes JavaBeans, which are a standard for loading objects into
running programs. The standard Java libraries include features for loading JavaBeans as
well as identifying the interfaces and behaviors that the loaded JavaBeans support.
JavaBeans have many features in common with a Cocoa technology called bundles.

Book: Cocoa® Programming
Section: Chapter 2. Cocoa Language Options

Objective-C

Cocoa is implemented with Objective-C. Chapter 4, "Objective-C," describes Objective-C's
object-oriented additions to the standard C language. This chapter provides information
intended to help developers select a language to use with Cocoa. Some of the features of
Objective-C not shared by the other languages used with Cocoa are presented here to aid
the comparison of languages. The details are not presented until Chapter 4.

Categories

Categories are an Objective-C feature that enables the specialization of classes without
using inheritance. Categories can be used to add behaviors to existing classes without
recompiling them. The instances of specialized classes gain the new behaviors. Even pre-
existing instances and instances created and used entirely within the implementations of
Cocoa classes gain the new behaviors. Categories and their many advantages are used and
described throughout this book. Chapter 26, "Application Requirements, Design, and
Documentation," includes detailed analysis of the use of categories when designing an
application.

Protocols

Objective-C protocols are similar to Java interfaces. Protocols specify the behaviors
provided by objects independent of the class of the objects. Cocoa contains many protocols.

Perform

Objective-C objects can be asked to invoke behaviors in a dynamic way. For example, a
program can accept input from a user that specifies a behavior to invoke in a running
application. The capability to ask an object to invoke a behavior without the aid of a
compiler contributes to the integration of Cocoa with scripting languages.

Posing

Posing is the capability to universally substitute one class for another. Every time an
attempt is made to create an instance of a class, an instance of the posing class is created
instead. Posing classes even work with compiled libraries such as Cocoa. If a Cocoa
application includes an object that poses as a Cocoa object, the posing class is used instead
of the original class in every case. Posing is a feature of Objective-C that conflicts with
Java's security features and should not be used in Java Cocoa applications.

Runtime

Objective-C includes a runtime system similar in many ways to the Java Virtual Machine.
Objective-C's runtime provides many of the dynamic features of Objective-C and enables
the dynamic loading of Objective-C objects. Unlike the JVM, Objective-C's runtime is
small and does not provide cross-platform support or security features. Objective-C's
runtime is written in standard C and can be used from C or C++ programs even if those
programs are not compiled with an Objective-C or Objective-C++ compiler.

Book: Cocoa® Programming
Section: Chapter 2. Cocoa Language Options

Other Languages

Objective-C and Java are the two languages most commonly used with Cocoa, but many
other languages operate with Cocoa to varying degrees. The languages used with Cocoa
fall into two major categories: languages based on C and scripting languages.

ANSI C and C++

As mentioned previously, Cocoa is written in Objective-C, which is based on ANSI C. As
a result, other languages that are based on C can be used with Cocoa. There are two
strategies for using languages based on C with Cocoa. One strategy is to use only the C
interface to the Objective-C runtime and a standard C or C++ compiler. The other is to use
an Objective-C or Objective-C++ compiler to compile C or C++ code.

It is possible to write an ANSI C program that uses most features of Cocoa, and compile
that program with a standard C compiler. The Objective-C runtime's C interface includes
functions for creating and sending messages to Cocoa objects. As a superset of C, the C++
language can use the same techniques to access Cocoa objects.

The easiest way to use Cocoa from C programs is to use the Objective-C compiler to
compile the standard C code along with modules containing Objective-C code. Apple
provides an Objective-C++ compiler that enables the mixture of C++ code and Objective-C
code in the same module.

Scripting Languages

Scripting languages usually have a runtime that can be interfaced with Cocoa. The most
popular scripting languages used with Cocoa are AppleScript, TCL, and Python. Apple
provides AppleScript Studio along with their other developer tools. AppleScript Studio
enables the creation of full-featured Cocoa applications using AppleScript.

A product called Joy from AAA+ Software (http://www.aaa-plus.com) is used to integrate
TCL, JavaScript, and other languages with Cocoa. An open source interface between
Objective-C and TCL is available at http://www-sfb288.math.tu-berlin.de/oorange/
interpretedOC/interpretedOC.html. The Usenix organization provides a technical paper
discussing the integration between TCL and Objective-C at http://www.usenix.org/
publications/library/proceedings/tcl95/bogdanovich.html.

http://www.aaa-plus.com/
http://www-sfb288.math.tu-berlin.de/oorange/interpretedOC/interpretedOC.html
http://www-sfb288.math.tu-berlin.de/oorange/interpretedOC/interpretedOC.html
http://www.usenix.org/publications/library/proceedings/tcl95/bogdanovich.html
http://www.usenix.org/publications/library/proceedings/tcl95/bogdanovich.html

Book: Cocoa® Programming
Section: Chapter 2. Cocoa Language Options

Choosing a Language for Use with Cocoa

Cocoa can be used with many different languages, so how does a programmer choose the
language to use? As always, the answer depends on many factors, including the
programmer's familiarity with the languages and the special features of different languages
that are applicable to the problem's solution. The pros and cons of the most common
language choices for using Cocoa are described in this section. The bottom line is that any
of the languages presented here can be used, and different programmers will make different
choices.

Java Pros and Cons

Java is a powerful and modern language that emphasizes portability and security before
performance and flexibility. Java is ideal for writing long-running server processes that
heavily use network resources and databases. Java is well-suited for use in Web browsers
where security is a concern. Java's use of automatic garbage collection simplifies
application development and avoids whole classes of potential dynamic memory
management errors. Java's standard libraries contain a broad range of features that provide
a head start when developing many types of applications.

Java supports object orientation in a way that is compatible with Cocoa. Java applications
can use Cocoa if portability is not important. Cocoa and the standard Java libraries have
many features in common, but each contains objects that the other does not. Cocoa and
standard Java libraries can be used well together.

Unlike Objective-C, Java is widely taught at universities and elsewhere. Many
programmers who are learning Cocoa are already experienced with Java. For an
experienced Java programmer, using Java with Cocoa might seem like less work than using
Objective-C with Cocoa, but learning Objective-C takes little time for most programmers
experienced with C and at least one object-oriented language. Because Cocoa is written in
Objective-C, Cocoa programmers inevitably encounter Objective-C code even if that
encounter is limited to example programs and documentation. Learning Objective-C makes
learning Cocoa easier in the long run.

Java has several disadvantages for desktop applications. The cross-platform support and
security features that make Java ideal for some applications can get in the way of others.
The Java Virtual Machine that provides cross-platform support and security is large and
takes a long time to load. When a Java desktop application is first started, the Java Virtual
Machine must also be started and initialized. The JVM slows application start-up and
consumes resources. For long-running server applications, the startup cost is negligible
when averaged over the months or years that the program runs. Desktop applications are
started and quit much more often.

Java Cocoa applications pay the price for the JVM, but they don't reap the benefits. When
Cocoa is used, the Java application no longer has cross-platform support. Cocoa provides
access to features that circumvent Java's security restrictions, which are probably
inappropriate for a desktop application anyway.

Java is a popular language. Many libraries of Java objects are available, but it is
inconvenient to use Java with most existing libraries that were written in different
languages. To maximize the benefits of Java's portability and security, it is necessary to
avoid existing non-Java libraries. The fact that it is inconvenient to reuse the millions of
lines of existing C code and libraries from Java is a disadvantage.

Objective-C Pros and Cons

An advantage of Objective-C is its easy integration with existing C code. As a superset of
ANSI C, Objective-C can be used with existing C libraries including traditional Mac and
Unix libraries. The Objective-C++ compiler provided by Apple makes integration with
existing C++ code convenient.

Objective-C is the implementation language of Cocoa, and some features unique to
Objective-C are used by Cocoa. When Cocoa is used with different languages, small
incompatibilities and features that do not translate well are exposed. Objective-C provides
the most natural interface to Cocoa.

Objective-C is one of the most dynamic and flexible object-oriented languages, and Cocoa
programming often benefits from these advantages. When Cocoa is used by less flexible
languages, features and benefits of Cocoa are compromised to some degree. Java is also a
flexible and dynamic language but not quite as flexible and dynamic as Objective-C.

Most existing Cocoa sample code and training resources use Objective-C. Familiarity with
Objective-C maximizes the resources available to programmers who are learning to use
Cocoa. Some of the features of Cocoa are based on unique features of Objective-C.
Understanding how and why to use such Cocoa features is easier with an understanding of
Objective-C.

Objective-C is a small extension of ANSI standard C. Unlike C++, which attempted to
create a better C while adding a certain type of static strongly typed object support to C,
Objective-C adds the minimum features necessary to support dynamic weak typed object
support. Objective-C makes no attempt to improve the underlying C language. Objective-C
is usually easy for C and C++ programmers to learn. The essential additions that Objective-
C makes to C can be described in minutes.

Compared to existing implementations of the Java Virtual Machine, Objective-C's runtime
makes more efficient use of system resources. For desktop applications and applications

that occasionally need to resort to low-level system features and even assembly language,
Objective-C is a better choice than Java. When performance is critical, the C subset of
Objective-C can always be used to maximize performance.

There are two general types of applications: closed world and open world. Objective-C's
flexibility and power are generally inappropriate for closed-world applications, but much
more suited for open-world applications, as described in the following sections.

Closed-World Applications

The engine compartment of an automobile is analogous to closed-world applications. It is
desirable to know in advance every component that will be inside the engine compartment
and how they will fit together. Engines are carefully designed and their design is seldom
modified after they leave the factory. Any variation in the connections between engine
components is probably a manufacturing error. Languages such as C++ and to a lesser
extent Java provide language-level features that are well-suited to solving closed-world
problems. The static strong typing used by C++ and Java enables the compiler to verify
that all components fit together as planned at the cost of making variation, redesign, and
modification of existing applications more difficult. Some applications require the
verifiability of static strong typing and can overcome the reduction in flexibility. Some
programmers are just more comfortable solving closed-world style problems and might
never be satisfied with Cocoa because it is designed to solve open-world problems.

Open-World Applications

The passenger compartment of an automobile is analogous to open-world applications.
Any constraints on the type or number of people and things that can be placed in the
passenger compartment detract from the utility of the automobile. Some constraints are
inevitable, but the designer of a passenger compartment must strive for maximum
flexibility. The price of that flexibility is that the designer cannot anticipate everything that
might be put in the passenger compartment. The designer must work with incomplete
information. Objective-C provides language-level support for solving open-world
problems. Objective-C objects can operate with anonymous objects in different
applications. It is possible to send messages to objects even though the receiver might not
understand the message. It is possible to add behaviors to existing compiled objects
without recompiling them. The flexibility provided by Objective-C aids the development
and life-cycle modification of most desktop applications, but the cost is that the compiler
cannot always verify that the components fit together. In some cases, errors that might have
been caught by a compiler with a different language cannot be caught until an Objective-C
application is running.

Most graphical user interfaces are examples of open-world applications. Restrictions on the
type and number of graphical components available reduce the utility of user interfaces.
Sometimes it is necessary to create new user interface components that were not
anticipated by the original designers and still be able to integrate the new components with

the old components. Plug-ins and context menus are other examples of open-world
applications.

It is certainly possible to create open-world applications with static strongly typed
languages, but it is more difficult. It is also possible to use strong static typing with
Objective-C and gain many of the benefits at the cost of flexibility. Cocoa and Objective-C
emphasize flexibility at the expense of compile time verifiability. Much of the increased
programmer productivity attributed to using Cocoa results from Objective-C's flexibility.

Scripting Language Pros and Cons

Scripting languages are usually interpreted rather than compiled. Even scripting languages
that can be compiled often also operate in an interpreted mode. In most cases, scripting
languages promote rapid application development and programmer productivity before
runtime performance and compile time verifiability. Scripting languages are often easy to
learn and accessible to programming novices.

To access system resources that are only available from compiled languages, scripting
languages almost always provide a mechanism to extend the language for use with
compiled software written in other languages.

The extensibility of scripting languages combined with the power of Objective-C's runtime
makes using Objective-C objects from within scripting languages possible. Details about
allocating Objective-C objects and sending messages to them are provided in Appendix A.
As long as a scripting language can call a small number of Objective-C runtime functions,
Cocoa can be used in its entirety from the scripting language.

Scripting languages usually exhibit inferior performance and make producing large
applications difficult in comparison to compiled languages. When the performance and
scalability of scripting languages are acceptable, scripting languages can be an ideal way to
use Cocoa.

Book: Cocoa® Programming
Section: Chapter 2. Cocoa Language Options

The Use of Objective-C in This Book

Objective-C is used to present Cocoa in this book because Objective-C is the
implementation language of Cocoa. Learning it is not a large obstacle to learning Cocoa.
Understanding how and why to use Cocoa features is easier with an understanding of
Objective-C. Cocoa is so large that the benefits derived from using Objective-C when
explaining Cocoa outweigh the need for many readers to learn Objective-C. Programmers
learn new languages all the time.

Book: Cocoa® Programming
Section: Chapter 2. Cocoa Language Options

Summary

Cocoa can be used with many programming languages. For a language to use Cocoa, that
language must support a degree of flexibility and a model of object orientation that is
compatible with Cocoa. Objective-C, Java, and many scripting languages integrate well
with Cocoa. Other languages such as standard C and C++ can use Cocoa either by using
only the C functions provided by the Objective-C runtime or by using Objective-C and
Objective-C++ compilers to mix Objective-C code with the standard C and C++ code.

Now that the languages used to write Cocoa applications have been explained, the next step
is to learn the tools used to create Cocoa applications. Chapter 3, "Using Apple's Developer
Tools," introduces the tools that Apple provides for creating Cocoa applications. Apple's
developer tools can be used with C, C++, Java, Objective-C, Objective-C++, and
AppleScript.

Book: Cocoa® Programming
Section: Part I: Overview

Chapter 3. Using Apple's Developer Tools

IN THIS CHAPTER

● Obtaining Apple's Developer Tools
● Project Builder
● Interface Builder
● Frameworks
● Samples
● Terminal
● Other Tools

It is not possible to describe every feature of Apple's tools in one chapter, and the bulk of
this book is dedicated to unleashing the power of Cocoa. Apple's tools have many features
in common with other developer tools. This chapter describes the major tools that Apple
provides and some introductory step-by-step ways to use them. Most developers become
familiar with the tools quickly and discover features not mentioned here. Some of Apple's
tools use unusual paradigms for development tasks. This chapter mentions some of those
unusual aspects and assumes that the common aspects will be self-explanatory and second
nature by the time several examples have been completed. Apple's own introductory
documentation about the developer tools is available at http://developer.apple.com/
techpubs/macosx/DeveloperTools/devtools.html.

http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html
http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html

Book: Cocoa® Programming
Section: Chapter 3. Using Apple's Developer Tools

Obtaining Apple's Developer Tools

Apple ships Mac OS X on one CD-ROM, and provides a second CD-ROM that contains
developer tools. The Mac OS X Developer CD-ROM provides everything needed to write
Cocoa applications using Apple's tools.

NOTE

The developer tools can also be downloaded from Apple's site for free at
http://developer.apple.com/tools/macosxtools.html.

Apple's developer tools are high quality. They are competitive with similar tools from other
vendors. The fact that Apple distributes the tools with Mac OS X at no extra cost is not an
indication that the tools are not valuable. Quite the contrary, the tools are powerful and in
some cases indispensable for Cocoa development. Prior to the release of Mac OS X,
Apple's tools had to be purchased separately at a cost of several thousand dollars.
According to Apple, Mac OS X itself is built using Apple's tools.

http://developer.apple.com/tools/macosxtools.html

Book: Cocoa® Programming
Section: Chapter 3. Using Apple's Developer Tools

Project Builder

The primary Cocoa development tool is called Project Builder. It provides an Integrated
Development Environment (IDE) for writing, compiling, and debugging Cocoa
applications using Objective-C, Objective-C++, AppleScript, or Java. Apple uses a
modified version of gcc, the Gnu Compiler Collection, to compile Objective-C and
Objective-C++. A modified version of gdb, the Gnu debugger, is used to debug
applications. Project Builder wraps the Gnu tools and hides their command line nature
from developers. Project Builder users do not need to use the Gnu tools directly. Project
Builder integrates most development activities including editing code into one application.

NOTE

The Gnu project is a prominent open-source project. Details are available at
http://www.gnu.org/.

Creating a New Project

To get familiar with Project Builder, create a new project to build a version of the classic
"Hello World" program which is commonly the first program written in a new language.
This example is so small that it barely uses features of Cocoa. It just shows how to create a
new project and later how to edit, compile, and test code with Project Builder. The same
techniques are used to create large Cocoa projects.

To get started, double-click the Project Builder icon in the /Developer/
Applications folder. When Project Builder starts, select File, New Project from the
menu bar to open the Assistant window. The Assistant window is used to select the type of
new project to create. For this example, select the Foundation Tool project type, as shown
in Figure 3.1. A Foundation Tool is a program that uses only nongraphical Cocoa objects.
Tool programs do not have graphical user interfaces.

Figure 3.1. The Assistant window used to create new projects shows the Foundation
Tool project type selected.

http://www.gnu.org/

Click the Next button in the Assistant window. Project Builder requests the name and
location of the new Foundation Tool project as shown in Figure 3.2. Type Hello World
into the Project Name text field.

Figure 3.2. Specify the name and location of the new project.

Click the Finish button. Project Builder opens a new window for the Hello World project.
Select the main.m file inside Project Builder's Source folder as shown in Figure 3.3. Each
project document is divided into four main parts: Toolbar, Project pane, Editor pane, and
Tool pane.

Figure 3.3. Each Project Builder document represents a project and has four main
parts.

The Toolbar is user-configurable and accelerates access to frequently used Project Builder
features. Every feature accessible with the Toolbar is also accessible through menus. The
Project pane has several uses. Figure 3.3 shows the files that are used to build the Hello
World program. The file main.m in the Source folder is selected. The contents of the
main.m file are shown in the Editor pane. Figure 3.3 also shows the Tool pane closed, so
that only tabs to access its features are visible.

The .m extension on the main.m file indicates that it contains Objective-C code. In this
example, the Objective-C language is used to output the string Hello, World!. Don't worry
if you are not yet familiar with the Objective-C language. Chapter 4, "Objective-C,"
introduces the language. It is not necessary to write any code for this trivial example
because by default, when Project Builder creates a new Foundation Tool project, it includes
the file main.m exactly as shown in Figure 3.3. It even contains the following line that
outputs the Hello, World! string.

NSLog(@"Hello, World!");

Building the Hello World Project

To build the Hello World example, use the Build, Build menu item or Cmd-b. Figure 3.4
shows Project Builder in the middle of compiling the Hello World program. The Tool pane
shows the output from a variety of command-line tools used to build the project, including
the gcc Objective-C compiler. If there are any errors or warnings generated during the
build, they are displayed above the divider in the Tools pane.

Figure 3.4. Project Builder shows the output from command-line build tools in the
Tools pane.

Running Hello World

After the project has been built, it can be run. To run the Hello World program inside
Project Builder, use the Build, Build and Run menu item, or Cmd-r. Figure 3.5 shows the
output from Hello World in the Run tab of the Tools pane. The Cocoa NSLog() function
used to output the string Hello, World!, prints information such as the date and program
that produced the output followed by the output itself. The Hello World program outputs
2002-02-22 19:34:05.813 Hello World[567] Hello, World!. The rest
of the text in the Run tab of the Tools pane indicates that the process named Hello World
exited with status 0, meaning that there were no errors.

Figure 3.5. The output from running the Hello World program is shown in the Run
tab of the Tools pane.

Exploring the Project Pane

Two components are used to create the Hello World program; the main.m file has already
been shown. The other component is Foundation.framework shown in the Project
pane. The Foundation.framework is a collection of objects, functions, and resources
used in Cocoa applications. For example, the NSLog() function used to output Hello,
World! is implemented in Foundation.framework. Figure 3.6 shows all the folders in
the Project pane expanded to reveal their contents.

Figure 3.6. The components used to build the example are shown in the Project pane.

The folder labeled Products in the Project pane shown in Figure 3.6 lists the files that are
created by building the project. In this example, the Hello World program is the only
product that results from building the project.

There are five tabs that reveal different information in the Project pane. Figure 3.7 shows
the tabs with the Targets tab selected.

Figure 3.7. The Targets tab lists the products that are built by a project, and the build
style used to produce the targets.

The tabs provide the following information:

● The Files tab organizes the components used to build the project and the output
products from the project.

● The Classes tab lists the hierarchy of Cocoa classes available for use in
applications. The Classes are introduced throughout the rest of this book.

● The Bookmarks tab shows and organizes the list of bookmarks set by the user.
Bookmarks help users quickly jump to positions of interest within files.

● The Targets tab, shown in Figure 3.7, lists the applications, libraries, frameworks,
and other products built by a project. A single project can have any number of
targets, but there is usually only one. The Targets tab also lists available build
styles that are described later in this chapter.

● The Breakpoints tab lists the places where the debugger should stop execution
when debugging code. The previously set breakpoints can be disabled or deleted
from within the Breakpoints tab.

A build style specifies the options that are passed to various command-line tools used by
Project Builder to build projects. The two build styles shown in Figure 3.7 are
Development and Deployment. The Development build style specifies build options that
result in programs containing maximum debugging information. The Deployment build
style specifies less debugging support, but produces smaller, faster programs. It is possible
to create custom build styles and add them to the list as described in Project Builders online
help.

Debugging with Project Builder

To start debugging an application, select the Build, Build and Debug menu item, or Cmd-y.

Figure 3.8 shows the Hello World program stopped on a breakpoint while running in
Project Builder's integrated gdb debugger. Breakpoints can be added to a program by
clicking in the margin to the left of a line of code in the Editor pane. Breakpoints that have
been set are listed in the Breakpoints tab of the Project pane shown selected in Figure 3.8.
Breakpoints are removed from the Breakpoints tab of the Project pane, or by dragging the
Breakpoint icon out of the margin in the editor window.

Figure 3.8. The Hello World program is stopped on a breakpoint while running in
Project Builder's integrated gdb debugger. The Breakpoints tab of the Project pane

is selected.

NOTE

An online manual for the gdb debugger titled Getting Started with GDB is
available at http://developer.apple.com/technotes/tn/tn2032.html

The Project Builder toolbar contains icons on the right side to control the basic functions of
the debugger. The icons that look like VCR controls pause and resume execution of a
program. The remaining icons enable various techniques for single stepping through code.

http://developer.apple.com/technotes/tn/tn2032.html

Using Project Builder's Find Tool

Another Project Builder feature that can be demonstrated with the Hello World example is
the integrated Find tool. Figure 3.9 shows the Find tool in the Tools pane. Project Builder
searches for strings within the files of a project and within online documentation and
frameworks. One handy technique is to select an unfamiliar term in the Editor pane and use
the Find, Find Selected Text menu, or Cmd-7, to search for the term in the online
documentation. Figure 3.9 shows the results of searching for information about the selected
word NSAutoreleasePool. Be sure to select the Find tab of the Tools pane to see the
results of the find operation.

Figure 3.9. Project Builder's integrated Find tool searches for terms within a project
or in the online documentation.

Project Builder has a related automatic symbol completion feature that reduces the amount
of typing necessary. After the first few letters of a programming term have been typed,
press the F5 function key, and Project Builder looks up the term with the Find tool and
completes it, if possible. Typing NSAutore followed by pressing F5 completes the half-
typed work to produce NSAutoreleasePool.

Book: Cocoa® Programming
Section: Chapter 3. Using Apple's Developer Tools

Interface Builder

Interface Builder is invaluable for Cocoa development. Interface Builder is a tool for
positioning graphical Cocoa objects and connecting graphical and nongraphical objects
together. Interface Builder is arguably the best and most flexible user-interface design tool
available today for any platform. That is particularly impressive considering the fact that
Interface Builder is more than 12 years old, and its basic features have not evolved much in
that time. Interface Builder itself is a great example of a Cocoa application. It demonstrates
the power and flexibility of Cocoa while helping developers create new Cocoa
applications. Interface Builder can be extended and used with new reusable objects.

Interface Builder provides access to the full power and flexibility of the objects in the
Cocoa frameworks. Without detailed descriptions of the objects and their interactions, there
are limits to the amount of information that can be presented regarding the use of Interface
Builder. In this section, the general features of Interface Builder and its idioms are
presented without much explanation. Instead the role Interface Builder plays in Cocoa
development is introduced.

The following example describes how to build a simple image-viewer application without
writing or compiling any code at all. The example is similar in spirit to the nongraphical
Hello World program. In the Image Viewer example, standard Cocoa objects are
configured to allow drag and drop of image files from the file system and display the
images in a window.

One of the features of Interface Builder that the following example demonstrates is the
absence of required code. Interface Builder simply configures and connects existing objects
such as windows, menus, and image-viewer widgets. The objects are stored in a file on the
hard disk. When the file is read the objects and all their connections are restored and can be
run immediately.

Creating a New Interface with Interface Builder

The first step in this example is to launch Project Builder from the /Developer/
Applications folder. Next, select File, New Project to open the Assistant window, as
shown in Figure 3.10. Select the Cocoa Application option and click Next.

Figure 3.10. Select Cocoa Application in the Assistant window used to create new
projects.

As shown in Figure 3.11, type the name Image Viewer into the Project Name text field,
leave the default location in the Location text field unmodified, and click the Finish button.

Figure 3.11. Name the new project Image Viewer.

Project Builder creates a new project with the name Image Viewer.pbproj in a folder
called Image Viewer at the location specified. The new project is represented by the
Image Viewer.pbproj document shown in Figure 3.12. Make sure that the Files tab
of the Project pane is selected. Select the MainMenu.nib file in the Resources folder of
the Project pane, as shown in Figure 3.12.

Figure 3.12. Select the MainMenu.nib file in the expanded Resources folder.

Double-click the MainMenu.nib file to start Interface Builder. When Interface Builder
starts, select the Interface Builder, Hide Others menu to hide all applications except
Interface Builder. Interface Builder is shown with the MainMenu.nib document open in
Figure 3.13. By default, the MainMenu.nib document already contains several objects
including a menu and an empty application window. Figure 3.13 shows Interface Builder
configured with four open windows: one titled MainMenu.nib, another window titled
MainMenu.nib-MainMenu, a window titled Window, and a window titled Cocoa-
Other that contains a palette of reusable objects. The window titled Cocoa-Other in Figure
3.13 might have a different title and show different contents when Interface Builder starts.
This window provides access to Cocoa objects that are used to build applications. Several
different groups of objects exist. Each group is called a palette and can be shown by
selecting one of the icons in a row just below the window's title bar. The last palette
accessed in a previous session using Interface Builder is shown when Interface Builder is
started. The title of the window changes based on the palette shown.

Figure 3.13. Four windows are open when Interface Builder starts and loads the
MainMenu.nib file.

If the Interface Builder palette does not already show the collection of objects labeled
Cocoa-Other, as shown in Figure 3.13, select the Cocoa-Other palette by clicking on the
icon that depicts a slider and a progress indicator. It is third from the left in the window
titled Cocoa-Other in Figure 3.13.

Drag an NSImageView object from the Cocoa-Other palette into the empty application
window. Figure 3.14 shows the NSImageView being dragged from the palette.

Figure 3.14. An NSImageView object is being dragged from the palette to the empty
application window.

Figure 3.15 shows the NSImageView object that was dragged into the empty application
window and selected. When the NSImageView object was dropped into the window, a
copy of the object dragged from the palette was made, and then was added to the content of
the window. The little boxes around the object in Figure 3.15 are control points that
indicate the selected object. Selected objects can be moved and resized with the control
points.

Figure 3.15. An NSImageView object is added to the content of the application
window and selected.

Resize the NSImageView object so that it almost fills the window. As the
NSImageView is resized, Interface Builder shows dashed guidelines that indicate
suggested placement of objects to conform to Apple's user-interface conventions. Figure
3.16 shows the NSImageView resized to extend to the guidelines.

Figure 3.16. Interface Builder automatically shows guidelines for the placement and
size of objects.

Configuring Objects

In this example, images are viewed by dragging them into the NSImageView object when
the Image Viewer application is run. After resizing the NSImageView, the next step is to
configure it to accept images dropped onto the NSImageView. Select Interface Builder's
Tools, Show Info menu item or choose Cmd-1 to open the Show Info window. The Show
Info window is used to inspect and change the attributes of selected objects. When first
opened, the Show Info window's Attributes mode is visible. If the Show Info window does
not look like the window labeled NSImageView Info, as seen in Figure 3.17, make sure
that the newly positioned NSImageView is selected. The pop-up button labeled Attributes
in Figure 3.17 is used to select the type of information shown in the window.

Figure 3.17. The Show Info window is used to inspect and change attributes of
selected objects. It has the title NSImageView Info to indicate that it is showing

information about a selected NSImageView object.

The NSImageView that was placed in the application window is an instance of a Cocoa
class named NSImageView. Instances of the NSImageView class have many attributes
that can be set, but for now the only attribute of interest is the Editable check box at the
bottom of the Show Info window titled NSImageView Info in Figure 3.17. Select the
Editable check box so the selected NSImageView is editable at runtime, as shown in
Figure 3.18. Editable NSImageView's accept dropped files, but noneditable ones do not.

Figure 3.18. Make sure that the selected NSImageView is editable by selecting the
Editable check box.

Next, configure the NSImageView to automatically resize when its window is resized.
Select the Size mode of the Show Info window titled NSImageView Info using the pop-up
button as shown in Figure 3.19, or use Cmd-3 to select the Size mode without using the
pop-up button.

Figure 3.19. Change the Show Info window titled NSImageView Info to Size mode.

Click both of the lines within the inner box of the Autosizing area of the Show Info
window until its similar to Figure 3.20. Most graphical Cocoa objects can be configured to
automatically resize when the object that contains them changes size. By clicking the inner
lines in the Autosizing area, the selected NSImageView is configured to always expand
and contract to fill available space while leaving constant margins around the object. The
outer lines in the Autosizing area control whether the margins can grow or shrink. Many
different resizing behaviors can be set with the various springs and struts that look like
coils and lines in the Autosizing area.

Figure 3.20. Set the Autosizing springs and struts for the selected NSImageView as
shown.

NOTE

The size values shown in Figure 3.20 may be different if the window
containing the NSImageView has been resized. The exact size specified
does not matter.

The new interface can now be tested to determine if it is configured correctly. Select File,
Test Interface, or use Cmd-r to put Interface Builder into Test Interface mode. When
Interface Builder is in Test Interface mode, it copies the objects in the .nib file being
edited, hides Interface Builder's user interface, and enables the copied objects to start
running as if they were in a standalone application. When Interface Builder is put into Test
Interface mode, the Image Viewer interface created looks like the one shown as in
Figure 3.21.

Figure 3.21. The interface being tested has its own menu and a single window titled
Window that contains an editable NSImageView.

The interface being tested behaves just like it will in a standalone application. The window
can be resized, and the NSImageView will resize with it. The interface has all the
standard menus. To test the NSImageView, drag an image file from the Finder into the
NSImageView. Image files can be found in the /Library/Desktop Pictures
folder on most Mac OS X installations. Many types of images can be viewed including
JPEG, TIFF, GIF, and BMP. Figure 3.22 shows an image file being dragged from the
Finder to the NSImageView.

Figure 3.22. An image file is being dragged from the finder to the NSImageView
being tested.

Figure 3.23 shows the image centered and scaled proportionally in the NSImageView.

The default behavior of NSImageView is to proportionally scale images to fit within the
view, and the default was not changed in Interface Builder's Show Info window.

Figure 3.23. The interface being tested shows a ladybug image centered and scaled
within the NSImageView.

As the window containing the NSImageView is resized, the image grows and shrinks to
fit within the NSImageView. Try dropping other images on the NSImageView. The
NSImageView can even be printed within the Interface Builder's test interface mode. Just
select Cmd-p or the File, Print menu of the interface being tested.

To stop testing the interface and return to Interface Builder's normal mode, select the
NewApplication, Quit NewApplication menu item, or use Cmd-Q. When Interface Builder
is in its normal mode, make some additional changes to the MainMenu.nib interface.
Change the title of the application's one window from Window to Dropped Image by
selecting the Window icon in Interface Builder's MainMenu.nib window, and editing
the name in the Show Info window's Attributes mode.

NOTE

When the Window icon is selected, the Show Info window is titled
NSWindow Info. The Show Info window's title changes to reflect the selected
object.

Select the Attributes mode of the Show Info window titled NSWindow Info. Enter the new
title in the Window Title text field. Figure 3.24 shows the Window icon selected, and the
title of the window being changed.

Figure 3.24. Change the application window's title to Dropped Image.

Change the name of the application's main menu by editing the menu as shown in Figure
3.25. Double-click the NewApplication menu in the window titled MainMenu.nib-
Mainmenu. Menu names can be edited by double-clicking them. Change the
NewApplication menu to the Image Viewer menu.

Figure 3.25. Change the application name in the main menu to Image Viewer.

Next, single-click the Image Viewer menu to show the menu's items. Change the item
labeled About NewApplication to About Image Viewer by double-clicking the About
NewApplication menu item or using the Title text field in the NSMenu Info window.
Change the item labeled Quit NewApplication to Quit Image Viewer. Change the item
labeled Hide NewApplication to Hide Image Viewer. Figure 3.26 shows the edited menu
items.

Figure 3.26. Edit the menu item labels as shown.

Change Hide NewApplication to Hide Image Viewer.

Select File, Save or Cmd-s to save the modified interface. Quit Interface Builder and single-
click the Project Builder icon in the Dock to make Project Builder the frontmost
application. Use the Build, Build and Run menu item, or Cmd-r to build the project as
shown in Figure 3.27. Project Builder builds the project and copies the edited MainMenu.
nib file into the resulting application. The .nib file does not need to be compiled as part
of the build process because it is just a resource. The main.m file that was automatically
created for the new project must be compiled before the first time the new project is run,
however. When Project Builder has finished compiling main.m and copied all necessary
resources, the Image Viewer application is run.

Figure 3.27. Project Builder compiles main.m and copies the MainManu.nib file as
part of the build process.

Figure 3.28 shows the running standalone Image Viewer application with a displayed
image and a standard Print panel accessed from the File, Print menu item.

Figure 3.28. The Image Viewer application already supports printing and print
preview.

Interface Builder Paradigms

Interface Builder has many features that have not yet been touched, but one of the key
features has already been shown. The edited objects are live objects that can be run within
Interface Builder's Test Interface mode. Minimal Cocoa applications support all standard
menus and features such as live resize and printing. Interface Builder does not usually
generate any code. Instead, the live objects being edited in Interface Builder are saved to
a .nib file. Project Builder copies the .nib file into an already built application. When
the application is run, the objects in the .nib file are loaded to create the application's user
interface.

Interface Builder comes with several standard palettes and can be extended with more
palettes. Palettes can contain nongraphical objects as well as graphical objects. Apple's
developer tools include three sample custom Interface Builder palettes that demonstrate
how to create new palettes. The samples are stored in the /Developer/Examples/
Interface Builder directory. The bMoviePalette sample builds a palette that
contains components useful for making a simple QuickTime movie editor within Interface
Builder. The BusyPalette sample includes a variety of novel user-interface objects. The
ProgressViewPalette sample is an introduction to creating new palettes. It demonstrates
how to create a simple palette with minimal effort.

Most advanced features of Interface Builder are introduced in other parts of this book, but
there are a few Interface Builder paradigms that must be understood now to effectively use
the tool in examples. First, dragging an object from a palette creates a copy of the object.
The copied object is configured with the Show Info window. So far, only the Attributes
mode and the Size mode of the Show Info window have been used. There are usually six
modes available, but under certain circumstances there can be more. Continuing the
Image Viewer example, a few more changes are made to expose another paradigm
employed by Interface Builder: nested views.

Nested Views

Start Interface Builder again by double-clicking the MainMenu.nib item in Project
Builder's Resources folder. When Interface Builder has started, select the NSImageView
that was previously added to the application's window. Choose Tools, Show Info, or Cmd-
1 to open the Show Info window with the Attributes pane visible.

In the box labeled Border in the Show Info window titled NSImageView Info, select the
button with the dashed outline icon. That specifies that the selected NSImageView does
not have a border. In the box labeled Scaling, select the option labeled None. Figure 3.29
shows the NSImageView properly configured.

Figure 3.29. The NSImageView is selected and its attributes are shown in the
window titled NSImageView Info.

This example is being modified to place the NSImageView inside a scroll view. In the
modified example, the images that are dropped onto the NSImageView are shown at full
size. If it is not possible to see the whole image at once, the scroll view is used to see other
parts of the image.

To place the NSImageView in a scroll view, make sure it is selected and choose Layout,
Make Subviews Of, Scroll View, as shown in Figure 3.30.

Figure 3.30. The Layout, Make subviews Of, Scroll View menu item is used to nest the
selected objects inside a scroll view.

Using Layout, Make Subviews Of, Scroll View creates a new NSScrollView object,
and nests the selected objects within the NSScrollView. The selected objects become
the content that is scrolled. This capability to nest objects and make some views into
subviews of other views is an important Interface Builder paradigm. Many powerful
features are enabled by this paradigm. In addition to scroll views, objects can be nested
inside box objects, split views, tab views, and even custom view objects. Scroll views,
boxes, split views, tab views, and custom views are introduced in Chapter 8, "Application
Kit Framework Overview," and further explained in Chapter 10, "Views and Controls."

After the NSImageView is nested within a NSScrollView, resize the
NSScrollView so that it fills the window, as shown in Figure 3.31.

Figure 3.31. Resize the NSScrollView containing an NSImageView as shown.

Next, configure the automatic resizing behavior of the NSScrollView, so that is grows
and shrinks with the window. Make sure the NSScrollView is selected and use Cmd-3
to reveal the Show Info window Size mode, or select the Size option in the Info Window's
pop-up button. Figure 3.32 shows the NSScrollView configured to automatically fill
available space and preserve constant margins.

Figure 3.32. Set the NSScrollView's automatic resize behavior to fill available
space and preserve constant margins.

The modified interface can now be tested in Interface Builder's Test Interface mode. Save
the modified .nib file using Cmd-s, or File, Save and quit Interface Builder. In Project
Builder, use Build, Build and Run or Cmd-r to build and run the application. Project
Builder does not have to compile anything to complete the build. It just copies the
modified .nib file into the existing Image Viewer application and runs the application.
Figure 3.33 shows the modified Image Viewer application displaying the Dew Drop (Wide
Screen) .jpg image. The image is shown full size, but it is possible to scroll to reveal
hidden parts of the image. As the Dropped Image window is resized, the scroll view resizes
and the scrollbar elements automatically change size to reflect the proportion of the image
that is visible. Experiment with dropping different images in the Image Viewer window to
see the scroll behavior.

Figure 3.33. The modified Image Viewer application now enables scrolling to view full-
sized images.

Two more important Interface Builder paradigms are presented next: Objects can be
grouped to form a collection of cooperating objects arranged in a grid pattern called a
matrix, and objects can be interconnected within Interface Builder.

Creating a Matrix

To create a matrix of objects, press the Alt key on the keyboard while dragging a selected
object's control points.

NOTE

The Alt key is pressed by holding the Shift key and the Option key,
simultaneously.

Figure 3.34 shows a matrix of buttons being created. The objects in a matrix are
automatically configured to work together and resize as a group. Radio buttons, forms
created from multiple text fields, and other groups of objects are implemented using a
matrix in Interface Builder. Chapter 10 introduces the NSMatrix object. There is no need
to experiment with creating a matrix in Interface Builder at this time, but it is important to
know that the feature exists.

Figure 3.34. Drag the control points of a selected object while pressing the Alt key to
create a matrix of objects.

In Project Builder, save the Image Viewer project, and then quit.

Interconnecting Objects

To briefly explore connections between objects, start Interface Builder and create a new
empty interface. The Interface Builder application is located in the /Developer/
Applications folder. Interface Builder shows a window titled Starting Point. If the
Starting Point window is not visible, select File, New. Choose the option labeled Empty
inside the Cocoa folder displayed in the Starting Point window. Then click the New button
at the bottom of the Starting Point window to create a new empty user interface.

No windows are in the empty user interface yet. Select Interface Builder's Cocoa-Windows
palette and drag a window object out of the palette and onto the desktop. A new empty-
window object is created. Next, select the Cocoa-Other palette and drag a vertical slider
object into the new window. Figure 3.35 shows a slider placed in the new window. Select
the Cocoa-Views palette and drag a text-field object into the new window.

Figure 3.35. A slider and a text field are connected in Interface Builder so they show
the same value.

The slider's default configuration is to represent values from 0.0 to 100.0, and initially
shows the value 50.0. If you are comfortable configuring objects with the Show Info
window, configure the slider so its Continuous option is on, and its Marker Values Only
option is off. These configuration options are not essential to the connections that will be
made between the slider and the text field objects.

To make a connection from the slider to the text field, make sure the slider is selected.
Press the Control key, and use the mouse to drag from the slider to the text field. A gray
line will follow the mouse pointer to show the connection line being made. Release the
mouse button over the text field. The Show Info window opens if it is not already and
shows its Connections pane. A browser labeled Outlets is visible in the Connections pane,
as shown in Figure 3.46. Select the target item in the browser, and then select the
takeFloatValueFrom: item that appears in the browser's second column. Click the Connect
button to make the connection.

The slider has just been configured to send a message to the text field whenever the slider's
value changes. The message that is sent tells the text field to take its floating-point value
from the slider's current value. If the slider has not been configured to be Continuous, the
message is not sent until the slider is released after it is moved.

Next, connect the text field to the slider. Select the text field and Control-drag a connection
line from the text field to the slider. Release the mouse over the slider. Select the target
item in the Show Info window's Outlets browser, and then select the takeFloatValueFrom:
item that appears. Click the Connect button to make the connection.

Put Interface Builder into Test Interface mode using Cmd-R, or File, Test Interface. Type a
value between 0.0 and 100.0 into the text field being tested and press Return. The slider
will move to show the entered value. Move the slider and the text field is updated with the
slider's value. If the slider is configured to show Marker Values Only, as it was when
originally dragged from the palette, the slider will hop from marker to marker as it moves.
If the slider is not in Continuous mode, the value of the text field will not change until the
slider is released after it is moved.

Objects are alive and can send messages to each other even in Interface Builder's Test
Interface mode. The example barely touches on the power and flexibility of connections
made in Interface Builder. It is possible to create significant applications entirely visually
within Interface Builder. Menu items are connected to objects, and objects in different
windows can be connected. Nongraphical objects that implement application logic can be
connected to user interface objects.

Book: Cocoa® Programming
Section: Chapter 3. Using Apple's Developer Tools

Frameworks

In addition to tools, the developer CD contains frameworks and samples. Frameworks are
directories full of compiled software libraries, header files, documentation, and resources.
Frameworks keep related development information together. The libraries are present on
all OS X installations so that Cocoa applications can run, but the developer CD-ROM
provides alternate versions of the libraries to aid debugging and performance analysis. The
header files are required to compile Cocoa applications.

A framework is a collection of libraries, header files, documentation, and resources
organized so that Apple's developer tools can access the information. Apple's OS X
developer CD-ROM contains frameworks for Carbon, 100% Pure Java, Cocoa,
AppleScript, Perl, and more. Developer components of Apple technologies such as
QuickTime and Text to Speech are also provided as frameworks on the CD-ROM.

When Apple's developer tools are installed, the frameworks that are stored in /System/
Library/Frameworks on all OS X machines are extended. Additional versions of the
libraries are added to support code profiling. Code profiling enables application developers
to determine how many times functions are called and what percentage of an application's
time is spent in each function.

Frameworks can contain multiple versions of libraries and resources at the same time.
Apple might release beta libraries or new test frameworks to registered developers as they
have in the past. In certain cases, such new components are added to existing frameworks
rather than replacing the frameworks. By adding components rather than replacing them,
backwards compatibility can be preserved, and applications that depend on the behavior of
obsolete framework versions can continue to run.

Book: Cocoa® Programming
Section: Chapter 3. Using Apple's Developer Tools

Samples

When Apple's developer tools are installed, a wide range of sample applications with
source code are copied into the /Developer/Examples directory. Samples that use
Carbon, 100% Pure Java, and Mac OS services such as Text to Speech are installed along
with Cocoa specific examples.

Most Cocoa related examples are located in the /Developer/Examples/AppKit, /
Developer/Examples/Foundation, and /Developer/Examples/
InterfaceBuilder folders. Additional samples that use Cocoa are found in the /
Developer/Examples/AppleScript Studio and /Developer/Examples/
Java/AppKit folders.

Most topics demonstrated by the samples will not make any sense without a prior
introduction to Cocoa programming. This book contains the information needed to gain
maximum value from the samples that Apple provides. After Cocoa concepts are explained
in this book, refer to Apple's examples along with this book's examples to see
implementations of the concepts. The examples are an invaluable resource when learning
Cocoa. Many developers prefer to learn new technology from complex examples. The
Cocoa examples are presented here so that developers who are eager to jump into advanced
topics can find suitable examples immediately and refer back to topics in this book for
explanations.

Application Kit Framework Samples

The /Developer/Examples/AppKit directory contains the following samples:

CompositeLab This example uses the NSView, NSBezierPath,
NSAffineTransform, NSImage, and
NSColorWell classes to demonstrate different
compositing modes and transparency supported by the
Quartz-graphics model and accessed with Cocoa's
Application Kit framework. This example also uses drag
and drop.

CircleView This example creates a simple subclass of NSView to
demonstrate drawing, event handling, coordinate
systems, and text layout.

DotView This example subclasses NSView to implement custom
event handling and drawing. This is a good introductory
example.

DragNDropOutlineView This example implements drag-and-drop support in a
NSOutlineView.

DrawerMadness This example demonstrates the NSDrawer class.

HexInputServer This example uses the NSInputManager class to
create a custom input manager.

MenuMadness This example demonstrates a wide range of features
involving Mac OS X menus and the NSMenu class.

OutlineView This example produces a simple file viewer using the
NSOutlineView and NSFileManager classes. This
is a good introduction that explains how to provide a data
source for a NSOutlineView and how to access the
file system using Cocoa.

Rulers This example demonstrates custom units, rulers, and ruler
drawing using the NSRulerView class.

Sketch This is a complex example that builds a modest vector
drawing application using the NSDocument,
NSWindowController, NSUndoManager, and
NSBezierPath classes. Sketch is a realistic
application that provides most features that users expect
from every application including AppleScript support.

SimpleBrowser This example shows how to provide a data source for a
NSBrowser. The NSBrowserCell and
NSFileManager classes are also demonstrated.

SimpleComboBox This example explains how to use the NSComboBox and
NSUndoManager classes.

SimpleImageFilter This example demonstrates the Cocoa Filter Service
concept using the NSBitmapImageRep class.

SimpleService This example explains the Cocoa Services menu.

SimpleToolbar This example demonstrates a simple user-configurable
toolbar using the NSToolbar and NSDocument
classes.

TextEdit This is the complete source code to the TextEdit
application shipped with Mac OS X. TextEdit is a
large application that provides mid-level word processing
features. TextEdit uses many features of Cocoa and
highlights Cocoa's text handling classes. This is an
excellent example of a realistic full-featured application
built with Cocoa.

TextSizingExample This example demonstrates the interaction of the
NSTextView, NSTextContainer, and
NSTextStorage classes.

UserDefaults This example shows how to store users preferences and
default values using the NSUserDefaults class.

Foundation Framework Samples

The /Developer/Examples/Foundation folder contains the Authenticator,
ForwardInvocation, and MultiThreadedDO samples. All these samples are built
with a tool called ProjectBuilderWO that has not previously been mentioned.

ProjectBuilderWO is a version of Project Builder that predates the Project Builder
application normally used with Mac OS X. WO refers to Apple's WebObjects product.
ProjectBuilderWO is primarily used with older WebObjects applications, but is
included with the other developer tools from Apple.

The Foundation samples have not been updated in many years. The concepts demonstrated
are still relevant on OS X, but they are too esoteric to describe in detail here. Each of the
examples deals with an aspect of inter-process communication. The Authenticator example
shows how one process can authenticate requests from another process to make sure the

requesting process has authority to make requests. The ForwardInvocation sample
explores the low-level details of sending Objective-C messages between processes. The
MultiThreadedDO sample shows how to use Distributed Objects to safely send
messages between different threads in one process.

Interface Builder Samples

The /Developer/Examples/InterfaceBuilder folder contains sample custom
Interface Builder palettes. The Interface Builder application can be extended in a variety of
ways. These examples show how to create custom palettes of objects for reuse within
Interface Builder.

One particularly interesting Interface Builder palette is created by the bMoviePalette
sample. This palette contains components useful for making a simple QuickTime movie
editor. The palette includes a custom NSFormatter object for time display and a novel
user-interface element called a SoundFileWell that is used to add sounds to a movie via
drag and drop.

Additional Samples

The /Developer/Examples/AppleScript Studio folder contains samples that
demonstrate AppleScript Studio. AppleScript Studio is built with Cocoa and used the
Cocoa objects. These samples explain many aspects of Cocoa programming from the
perspective of a script writer. AppleScript Studio exposes Cocoa objects to AppleScripts
and makes it possible to create Cocoa applications with logic implemented in scripts.

The /Developer/Examples/Java/AppKit folder contains several examples that
show how to use Cocoa with Java. The Mac OS X developer tools can be used to create
100% Pure Java applications or use Java with the Cocoa frameworks. These samples
examine Cocoa objects from the perspective of Java programmers.

Additional samples are provided at http://developer.apple.com/samplecode/Sample_Code/
Cocoa.htm and http://developer.apple.com/samplecode/Sample_Code/Graphics_3D.htm.
Apple updates the site regularly, so check it for new samples. A few important samples that
are available from Apple's site include the following:

RoundTransparentWindow This sample shows how to create windows that have
transparent backgrounds and simulate windows that
are not rectangular.

http://developer.apple.com/samplecode/Sample_Code/Cocoa.htm
http://developer.apple.com/samplecode/Sample_Code/Cocoa.htm
http://developer.apple.com/samplecode/Sample_Code/Graphics_3D.htm

Cocoa InitGL This sample shows how to initialize OpenGL for use
with Cocoa applications.

NSGL Teapot This sample demonstrates advanced OpenGL features
accessed from a Cocoa application.

Simple AppKit This sample shows how to interact with OpenGL
using Cocoa from within Interface Builder.

Book: Cocoa® Programming
Section: Chapter 3. Using Apple's Developer Tools

Terminal

Mac OS X includes an application called Terminal in the /Applications/Utilities folder.
Terminal provides access to a traditional Unix command line. Several developer tools that
don't have graphical user interfaces use the command line. The command line is sometimes
the most efficient way to use tools that do have a graphical user interface.

Project Builder is used from the command line to build the install version of an application.
Normally, Project Builder preserves at least minimal debugging information in the
applications that it builds. The command-line version of Project Builder is called
pbxbuild. The command pbxbuild -install builds the project in the current
directory using options appropriate for a final install version of the application. All
debugging information is stripped out of the resulting application. The application built is
optimized, and its resources are stored in the most compact form available. Using
pbxbuild install produces the smallest and fastest applications. The pbxbuild tool is
located in the /usr/bin folder.

NOTE

Finder hides the /usr/bin folder and other traditional Unix folders by
default. The /usr/bin folder can be accessed from the Terminal application or
by using Finder's Go, Go to Folder… menu and typing /usr/bin in text
field presented.

The pbxbuild command is often used from automated scripts that build libraries and
applications at night while nobody is present to push the buttons in a graphical user
interface. pbxbuild can use any of the build styles defined in Project Builder. For
example, the command pbxbuild clean cleans the project in the current directory and
removes all intermediate files.

Book: Cocoa® Programming
Section: Chapter 3. Using Apple's Developer Tools

Other Tools

Several additional tools are provided on Apple's developer CD-ROM.

Concurrent Versions System
(CVS)

This is a common open-source tool for text file
version control. More information about CVS is
available at http://www.gnu.org/software/cvs/cvs.
html. CVS is installed with Apple's developer tools.
Source code for many large projects, including Mac
OS X itself, is controlled with CVS. The Concurrent
in the name is a reference to the fact that unlike
many other version control tools, CVS allows
multiple developers to edit the same file at the same
time. If conflicts arise between the different versions,
a tool like the FileMerge application described in this
section is used to reconcile the differences. CVS is
installed in /usr/bin.

Project Builder has limited built-in support for using
CVS. Many of the less common, but important CVS
tasks, must be performed using the command line
unless additional software that is not provided by
Apple is used. One free application that provides a
graphical user interface for CVS is CVL available at
http://www.sente.ch/software/cvl/#Download.

nibtool This is a command-line program to convert Interface
Builder .nib files to and from text files. It also
verifies the correctness of .nib files. It is
particularly useful when localizing an application for
different languages and cultures. The list of strings
used in a .nib file can be extracted with the
nibtool simplifying translation. nibtool can
also be used to produce textual descriptions of .nib
files so that different versions can be compared with
a tool like FileMerge. nibtool is installed in /usr/
bin.

http://www.gnu.org/software/cvs/cvs.html
http://www.gnu.org/software/cvs/cvs.html
http://www.sente.ch/software/cvl/#Download

otool This command-line tool shows information about
compiled binary files. Lots of information is
available, but otool is particularly handy for
showing the install locations of all dynamic libraries
needed by an application executable. The otool
program can be used to list all Objective-C classes in
a library or application. Otool is installed in /usr/
bin.

Quartz Debug This application highlights any drawing
inefficiencies in OS X applications. Quartz Debug
briefly flashes a yellow rectangle indicating each
area of pixels that is being redrawn, each time it is
redrawn. By watching the yellow flashes while an
application is running, it is possible to detect
unnecessary or redundant drawing. Quartz Debug is
installed in /Developer/Applications.

Sampler This is a noninvasive tool for profiling applications
to determine where they are spending processor
cycles. Sampler works with any Cocoa application. It
can even attach itself to an already running
application to find out what the application is doing.
Sampler interrupts the execution of an application at
regular intervals, records the current stack back-trace
at an instant, and then resumes the execution of the
application. Sampler then uses statistical analysis to
provide a rough approximation of the percentage of
program time spent in each function or method.
Sampler is an alternative to using specialized profile
libraries, when statistical sampling is a sufficient
measure. Sampler is installed in /Developer/
Applications.

FileMerge This Cocoa application is used to compare and merge
different versions of text files. FileMerge uses a nice
graphical interface to show differences between files.
The differences are then resolved in any of a variety
of ways and a file optionally containing elements
from both versions is saved. This is an outstanding
Cocoa application that quickly becomes invaluable to
developers. FileMerge is installed in /Developer/
Applications.

Book: Cocoa® Programming
Section: Chapter 3. Using Apple's Developer Tools

Summary

Apple provides world-class developer tools for Mac OS X at no extra cost to Mac
developers. Many of Apple's tools use open-source components that are common on other
platforms, such as Linux. The Gnu gcc, gdb, and CVS tools are used from Apple's project
Builder IDE. Interface Builder is an invaluable tool for Cocoa application development.
Interface Builder configures and connects reusable objects. In some cases, entire
applications can be created in Interface Builder without writing any code. Apple's
developer tools include a rich collection of utilities that simplify application development
and help with tasks such as performance profiling, version control, and file merging.

So far, the architecture of Mac OS X and the languages that are used for Cocoa
development have been described. This chapter provided an overview of the tools used to
create Cocoa applications. Chapter 4, "Objective-C," introduces the Objective-C language
that was used to write Cocoa. Most of Apple's examples and documentation about Cocoa
programming use Objective-C. Objective-C is a simple, small, and powerful extension to
ANSI C that directly enables many of the features of Cocoa.

Book: Cocoa® Programming
Section: Part I: Overview

Chapter 4. Objective-C

IN THIS CHAPTER

● Why Learn Objective-C?
● Additions to C
● Apple's Extensions
● The NSObject Base Class
● Runtime Functions
● Objective-C++

This chapter introduces the Objective-C language, and explains how Objective-C
represents the concepts of object-oriented programming that were described in Chapter 2,
"Cocoa Language Options." This book focuses on intermediate and advanced techniques
that unleash the power of Cocoa; as a result, there is only room for a brief introduction to
Objective-C. The information presented in this chapter and the next is sufficient for an
experienced C++ or Java programmer to become immediately productive with Objective-
C. Familiarity with C and at least one object-oriented language is a prerequisite for this
chapter. The conventions described in Chapter 5, "Cocoa Conventions," are also essential
to understanding how Objective-C is actually used in conjunction with Cocoa.

Book: Cocoa® Programming
Section: Chapter 4. Objective-C

Why Learn Objective-C?

The Objective-C language is the implementation language for Cocoa itself. Because of this,
an understanding of Objective-C is an important part of understanding Cocoa. It will help
you better comprehend the design philosophies underlying Cocoa. Many of the available
Cocoa code examples are implemented in Objective-C.

Objective-C is a superset of the ANSI C programming language. As a result, Objective-C
code can be integrated with exiting C code. The ability to conveniently reuse C code makes
Objective-C an ideal language for implementing modern object-oriented applications that
use operating system features made available only as C code. Objective-C applications are
capable of using every feature provided by the Mac OS X operating system.

Apple's rationale for selecting Objective-C is presented in the introduction to Apple's book,
Object-Oriented Programming and the Objective-C Language. Cocoa includes an
extremely flexible, extensible, and dynamic set of classes that can only be created with a
flexible and dynamic language like Objective-C. Apple's engineers note that Cocoa could
not have been written with a less dynamic language. The dynamism and flexibility of
Objective-C contribute to the high degree of code reuse and productivity that Cocoa
programmers enjoy.

Book: Cocoa® Programming
Section: Chapter 4. Objective-C

Additions to C

Because Objective-C is an extension of the C language, you can use everything you know about C
when programming in Objective-C. Parts of the C language are used less often in Objective-C, but
they are all still available to anyone who wants to use them. On top of the C language, Objective-C
adds a few new types, several keywords, and some new idioms. It is designed to be simple yet
powerful. Because of this, it is easy to learn the key points in just a few minutes, if you already know
the C language and have a basic understanding of object-oriented concepts.

The principal new idiom that Objective-C adds to C is the concept of messaging between objects.
Objective-C includes the language elements needed to declare objects, specify the messages that the
objects understand, and send messages to objects.

Messaging

Messaging is the reason that Objective-C is so dynamic. A message is a request for an object to do
something. In Objective-C, the syntax for sending a message looks like this:

[someObject doSomething]

The square brackets ([and]) indicate the start and end of a message block. The variable
someObject is the receiver of the message. The variable doSomething is called a selector and
specifies the message to send. Messaging always takes the following form:

[receiver selector]

Messages can include arbitrary arguments and can return values. Any message can be sent to any
receiver. If the receiver does not understand a message that is sent to it, a runtime error occurs.
However, errors are easily avoided because at runtime it is possible to determine whether a particular
receiver can understand a particular message before the message is sent.

The message sending syntax might look foreign at first. One of the reasons messaging syntax is so
distinct from function calling syntax in Objective-C is that messaging is a very different operation
from a function call. The two concepts are so different that representing them with the same syntax
would be misleading.

Messaging is flexible and dynamic because both the receiver and the selector are variables. The
determination of exactly which message is sent to which receiver is deferred until the program is
running. At the time a program is compiled, it might not be possible to know what object or type of
object will be the receiver. At compile time, the selector might be unknown. The selector might not
even exist in the program at the time it is compiled. The selector could be added by dynamically
loaded objects or typed in by a user. Because of messaging, it is relatively simple to integrate
Objective-C with other dynamic languages as well as scripting languages.

The messaging system is so dynamic that the receiver might not even be in the same application as the
code that sends the message. Messages sent between processes on the same or different computers are
called distributed messages. The syntax for sending a distributed message is exactly the same as the
stntax for local messages. In fact, the compiler cannot determine if a message is distributed or not at
compile time.

Messaging is implemented by a simple, small, and efficient runtime. Most languages have a runtime
to initialize the program stack and heap and call a program entry point like the main() function used
in C. In Objective-C the runtime has a much more pervasive role. The Objective-C runtime is active
throughout the running life of a program and is much more than just an initializer.

File Naming and Importing

Objective-C files are stored in the file system with the .m extension rather than the traditional .c
extension used for C code. The .m extension tells the compiler to expect Objective-C code rather than
standard C code. The source code of an Objective-C application is usually composed of header files
with the .h extension, and implementation files with the .m extension, just as C uses .h and .c.

Objective-C files can include header files by using the standard C #include preprocessor directive
or by using the #import preprocessor directive. The #import directive is similar to the
#include directive. #import assures that no file is imported more than once. Objective-C header
files that are imported don't need to be surrounded by "guards" (usually implemented with #define,
#ifndef, and #endif) to keep them from being included multiple times. You must use the
#import directive to import Cocoa headers because the Cocoa headers don't contain guards.

NOTE

In addition to the #import preprocessor directive, the Objective-C preprocessor
understands // style comments. As with C++ and some dialects of C, the // symbol is
used to start a comment that continues to the end of the line.

The id Type

As already mentioned, Objective-C is an object-oriented language. In the most general sense,
Objective-C defines an object as anything that can receive messages. The receiver of an Objective-C
message does not need to be known at compile time. The specific type of the receiver does not even
need to be known. When sending a message, the only requirement is that receiver is an object.

Objective-C introduces a new type, id, that is a pointer to an object. A variable with the id type can
be used as the receiver of any message. The id type is similar to the standard C void * type in the
sense that the compiler knows very little about the memory being referenced.

The id type is used the same way as any other C type. The following code declares a variable of type
id.

id anObject;

As declared, the variable anObject is a pointer to any object. In C, any pointer can be set to the
constant value, NULL. In Objective-C, any pointer to an object can be set to the constant nil.
Messages sent to nil are not errors. The only caution is that the value returned from a message to
nil is undefined in some cases.

Static Typing

The id type should only be used when very little information is known about an object and the
maximum flexibility allowed by the language is needed. The compiler should be given as much
information about objects as possible. When details about an object are known, static typing is used to
convey the details to the compiler.

To use static typing, simply declare a pointer to an instance of a particular class of object. For
example, given an existing class called NSString, a variable that stores a pointer to an instance of
NSString is declared as follows:

NSString *theString;

When the compiler subsequently encounters theString as the receiver of a message, the compiler
can use the specified type information to verify that theString is an object that can understand the
message being sent. If the compiler cannot find any appropriate declaration of the message being sent,
a warning is generated. The compiler generates a warning rather than an error because the compiler
cannot be certain that the message will not be understood. It is possible that the receiver does
understand the message, but the message has not been declared in a way that the compiler can verify.

The following types are defined by the Objective-C runtime, and can be used in programs.

SEL: used to store selectors

IMP: used to store pointers to the C functions that implement messages

Class: used to store pointers to Objective-C class objects

id: used to store pointers to arbitrary Objective-C objects

BOOL: used to store the Boolean constants YES and NO

Static typing of objects may be used even when the class of the object is not fully declared. The
@class keyword is used to inform the compiler that a type is a class as follows:

@class NSArray, NSString, NSNumber;
@class NSDictionary;

The declarations specify that NSArray, NSString, NSNumber, and NSDictionary are all valid

class names that can be used for static typing. This form of class declaration is called forward
declaration and is used in the same situations in which standard C structures are forward declared.

Declaring a Class

Declaring a class specifies the values that instances of the class will store, as well as the messages that
the class itself and instances of the class will understand. It is not necessary to specify all the messages
that can be understood by a class in the class declaration. Support for messages can be deliberately
hidden or even added at runtime. The class declaration is only a hint to the compiler regarding
messages, but the declaration is the only place that instance variables can be defined.

A class consists of two parts, an interface and an implementation. As described in Chapter 2, "Cocoa
Language Options," classes are used to encapsulate data and behavior. The complexity of an
implementation is hidden behind an interface through which the class is used.

Several new keywords exist to declare a class interface. Class interfaces begin with the @interface
keyword and end with the @end keyword as follows:

@interface MYObject : NSObject
{
}

@end

In the example, a new class called MYObject is declared to be a subclass of the NSObject class.
The NSObject class is part of Cocoa. Almost every class in Cocoa is directly or indirectly a subclass
of NSObject. More information about NSObject is provided later in this chapter. At this time, it is
only important to note that because MYObject is a subclass of NSObject, MYObject inherits all
the NSObject class's instance variables and understands all the messages that NSObject
understands. Objective-C does not allow multiple inheritance. It is only possible to declare at most one
super class. A new class can be declared with no super class by omitting the colon (:) character and
the superclass name.

Instance Variables

In the MYObject class interface, no instance variables beyond those inherited from NSObject are
defined. If MYObject had additional instance variables, they would be defined between the curly
braces ({ and }) in the interface declaration. The general form of a class interface declaration follows:

@interface CLASS-NAME : SUPER-CLASS-NAME
{
INSTANCE VARIABLE DECLARATIONS
}

METHOD DECLARATIONS

@end

The instance variables can have any previously defined type. For example, the following class
interface declaration defines a class that encapsulates circles in a hypothetical drawing program:

@interface MYCircle : NSObject
{
 NSPoint _myCenter; // NSPoint is a Cocoa C structure
 float _myRadius; // float is a standard C type
 BOOL _myIsFilled; // BOOL is a Boolean type
 NSColor *_myColor; // NSColor is a Cocoa class
 id _myExtraData; // this can be any kind of object
}

@end

The @public, @private, and @protected keywords can be used to restrict the use (scope) of
instance variables. Public instance variables can be accessed directly by any code. Protected instance
variables can be accessed directly by instances of the class that declares the protected variables, and
also subclasses of that class. Private instance variables can only be directly referenced by instances of
the class that declares the private variables. When not otherwise specified, instance variables are
protected. The MYCircle class could be modified as follows to use the instance variable scope
keywords:

@interface MYCircle : NSObject
{
 NSPoint _myCenter; // NSPoint is a Cocoa C structure
@public
 float _myRadius;
@private
 BOOL _myIsFilled; // BOOL is a Boolean type
@public
 NSColor *_myColor; // NSColor is a Cocoa class
 id _myExtraData; // this can be any kind of object
}

@end

All instance variables declared after one of the scope modifying keywords have that specified scope
until another scope modifying keyword is specified. In the MYCircle example, _myCenter is
protected because no scope is specified prior to its declaration. The _myRadius, _myColor, and
_myExternalData instance variables have public scope, whereas the _myIsFilled instance
variable has private scope.

It is seldom a good idea to puncture the encapsulation of instance variables by declaring them public.
Public instance variables can be accessed just like the members of a C structure. For example, given a
pointer to an existing instance of MYCircle, the _myRadius instance variable could be accessed
from any code as follows:

MYCircle *anInstance = someObject;
anInstance->_myRadius = 13.5f;

You should rarely use the private scope. When an instance variable is declared private, subclasses
cannot directly use the instance variable they inherited. Not all uses of a class can be foreseen. Using
the private scope might restrict valid uses of the variable in unanticipated future subclasses.

The protected scope is usually the best compromise between encapsulation and flexibility.

Methods

In Objective-C, an object is loosely defined as anything that can receive messages. Different objects
can react in different ways upon receipt of the same message. In other words, different objects can
have different methods of responding to a message. When declaring a class, it is possible to declare
the methods that will be used to react to messages. Methods have the same name as the message they
handle, and the terms message and method are sometimes used interchangeably when describing the
behavior of an object. There is usually a correspondence between the set of methods that an object
implements and the messages an object can understand. The phrase, "calling a method" is
interchangeable with the phrase "sending a message."

When declaring a class interface, methods implemented by the class can be specified. Some, all, or
none of the class's methods can be declared in the interface. The methods declared in the class
interface aid the compiler when static typing is used, but they are just a hint. Methods that were never
declared in a class interface can nevertheless be implemented and might even be added to a class
dynamically at runtime.

Methods a class implements might be deliberately excluded from the class interface to discourage
their use. In Objective-C, there is no way to declare a method private or protected. All methods are
public. However, methods that should not be called in certain situations should not be declared in the
class interface. If static typing is used, the compiler will generate a warning whenever a method that
was not declared is used. The warning is a hint to programmers that they should not be calling that
method. A technique for declaring methods so that the compiler generates the correct warnings for the
use of methods in some situations and not others is presented when Objective-C categories are
described later in this chapter.

Two types of methods can be declared in a class interface: instance methods and class methods.
Instance methods are invoked when an instance of the class receives a message. Class methods are
invoked when the class itself receives a message. Class methods are sometimes called factory methods
alluding to the fact that most class methods are used to build new instances.

NOTE

In Objective-C, each class is represented at runtime by an object. Class objects can
receive messages. Class objects are sometimes called Meta-Objects because they contain
information about other objects. A class object encapsulates the definition of instance
objects and is used to construct instances.

Method declarations occur after the closing curly brace of the instance variable declarations and
before the @end that ends the interface declaration as follows:

@interface CLASS-NAME : SUPER-CLASS-NAME
{
INSTANCE VARIABLE DECLARATIONS
}

METHOD DECLARATIONS

@end

Instance methods are declared with a leading minus (-) as follows:

- (int)count;

The -count method handles any count messages that are received by an instance of the class that
declares the -count method.

Class methods are declared with a leading plus (+) as follows:

+ (void)setVersion:(int)number;

The +setVersion: method handles any setVersion: messages that are received by the class
itself.

The method's return type is after the plus or minus symbol in a method declaration. This looks like a C-
language cast because it is written as a C type in parentheses. The return type is optional, however. If
you don't provide it, the default return type assumed by the compiler is id. A method that doesn't
have a return value should return void.

The method's name follows the return type and extends to the semicolon (;) that ends the method
declaration. In the preceding examples, the -count method does not take input parameters. The
+setVersion: method accepts a single integer parameter. Input parameters are always denoted by
the presence of colons (:) in the method name.

The colon itself is part of the method name, so the methods -init and -init: are considered to be
two different methods, each with a unique implementation. After each colon in a method name is a
type, in parentheses, that specifies the type of the input parameter, and the variable name used inside
the method's implementation code to refer to the input parameter. If no type is specified for an input
parameter, the compiler assumes that the parameter has the type id.

The colons in method names enable the naming of parameters. Consider the following method
declarations:

- (void)setArgument:(void *)argumentLocation atIndex:(int)index;
- (BOOL)lockWhenCondition:(int)condition beforeDate:(NSDate *)limit;
- (NSString *)descriptionWithCalendarFormat:(NSString *)format
 timeZone:(NSTimeZone *)aTimeZone locale:(NSDictionary *)
locale;

Although these method declarations look complex, they all follow a simple pattern. After each
parameter there is some space followed by another name, colon, type declaration, and input variable
name. Any number of parameters of any type can be added to the method declaration this way.

Just as the colons are considered part of the method name, Objective-C method names include all the
text before each input parameter. Therefore, the actual method names for the three previous methods
are setArgument:atIndex:, lockWhenCondition:beforeDate:, and
descriptionWithCalendarFormat:timeZone:locale:.

By interspersing parameter names with parts of a method name, it is possible for code to read almost
as if it were natural language. This provides an advantage for code readability, maintainability, and
clarity. Of course, badly chosen names can still lead to incomprehensible code. You cannot reorder the
segments of a method name. The following are two different methods:

descriptionWithCalendarFormat:timeZone:locale:
descriptionWithCalendarFormat:locale:timeZone:

It is possible to leave out the text between the colons. Objective-C doesn't require anything other than
a colon to specify a new parameter to a method, but it is usually poor style to not use some kind of
brief explanatory text. The method declaration, - (void)moveTo:(int)x :(int)y;, is valid
and declares the method named moveTo::, which takes two integer parameters, x and y, and returns
nothing.

A method's name is the same as the message it handles. Methods are invoked upon the receipt of a
message. The name of the message is used to select which method to execute. Message names are
called selectors. Message names can be stored in variables with the type SEL defined by the Objective-
C runtime. A method name can be converted into a SEL value by the compiler with the @selector
keyword as follows:

SEL aSelector;
aSelector = @selector(setObject:forKey:);

The value of the aSelector variable is set to the selector that represents the method named
setObject:forkey:.

Selectors can be passed as arguments to methods and functions. For example, the -(void)
performSelector:(SEL)aSelector withObject:(id)anObject method can be called
to ask the receiver to execute the method identified by aSelector using anObject as an input
parameter.

It is also possible to ask an object to provide a pointer to the function that implements a method

identified by a selector. Such function pointers are stored in variables with the type IMP, which is
defined by the Objective-C runtime. IMPs are only used as an optimization in rare cases. The use of
IMPs is described in the optimization section of this chapter.

Implementing a Class

Class implementations begin with the @implementation keyword and end with the @end
keyword. Class implementations contain the implementations of methods. Defining method
implementations is done much the same as implementing C functions. The code that implements a
method is defined after the method name and enclosed in curly braces. Consider the following class
interface for the MYAverager class:

#import <Foundation/Foundation.h>

@interface MYAverager : NSObject
{
 float _myValueArray[10];
}

- (float)avarageValue;
- (void)setValue:(float)aValue atIndex:(int)anIndex;

@end

The MYAverager class is simple. It stores ten floating-point values, each of which can be set by
calling the -setValue:atIndex: method. The average of the ten stored values is returned from
the -average method. The MYAverager class can be implemented as follows:

#import " MYAverager.h"

@implementation MYAverager

- (float)avarageValue
{
 int i;
 float sum = 0.0f;

 // sum the values
 for(i = 0; i < 10; i++) {
 sum = sum + _myValueArray[i];
 }

 // return the average
 return sum / 10.0f;
}

-(void)setValue:(float)aValue atIndex:(int)anIndex

{
 // set the value with the specified index
 if(anIndex >= 0 && anIndex < 10) {
 _myValueArray[i] = aValue;
 }
}

@end

self and super

When writing implementation code, sometimes it is helpful for an object to be able to send messages
to itself, or to use itself as a parameter in a message to another object. To make this possible,
Objective-C methods have a hidden parameter called self. In an instance method, self is a pointer
to the instance object that received the message being handled by the method. In a class method,
self is a pointer to the class object that received the message being handled.

The self variable can occur in any context that allows variables. It can be the receiver of a message
such as [self setValue:10.0f atIndex:4]. The value of self can be assigned and it can
be returned from methods. self is often passed as a parameter to other methods.

NOTE

All Objective-C methods also have another less-used hidden parameter, _cmd, which
stores the selector that was used to invoke the method.

Objects often implement methods that are also implemented by a superclass. The super keyword can
be used to invoke a superclass's implementation of a method. super is not a variable, and can only be
used as the receiver of a message. The super keyword can only be used within a method
implementation.

An -init method can be added to the MYAverager class previously declared. The following
method demonstrates the use of self and super:

-(id)init
{
 int i;

 // set the self variable to the value returned from the
 // inherited implementation of -init
 self = [super init];

 // initialize the stored values by sending messages to self
 for(i = 0; i < 10; i++) {
 [self setValue:0.0f atIndex:i];
 }

 // return self
 return self;
}

Creating Instances

After a class has been implemented, instances of the class are created by calling the +alloc class
method declared in the NSObject class. The need to inherit the +alloc method is one of the main
reasons that almost all classes are subclasses of NSObject. After an instance is created it must be
initialized by calling an instance method. The section about the NSObject base class in this chapter
describes the role of the NSObject class in instance creation. The process of allocating and
initializing instances is handled by conventions explained in the next chapter.

Book: Cocoa® Programming
Section: Chapter 4. Objective-C

Apple's Extensions

No standard exists for the Objective-C language and runtime. The Apple and Gnu implementations of Objective-C
include some powerful extensions to the language. The principal extensions are categories, protocols, type encoding,
and constant string objects. The extensions are used throughout Cocoa and enable much of the power and flexibility that
Cocoa programmers enjoy. The Apple and GNU compilers support the same extensions.

Categories

Categories enable the addition of methods to any class and can be used as an organizational tool or as an alternative to
subclassing. Categories are declared to extend existing classes. The name of the category is specified in parentheses
after a class name. The following category declaration extends the previously introduced MYAverager class to be able
to add a -max method:

#import "MYAverager.h"

@interface MYAverager (SampleCategory)

- (float)max;

@end

The -max method can be implemented to return the maximum value stored in a MYAverager instance:

@implementation MYAverager (SampleCategory)

- (float)max
{
 int i;
 int result = myValueArray[0];

 for(i = 1; i < 10; i++) {
 if(myValueArray[i] > result) {
 result = myValueArray[i];
 }
 }
 return result;
}

@end

When categories were first introduced, NeXT recommended that they be used to break large implementation files into
several smaller files so they could be used to organize the methods. For example, all the private methods that should not
be called except by the class's author can be organized into a category that is concealed from other programmers. There
is no way to restrict which methods of a class can be called in which contexts, but methods can be hidden from the users
of a class. The extra effort to find out which hidden methods exist is usually enough to discourage their use.

Categories containing private methods are often added within implementation files so that there is no header file that
declares the methods, and they can still be used within the object's own implementation without warnings. In fact,
category declarations do not need an interface at all. Only the implementation is necessary.

Categories are useful for organizational purposes, but that barely touches the power and flexibility enabled by them.

Methods can be added to any class without needing the source code for the class that is extended, or recompiling.
Categories are an alternative to subclassing with some limitations. One limitation is that categories cannot be used to
add instance variables to a class the way a subclass can. Nevertheless, using categories is preferable to subclassing in
many situations. For example, suppose your application calls a method implemented by a Cocoa framework class to
obtain an object. The class of the object returned by the framework was determined when the framework was written.
Subclassing the returned object won't help because there might not be a way to get the framework to return your
subclass instead of the class that was compiled into the framework. The class returned by the framework can be
extended by a category implemented in your code to add the methods you need.

Methods added by a category can override existing implementations, and it is possible to patch bugs in classes to which
you have no source code. To do so, replace the offending method with a correct implementation in a category. A
restriction when replacing methods is that there is no convenient way to call the original implementation from the
overriding implementation. The overriding method must duplicate the entire functionality of the replaced method. Also,
if more than one category implements the same method, then it is unpredicitable which method will be chosen for use
by the runtime.

Methods that are implemented in a category can access all the extended class' instance variables directly. At runtime,
methods that are declared in a category are no different from methods declared in the class interface. All subclasses of
the extended class also gain the category's methods. Even preexisting instances gain the category's methods when code
containing a category is dynamically loaded during a program's execution. It is possible to have an object that does not
understand certain messages when the application starts, but does understand them after a plug-in containing a category
has been loaded.

Categories are a powerful feature that can be easily abused. A good practice is to add a unique prefix to the start of any
method names defined in categories that modify framework classes. The prefix reduces the chance of an accidental clash
with a hidden framework method or a method in another category, which can happen easily. After a while, programmers
get in the habit of naming methods according to the conventions used in Cocoa. If you think of a method to add to a
Cocoa class, there is a good chance someone else has thought of the same method and given it the same name. Another
danger is that Apple will add the same method in a future release, but the method will be masked by a preexisting
category. Even if a method added via a category does not create a conflict now, it may in a future version of Cocoa.

Protocols

Protocols enhance static-type checking and help optimize distributed messaging. An Objective-C class inherits all the
methods and instance variables implemented by its superclass. This type of inheritance is sometimes called
implementation inheritance. Protocols embody the related concept called interface inheritance. Interface inheritance
means that method declarations are inherited, but not method implementations. A protocol declares a set of methods but
does not provide any implementations. Protocols can be used in combination with static typing to assure the compiler
that an object can understand the messages that are sent to it.

NOTE

An Objective-C protocol is analogous to a Java interface. An Objective-C interface is a different concept,
and this terminology difference can be a point of confusion between Java and Objective-C programmers.

Declaring and Adopting Protocols

Working with protocols consists of two aspects. First, a protocol must be declared, and is then adopted by one or more
objects. A protocol declaration defines methods, somewhat similar to an object interface, but it does not define instance
variables or implementations for the methods. There are no implementation files for protocols.

A protocol is defined using the @protocol keyword. For example, a simple protocol defining two methods looks like
this:

@protocol UpDown
- (void)increment;
- (void)decrement;
@end

The protocol's name follows the @protocol keyword. Between the @protocol and @end keywords are the
protocol's method declarations. If our sample class, MYAverager, were to adopt the protocol, we would change the
MYAverager class interface declaration to the following:

#import <Foundation/Foundation.h>
#import "UpDown.h"

@interface MYAverager : NSObject <UpDown>
{
 float _myValueArray[10];
}

- (float)avarageValue;
- (void)setValue:(float)aValue atIndex:(int)anIndex;

@end

First, the header file that declares the UpDown protocol is imported so the compiler knows the protocol's details. Next,
the protocol name is enclosed in angle brackets (< and >) and placed after the object's name and superclass declarations.
To specify the adoption of more than one protocol, list the protocol names inside the angle brackets, separated by
commas. The general form of a class interface that adopts protocols follows:

@interface CLASSNAME : SUPERCLASSNAME <PROTOCOL-LIST>

Category declarations can adopt protocols using the following syntax:

@interface CLASSNAME (CATEGORYNAME) <PROTOCOL-LIST>

One way of describing that a class is guaranteed to implement all the methods of a protocol is to say that the class
conforms to the protocol. If a class adopts a protocol then that class conforms to the protocol. If a loaded category of a
class adopts a protocol then that class conforms to the protocol. Finally, all the classes that inherit from a class that
conforms to a protocol also conform to the protocol. Conforming to a protocol just means that all the methods declared
in the protocol have been implemented either directly or through inheritance or a category.

After a class or category declares that it adopts a protocol, the compiler will require that all the methods found in the
protocol are actually implemented. There is no requirement to place a protocol's method declarations in the class or
category interface file because the protocol already declares them. Because categories can be loaded dynamically to add
methods to existing classes at runtime, and protocols can be adopted by categories, it is possible to dynamically add
protocol conformance to classes at runtime also.

NOTE

Protocol names have their own name space and do not conflict with class or function names. For example,
the Cocoa frameworks declare the NSObject class and there is also an NSObject protocol.

Static-Type Checking with Protocols

Type declarations for variables, method parameters, method return types, function parameters, and function return types

can include protocol conformance requirements to refine static-type checking. The following examples show several
ways in which protocol conformance can be included in a type:

id <SomeProtocol> aVariable;
NSObject <SomeProtocol, AnotherProtocol> *anotherVariable;
id <NSObject> SomeFunction();
- (id <SomeProtocol>)methodThatReturnsAnObject;
- (void)methodThatAcceptsAnObjectParameter:(MYAverager <SomeProtocol> *)
anObject;

Static type checking enables the compiler to verify correct type usage based on protocol conformance, class, and
inheritance in any combination.

Types based on protocols uncouple the concept of class from the set of messages that can safely be sent to an object.
Often, the only important information about an object is the set of messages it understands. Specifying that an object
conforms to a protocol asserts that it doesn't matter what class is used as long as it responds to a set of messages.
Information about the specific class and inheritance of an object constitutes implementation details. Protocols used in
types enable the compiler to check type safety, and verify support for particular messages without unnecessary
dependence on a particular class hierarchy.

Multiple-Interface Inheritance

Objective-C does not allow multiple-implementation inheritance, but multiple-interface inheritance is supported through
protocols. A class can adopt any number of protocols, and protocols themselves can adopt other protocols. To declare
that one protocol adopts another, just include the adopted protocol names in angle brackets (< and >) after the protocol
declaration using the following syntax:

@protocol PROTOCOLNAME <PROTOCOL-LIST>

Any object that conforms to PROTOCOLNAME also conforms to all the protocols in PROTOCOL-LIST.

Protocol Objects

Protocols are similar to classes because they both declare methods. The Objective-C runtime encapsulates class
definitions with class objects. Protocols are encapsulated by protocol objects. Apple's Objective-C runtime encapsulates
protocols with a class called Protocol. The compiler creates class objects automatically from class declarations, and
creates protocol objects automatically from protocol declarations.

References to class objects can be stored in variables and passed as arguments to methods. References to instances of
the Protocol class can be used in the same ways. The @protocol() compiler directive accesses the instances of
the Protocol class that are stored in the runtime as follows:

Protocol *aProtocol = @protocol(UpDown);

The variable, aProtocol, is a pointer to an instance of the Protocol class, and is initialized to reference the
protocol called UpDown.

Protocols in Distributed Messaging

Another important use of protocols is to optimize distributed messaging. Messages can be sent to objects in a different
process on a different computer. The Objective-C runtime routinely sends messages between anonymous objects, and
has little knowledge about either the sender of the message or the receiver. Nothing special is done with the parameters
and return values of messages sent to objects in the same process, but the runtime must package the messages'
arguments and return value for network transport.

If the runtime does not know enough information about the receiver of a distributed message to correctly package the
parameters and return value, the runtime must interrogate the remote object to get that information. The interrogation
consumes some of the network bandwidth and performance.

Protocols can be used to optimize distributed messaging. The runtime can ask the remote object if it conforms to a
particular protocol. Subsequent distributed messages that are defined by the protocol can be efficiently packaged and
sent over the network. The protocol conformance only needs to be checked once, and that one check verifies the
existence and types of all the methods declared in the protocol.

Type Encoding

Type encoding is used by the runtime to aid the dispatching of messages to objects. The encoding is essential when
distributed messages are sent so that parame-ters and return types can be packaged and sent over a network. Type
encoding is also a convenience that helps programmers avoid mistakes.

The Objective-C runtime encodes parameter types and return types as C strings. Each character in the string specifies a
property of the type. The specific format of the encoded type strings is not important in this introduction. Details about
type encoding are provided in Apple's online document at http://developer.apple.com/techpubs/macosx/Cocoa/
ObjectiveC/4MoreObjC/index.html.

Encoded type information can be useful outside the Objective-C runtime, and is obtained by the @encode() compiler
directive. The @encode() directive works in much the same way as the ANSI C sizeof() operator works, and can
accept the same arguments as sizeof(). The value returned from @encode() can be assigned to a char * as
follows:

char *aTypeString = @encode(int **)

Type encoding is particularly useful for encoding and decoding the instance variables of objects, as described in Chapter
5. The methods used to encode variables require a C string parameter that specifies the types to encode. The C string can
be created as a constant string or via the @encode() directive. It is relatively easy to make mistakes when constructing
type strings by hand. Therefore, the use of @encode() to automate the task is preferred.

Constant-String Objects

The Cocoa frameworks include the NSString class to encapsulate strings. The details of the NSString class are not
important in this chapter, but using NSString instances instead of C strings has many advantages. However, C-string
constants can be allocated by the compiler and stored as bytes within an executable program. Objective-C instances are
typically dynamically allocated at runtime. It is possible to programmatically create an NSString instance that is
initialized with a particular constant string at runtime. However, it is cumbersome to litter an application with hundreds
of lines of code just to convert constant C strings into constant NSString instances.

Apple's Objective-C compiler includes an extension to enable the compiler to generate constant NSString instances.
Constant string objects are both an optimization and a convenience for programmers. Programmers do not have to write
code to explicitly create constant NSStrings at runtime. The CPU cycles and memory allocations needed to create the
constant string objects at runtime are avoided.

To use constant strings in code, declare the strings as follows:

@"This is a constant string"

The leading @, before the quotes, informs the compiler that an NSString instance should be stored in the executable
instead of storing a C string. Strings created with the @"" syntax can occur in any context that an NSString instance
is allowed. It is safe to send messages to constant strings or return them from methods or functions.

http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/4MoreObjC/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/4MoreObjC/index.html

Book: Cocoa® Programming
Section: Chapter 4. Objective-C

The NSObject Base Class

The Objective-C language allows the creation of any number of base classes, sometimes
called root classes. A base class is a class that does not have a superclass. However, Cocoa
depends on the fact that almost all classes have a common base class. In Cocoa, the common-
base class is NSObject.

The NSObject class is an abstract class meaning that programs use instances of classes that
inherit from NSObject, but rarely use instances of NSObject itself. NSObject is a
powerful class and a complete description of all its features is beyond the scope of this
chapter. The NSObject class documentation that comes with the Apple developer tools is
excellent and complete. Some key features of NSObject that enable much of the power and
flexibility of Cocoa are described here.

There are many advantages to using a common-base class. Almost all the objects used in
Cocoa inherit directly or indirectly from NSObject. As a result, messages that are
understood by NSObject are understood by almost every Cocoa object. The NSObject
class includes many powerful features that are ubiquitous because the common-base class
provides them. Furthermore, methods can be added to the NSObject class via categories.
Adding methods to NSObject effectively adds those methods to every Cocoa object.

NOTE

Methods that are added to the NSObject class by a category are sometimes
called an informal protocol. Such methods are similar to the methods declared
in a protocol because the programmer can safely assume that the methods are
available in an anonymous object.

The NSObject class encapsulates much of the Objective-C runtime's functionality, and
gives all objects basic, introspective abilities. NSObject conforms to the NSObject
protocol, and declares only one instance variable called isa. This variable points to the class
object that encapsulates the instance's class. The isa variable enables the runtime to
determine the class of an instance. The isa variable is almost never accessed directly by
code. The class of an object can be determined by sending it the -class message.

The NSObject class provides methods for dynamically allocating memory for new
instances and initializing the newly created instances. The specific allocation and
initialization techniques used by Cocoa are not part of the Objective-C language definition.
Instead Cocoa introduces conventions, and NSObject implements the methods needed to

support Cocoa's conventions. In Cocoa, an instance is allocated by sending the +alloc
message to a class object. The instance that is returned from +alloc still needs to be
initialized using a variant of the -init message. The +alloc, and -init methods are
described in Chapter 5. Few classes override the +alloc method inherited from the
NSObject class. As a result, NSObject's +alloc method focuses almost all dynamic
memory allocation into just one place in code, and that can be a useful attribute of Cocoa
programming.

In addition to methods that allocate and initialize instances, the NSObject class provides
methods for deallocating, copying, comparing, archiving, and sending objects to other
computers over networks. NSObject has methods that interact with the Objective-C
runtime to forward messages to other objects. NSObject also provides methods that
implement one of the most powerful features of Cocoa, the capability to ask objects for
information about themselves.

Object Introspection

The NSObject class includes methods that provide information about objects and expose
runtime details about objects. For example, to find out if an anonymous object understands a
particular message, send the -respondsToSelector: message with the selector for the
message in question as a parameter. If -respondsToSelector: returns the BOOL value
YES, then it is safe to send the message in question. The capability to obtain information
about objects is called introspection because the objects look into themselves to provide the
information.

To find out if an object responds to a message, use the following methods:

+ (BOOL)instancesRespondToSelector:(SEL)aSelector
- (BOOL)respondsToSelector:(SEL)aSelector

NSObject provides the -class method to determine the class of an object at runtime. A -
superclass method returns the receiver's superclass as well. Two more introspective
methods are -isKindOfClass: and -isMemberOfClass:.

- (BOOL)isKindOfClass:(Class)aClass
- (BOOL)isMemberOfClass:(Class)aClass

Both -isKindOfClass: and -isMemberOfClass: return YES if the receiver's class
matches aClass exactly. The -isKindOfClass: method will also return YES if the
receiver is a subclass of aClass. As a result, -isKindOfClass: is usually preferred.
The need to use the more restrictive -isMemberOfClass: is relatively rare.

Beyond methods to determine the class of an object, whether an object can respond to a
message, and whether an object inherits from a certain class, NSObject provides the -

conformsToProtocol: method to determine if the receiver conforms to a particular
protocol. The -conformsToProtocol: method is commonly used as follows:

If([someObject conformsToProtocol:@protocol(SomeProtocol)]) {
 // Safely send methods declared in SomeProtocol to
someObject
}

The Introspective Format

C programmers are familiar with the idea of formats in functions such as printf(). Many
Cocoa classes, such as NSString, and functions, such as NSLog(), use formats as well.
Cocoa formats support most printf() formats and add an extra code, %@, to mean an
object. The following example demonstrates the use of a Cocoa format used with the NSLog
() function:

NSLog(@"Log the description of an object: %@", someObject);

NSLog() prints text messages to an error log. In this example, the constant string "Log
the description of an object: " is output followed by a description of
someObject. How should an object be rendered as text? Only the object itself knows.
Whenever the %@ format is used, one of the following methods will be used to determine
how to print the corresponding object by asking it to describe itself:

+ (NSString *)description
- (NSString *)description

Optimization

Although the Objective-C message dispatcher is extremely fast, when a message must be sent
multiple times to the same object in a tight loop, the messaging overhead might become
significant. It is possible, in very specific circumstances, to bypass the message dispatcher to
gain a slight boost in speed. This is dangerous and is discouraged, but if you feel you must do
it, start by obtaining a pointer to the function, which implements the method for a given
object by using one of these methods:

+ (IMP)instanceMethodForSelector:(SEL)aSelector
- (IMP)methodForSelector:(SEL)aSelector

The IMP is a pointer to a C function, which takes as its arguments self (a pointer to the
instance), _cmd (the selector you used to obtain the IMP), and then whatever parameters the
method itself requires. As an example of how you would use this, suppose we have an object
which implements the method -incrementBy: and you want to call the method 100,000
times as quickly as possible with the loop variable as the parameter. It could be done this way:

SEL theSelector = @selector(incrementBy:);
IMP theIMP = [someObject methodForSelector:theSelector];
int i;

for (i=0; i<100000; i++) {
 theIMP(someObject, theSelector, i);
}

This use of IMPs is dangerous. Suppose you were cycling over an array of receivers. In that
case, unless the receivers are instances of the same class, the IMP you should be using would
vary from one instance to another. Furthermore, some classes might respond to a particular
message, but not have a valid IMP. An example is presented later in this chapter where this
can happen because of the use of forwarding. The Objective-C runtime takes care of all these
details automatically for messages, but you must take care of them when using an IMP.
Misuse of IMPs leads to strange, difficult-to-diagnose bugs.

Object Comparison

NSObject provides some basic facilities for comparing objects in the form of these two
methods:

- (BOOL)isEqual:(id)object
- (unsigned)hash

Your subclasses probably need to reimplement these methods so that the suitable
comparisons are performed. The default implementations simply use the pointer to the object
as a comparison value; if the pointers are the same, the objects must be equal because they
are the same object. However, your subclass's instances might be equal, even when the
objects are different instances. Your implementation of -isEqual should reflect that.

The -hash method simply returns a value based on the value of a pointer to the receiving
object. If you create a string class, or some other type of class for which a hashing function
exists, you should probably reimplement the -hash method. The main idea of hashing is to
provide some number that can be used to identify an object.

Cocoa imposes some rules that must be observed if the -isEqual method is overridden.
First, if -isEqual: returns YES when comparing two objects then the -hash methods of
the two compared objects must also provide equal values. Second, if -isEqual: returns NO
then the return value of -hash may or may not be equal (the better the hashing, the less
likely that they will be equal). Hashing in general is a complex subject and is beyond the
scope of this book.

NOTE

If you want to learn more about hashing, check out Sams Teach Yourself Data
Structure and Algorithms in 24 Hours. Part V of this book covers hash tables.

Runtime Integration

Many of the features of the Objective-C runtime can be accessed via NSObject methods.
The NSObject class encapsulates most of the interaction between programs and the runtime.

Class Initialization

Two class methods are declared by NSObject, which the runtime calls automatically to
initialize classes:

+ (void)load
+ (void)initialize

The first method, +load, is called when a class is linked into a running program. It is
possible for programs to load new program code as they run (see the NSBundle class
described in Chapter 7, "Foundation," for more information). If a class is loaded in this way,
the +load method is called, offering the class an opportunity to take special actions. More
commonly, +initialize is used for setting up a class object. This method is treated in a
slightly special way: it will be called once and only once for each class object in the program.
It will be called just before the program uses that object for the first time. Subclasses that
implement this method should never call the super implementation of the method.

Posing

It is possible to have a particular class stand in for another class. This technique, known as
posing, can be used to patch system classes or alter their behavior across the whole program.
If you want one class to pose as another, use this method implemented by NSObject:

+ (void)poseAsClass:(Class)aClass

There are a few rules you absolutely must follow for posing to succeed. First, posing must be
initiated before aClass is instantiated for the first time. If there are any instances of
aClass already, then it is too late to pose. Second, the receiving class object must be a
subclass of aClass, which adds no instance variables. Because of these restrictions, it is
often much easier to use a category to add or patch some of a class's methods, instead of
attempting to create a new object and have it pose as the class in question.

Performing

The Objective-C runtime also enables you to send a message that was not predetermined at
compile time. There are three methods declared in NSObject that can be used to do this:

- (id)performSelector:(SEL)aSelector
- (id)performSelector:(SEL)aSelector withObject:(id)object
- (id)performSelector:(SEL)aSelector withObject:(id)object1
 withObject:(id)object2

A few other methods also do this, allowing for an optional delay in sending the message.
These methods differ only in the arguments they accept. Which one you should use depends
on aSelector. If aSelector takes no arguments, use the first. If it takes a single
argument, use the second. If it takes two arguments, use the third. The arguments must all be
of type id, or convertible to id, and the return value is id.

As an example of using these methods, suppose you have an instance variable that is a
selector (SEL type) called action, and another that points to an object called target. Further
assume that the selector is always known to have a single parameter, an id called sender.
You might send the action message to target like this:

[target performSelector:action withObject:self];

See Chapter 8, "The Application Kit Architecture," for examples of targets and actions in use.

Forwarding Messages

The Objective-C compiler does not guarantee a given object will be able to respond to a
given message. More importantly, the compiler cannot guarantee that a receiver can't respond
to a message. As previously shown, methods can be added dynamically by categories, but an
even more powerful facility exists. The Objective-C runtime and the NSObject class
provide a way of trapping messages. Some objects can respond to a message and not yet have
an implementation in machine code for that message. Messages can be transparently
forwarded to another object.

Messages need to have a transport to get them from one place to another. In Objective-C the
default transport is to use the underlying function call semantic, of the C language. However,
it is possible to insert your own transport via forwarding. Here's how it works:

The Objective-C message dispatcher looks at the receiver of a message and checks to see if it
can respond to the message using the default function call semantic. If it can, that will be
used. If not, it asks the instance to attempt to deal with the message by calling this method:

- (void)forwardInvocation:(NSInvocation *)anInvocation

If the object cannot forward the message, or refuses to deal with it, this method is called to

alert the runtime that the object simply refuses to receive the message:

- (void)doesNotRecognizeSelector:(SEL)aSelector

Given this process, you can override -forwardInvocation: so that it will handle
methods for which the class has no implementation. Thus, even though a class might not
handle a method, it can forward the message to another object. Perhaps the class has a pointer
to an object in an instance variable, and that object can indeed handle the message. The -
forwardInvocation: can be implemented to pass the message on to the object that can
handle it.

Handling -forwardInvocation: can be as simple as reinvoking the message using a
different receiver, or as complex as packaging up the message and sending it over a
network connection. The possibilities are endless. Because any object can tap into the
messaging resolution and sending process, Objective-C programmers should never make too
many assumptions about what message will be delivered, to whom, or when. All the default
behaviors can be changed simply by implementing -forwardInvocation:.

The -forwardInvocation: method can be used to simulate multiple implementation
inheritance. Forwarding is also used by Cocoa's built-in undo mechanism, and implemented
by the NSUndoManager class to capture messages and use them later during undo. The
NSUndoManager class is described in Chapter 8. Messages to one object can be re-sent to
multiple receivers, as implemented by the MiscTee class, available at www.misckit.org.

The -doesNotRecognizeSelector: method declared by NSObject is used
whenever an object needs to tell the runtime "I don't want to respond to that message." For
example, because NSObject defines the -copy method, almost all objects inherit an
implementation of -copy. Suppose you have a subclass of NSObject for which -copy
makes no sense. Perhaps the object encapsulates a system resource that cannot be copied. It
might be best if attempts to copy that object triggered an exception or runtime error. In a case
such as this, you would override the -copy method like this:

- (id)copy
{
 [self doesNotRecognizeSelector:_cmd];
}

This is exactly what the default implementation of -forwardInvocation: does, unless
you override it.

http://www.misckit.org/

Book: Cocoa® Programming
Section: Chapter 4. Objective-C

Runtime Functions

The Apple Objective-C runtime provides many C functions for interacting with the
runtime. Most of the runtime functions are described in Appendix A. However, four
runtime functions are used commonly and deserve explanation here.

Class NSClassFromString(NSString *aClassName)
NSString *NSStringFromClass(Class aClass)
NSString *NSStringFromSelector(SEL aSelector)
SEL NSSelectorFromString(NSString *aSelectorName)

The first two methods convert from a string to a reference to the class named by the string
and back. Uses of NSClassFromString() include allowing a user to input the name of
a class to use. For example, an application could parse a text configuration file that
specifies which classes to use in the application.

The NSStringFromSelector() and NSSelectorFromString() functions
convert to and from strings containing message names and selectors.
NSSelectorFromString() can be used to convert user input into messages to
objects. Many scripting languages can be integrated with Cocoa just by converting the
commands in the scripting language into similarly named messages in Objective-C.
NSStringFromSelector() is useful when generating debugging or error output.

Book: Cocoa® Programming
Section: Chapter 4. Objective-C

Objective-C++

Objective-C is a small set of extensions to ANSI C. Objective-C++ is the same set of
extensions applied to C++. Apple's Objective-C compiler is also an Objective-C++
compiler.

One of the advantages of Objective-C is that, as a super-set of ANSI C, it can be easily
mixed with the millions of lines of existing C code in the world. Objective-C++ can be
mixed with the millions of lines of C++ code that already exist. C++ features, such as name
mangling, are fully supported by Objective-C++ so that direct linkage between Objective-C
++ code and existing C++ code is possible.

Objective-C source code files are identified by the .m extension. Apple's compiler treats
files with the .M or .mm extensions as Objective-C++ source code. Additionally, the -x
compiler option can be used to instruct Apple's compiler to treat any input file as Objective-
C++ source code.

Apple's online documentation describes the features and limitations of Objective-C++ at
http://developer.apple.com/techpubs/, and in the release notes that come with Apple's
developer tools. In general, Objective-C classes and C++ classes can be intermixed so that
an Objective-C method can call a C++ member function and visa versa or a C++ class can
include a pointer to an Objective-C object as a member variable. Objective-C classes
cannot inherit from C++ classes or the other way around. The two class hierarchies must
remain distinct. The semantics regarding instance creation and deletion are dramatically
different between C++ and Objective-C. As a result, mixing them can be tricky, but the
benefit of reusing existing C++ code in new Objective-C projects outweighs the
complications that it introduces.

http://developer.apple.com/techpubs/

Book: Cocoa® Programming
Section: Chapter 4. Objective-C

Summary

Being able to cover the most important elements of the Objective-C language in a single
chapter is a tribute to the language's simplicity. More details about the Objective-C runtime
are presented in Appendix A. The appendix will help you harness the full power of
Objective-C's runtime, and advanced techniques. In the meantime, with the information
presented in this chapter and the next, you have all the language tools you need to start
Cocoa programming.

Libraries of reusable code are needed to really take advantage of any language. Objective-
C is a very rich language and the Cocoa frameworks comprise one of the most powerful
libraries of reusable objects ever created. Just as libraries are needed to take full advantage
of a language, conventions are often needed to take maximum advantage of the libraries.
The need for conventions is nothing new. The Microsoft Foundation Classes library used
with Microsoft Windows has its own conventions and rules for correct use. Many of the
traditional Mac libraries require conventions such as Pascal style strings and specialized
memory management. Chapter 5 introduces the conventions of the Cocoa frameworks that
are required to use Cocoa effectively.

Book: Cocoa® Programming
Section: Part I: Overview

Chapter 5. Cocoa Conventions

IN THIS CHAPTER

● Naming
● Initializers
● Managing Memory
● Accessors
● Using Memory Zones
● Encoding and Decoding

Several conventions are used throughout the Cocoa frameworks. Awareness of the
conventions greatly enhances the readability of code and documentation that references the
frameworks. Conventions exist within most software environments. The conventions soon
become second nature to programmers. Because of consistency with which the conventions
are applied within the Cocoa frameworks, programmers can often guess the name of a class
or method without needing the documentation.

These conventions are not part of the Objective-C language. Some of the conventions, such
as variable naming, were originally arbitrary, but have become standard and expected after
many years of use. Many conventions, such as memory management of objects distributed
over a network, are pragmatic solutions to problems. The conventions exist to reinforce the
best programming practices. Adherence to the conventions can enhance the power and
reusability of your code. In some cases, use of the conventions is not optional. For
example, the memory-management conventions used by Cocoa unavoidably influence the
code that you write. No Cocoa application will work correctly unless it follows the
memory-management conventions.

This chapter describes the common Cocoa conventions and notes whether each convention
is optional or not.

Book: Cocoa® Programming
Section: Chapter 5. Cocoa Conventions

Naming

Naming conventions are used within the Cocoa frameworks. These conventions are optional, but they are
a good standard to follow. The conventions indicate the intended scope and usage of the item being
named. Scope refers to the region of a program in which a name is known, and is usually enforced by the
compiler. Usage refers to the intended use of the named item. Even in cases where the compiler does not
enforce the usage limitations, the usage clues should be respected.

If you do not follow Cocoa's naming conventions, your code will look odd when intermixed with code
that uses Cocoa objects. Other programmers might be misled or confused about the meaning of your code.

Prefixes

Many symbol names in the Cocoa frameworks begin with the prefix NS. As long as other programmers
do not create names that start with NS, Apple is free to create new names that begin with NS without fear
of inadvertently using a name used by a third party and creating a conflict with existing code. Each
company or programmer should adopt a unique two- or three-letter prefix for names. For example, the
classes in the popular OmniFoundation Framework from Omni Development Corp. all begin with the
prefix OF.

Use the prefix for all names that have global scope, and for all private instance variables.

At the time of this writing there is no way to register a prefix or find out if someone else is already using
a prefix. Try to pick a prefix that is unlikely to be used by someone with whom you will need to share
code, including the vendors of libraries and frameworks that you want to use. The need for unique
prefixes is common in the C language, and languages derived from C, such as Objective-C. Java and C++
avoid the need for prefixes by providing a language construct called a Name Space. Future
implementations of Objective-C may also support name spaces.

Capitalization and Scope

Items that have global scope should start with a capital letter or an underscore followed by a capital
letter. Global scope means that the item named will be accessible anywhere in the program. In Objective-
C all class names have global scope; therefore all class names should begin with a capital letter. For
example, NSObject is a class name. In Objective-C, the following language constructs have global
scope; names of classes, names of protocols, names of categories, names of types, names of enumeration
constants, names of global variables, the names of C functions that are not declared static, and structure
and union tag names.

Items that do not have global scope should begin with a lowercase letter, or an underscore followed by a
lowercase letter. In Objective-C, method names do not have global scope. Methods only have meaning
within the context of a particular class. All method names should begin with a lowercase letter. For
example, +initialize and -replaceObject:atIndex: are two method names. In Objective-C,
the following language constructs do not have global scope: names of class/factory methods, names of
instance methods, names of instance variables, names of C functions that are declared static, names of

method and function arguments, names of local variables, and the names of individual structure and
union elements.

Underscores and Usage

A leading underscore character in a name conveys usage information. Any name that begins with an
underscore character refers to an item that should only be used by the programmers who maintain the
module in which the item is referenced. Names that begin with an underscore are part of private
application programming interfaces (APIs) and are subject to change without notice. In most cases, the
Objective-C compiler will not enforce usage rules. For example, _MYPrivateClass is the name of a
class that should not be used by programmers other than the maintainers. MY is the prefix, and like all
class names, the first letter of the first word in _MYPrivateClass is capitalized because class names
have global scope. The objective-C compiler will not prevent a programmer from creating an instance of
_MYPrivateClass, but it is still a bad idea to do so.

In Objective-C classes, private instance variables should begin with an underscore and a unique prefix.
The prefix is essential for private instance variables because Apple reserves the right to add or change
instance variables that begin with a single underscore character and no prefix. Using a prefix ensures that
your instance variable names will not conflict with the names of any private instance variables that Apple
uses. For example:

int _myPrivateVariable; // private instance variable with prefix
"my"

Names that do not begin with an underscore refer to items that are intended for use by all programmers.
For example, all programmers should use the NSString class.

Additional Capitalization

The second and subsequent words in each name should be capitalized. For example
NSCaseInsensitiveSearch is the name of an enumeration constant. Some method names contain
multiple name fragments separated by colon (:) characters. The first word in each fragment starts with a
lowercase letter. For example, in the method -makeObjectsPerformSelector:withObject:,
Objects, Perform, Selector, and Object are all capitalized. The word make is not capitalized because it is
the first word in the name of a method, and methods do not have global scope. The word with is not
capitalized because it is the first word in the second name fragment.

Nouns and Verbs

Class and object names should usually consist of nouns. For example: In class names, NSNumber,
NSArray, and NSWindow, as well as the words number, array, and window are all nouns.

Method and function names should usually start with a verb. For example, in the method names, -
makeObjectPerformSelector:, -compare:, +initialize, and -isSelected, the words
make, compare, initialize, and is are all verbs.

Class Names

Most class names should include the name of the immediate super class. For example, NSScrollView
is a subclass of NSView. There are a few exceptions to this convention. Most objects used with Cocoa
are assumed to inherit from NSObject, and therefore it is never necessary to include Object in a class
name. For example, the class NSDocument is not called NSDocumentObject even though it inherits
directly from NSObject. Most of the classes in Cocoa follow this convention, but because the
convention was adopted in the middle of the evolution of Cocoa, many of the oldest classes are not
named this way. According to this convention, NSControl should have been called NSControlView
and NSTextField should have been called NSTextFieldControl. Nevertheless, this is a wise
convention and programmers should adhere to it when creating new classes.

Book: Cocoa® Programming
Section: Chapter 5. Cocoa Conventions

Initializers

Instance methods that initialize a newly allocated instance are called initializers and, by
convention, begin with the word init. The Objective-C compiler does not ensure correct
initialization of object instances, therefore initialization must be handled by convention.
The initialization convention is not optional for existing Cocoa classes or for most
subclasses of Cocoa classes. By convention, object instances are created in two steps. First,
memory for the new instance is reserved by calling the +alloc or +allocFromZone:
class methods provided by the NSObject class. Almost all classes in the Cocoa
frameworks inherit directly or indirectly from NSObject. After memory is reserved, the
memory is initialized by calling an initializer. A class can provide any number of
initializers.

In practice, this reliance on a mere convention for such an important aspect of using the
language and the frameworks is not a problem. Programmers quickly become accustomed
to the two-part creation of instances and the use of initializers. In fact, the most common
way to create an instance of a class is to combine the allocation and initialization in one
line as follows:

[[SomeClass alloc] init];

A class can provide any number of initializers. If there are multiple initializers, one should
be the designated initializer. The designated initializer for the NSObject class is -init.
The designated initializer for the NSView class is -initWithFrame:. Any initializer
method can be the designated initializer for a class, but it must be clearly identified in
documentation. When a class provides multiple initializers, the designated initializer is
usually the one with the most arguments and options. Any other initializers are
implemented to call the designated initializer with calculated or default arguments.

Documenting the designated initializer simplifies the creation of subclasses. Users of a
class can call any of the initializers provided by the class, including all the initializers
declared in that class's superclass. Without a documented designated initializer, the
programmer creating a subclass cannot know which initializer a user will call. If the
programmer creating a subclass does not know which initializer will be called then the new
subclass must be implemented to override all the inherited initializers. That is the only way
to be sure the instances of the new class will be correctly initialized. However, if there is a
designated initializer, the programmer can override just the designated initializer in the
subclass. The programmer can be confident that all other initializers are implemented to
call the designated initializer.

When writing an initializer, it is important to call the superclass's designated initializer.
Assuming that the superclass's designated initializer is -init, it should be called as

follows:

self = [super init];

The assignment of self to the result of the superclass's designated initializer is important.
In some rare cases, the inherited initializer can return a different instance from the one that
received the message. In that case, an error will result if the assignment to self is not
made.

When reading the Cocoa documentation provided by Apple, be sure to identify which
initializer is the designated initializer for each class. When subclassing a class in the Cocoa
frameworks, be sure to override the designated initializer if your subclass requires any
special initialization. If a new class provides multiple initializers, be sure to document
which initializer is the designated initializer, and make sure that the other initializers all
call the designated initializer.

Book: Cocoa® Programming
Section: Chapter 5. Cocoa Conventions

Managing Memory

Large portions of the errors in computer programs are byproducts of dynamic memory
allocation. Dynamic-memory allocation enables a program to allocate as much memory as it
needs on a case-by-case basis. When an application dynamically allocates memory, the
operating system provides the requested memory as long as it is possible. The total memory
allocated can be as large as the computer's physical memory, virtual memory, and addressing
conventions will allow. The theoretical limit to the amount of memory that can be allocated by
one application on Mac OS X is approximately four Gigabytes.

The difficulty with dynamic-memory allocation is that the application and/or the operating
system have to keep track of memory that has been allocated, and remember to deallocate it
(free it). When dynamically allocated memory is no longer being used, and has not been
deallocated, the memory is called a memory leak. Memory leaks are wasteful and can cause
serious performance problems as the program runs. If a program continues leaking memory,
eventually it will drain the system of all its memory.

There are other ways of mishandling memory in addition to leaks. For example, in C, it is
possible to have a pointer overrun or underrun. When memory is dynamically allocated, the
program is given a pointer that tells it where the new memory is located. C allows a program to
access data at some offset from a pointer. If the offset is larger than the amount of memory
allocated, a pointer overrun occurs. The results are unpredictable and range from strange,
unexpected program behaviors to crashes. As expected, attempting to access data that is in
memory before the pointer (a negative offset) is a pointer underrun, and can have results
similar to an overrun.

Automatic Garbage Collection

Because problems with memory handling are common, and mistakes are easily made, many
programmers prefer to have the computer handle the memory automatically and flawlessly. As
might be suspected, this is not easily done. One solution that has become popular is automatic
garbage collection. Smalltalk, Java, and many other modern computer languages use automatic
garbage collection. The basic idea is that there is an invisible garbage collector that
periodically scans memory to see if it is still in use. If the garbage collector determines that the
memory is no longer being used it frees up the memory. The programmer doesn't need to do
anything special; automatic garbage collecting handles everything behind the scenes
automatically.

The Objective-C Cocoa libraries don't use automatic garbage collection. By convention, Cocoa
uses a form of garbage collection known as reference counting. The disadvantage to this is the
programmer has to do a little bit of work to properly use reference counting; it isn't automatic.
An advantage is reference-counting techniques can be more efficient than automatic garbage

collection, and give the programmer more control. Additionally, Cocoa's Distributed Objects
would not work well with automatic garbage collection, yet reference-counting works very
well with remote distributed objects. Several other considerations are involved in deciding
which type of garbage collecting to use, but they aren't germane to understanding how to use
Cocoa's reference-counting technique. Correct use of the Cocoa memory-management
conventions is essential.

Reference Counting

Reference counting is a simple idea. Every object has a reference count that indicates how
many other objects are currently keeping a reference to it. When object A wants to reference
object B, A increases B's reference count by one. When object A is done referencing object B, A
decreases B's reference count by one. When no objects reference object B, its reference count
will reach zero and B will be deallocated, thus freeing up memory for some other use. The
process of deallocating B might decrease reference counts on objects used by B, perhaps
causing them to be deallocated, too.

With Cocoa, newly allocated objects have a reference count of one. When a class is sent a
+alloc or +allocWithZone: message, memory for a new instance is reserved and the
new instance implicitly has a reference count of one. If this new instance is referenced by
another object, then the reference count should be incremented. This is done by sending the -
retain message:

[object retain];

Every -retain message causes the receiver's reference count to be increased by one. When
code obtains a reference to an object through some means other than allocation and the code
needs to keep a reference to the object, then the object should be sent a -retain message. If
the code neglects to retain the object, it is likely that the object will be deallocated sometime in
the future and it will be invalid when the code references it causing an error.

Now, when code is done using an object, the code should tell it by sending a -release
message:

[object release];

The -release message decreases the object's reference count by one. If decreasing the
reference count causes the count to reach zero, the object is immediately deallocated. It is a
good idea at this point to reassign the reference to the object. A good strategy is to assign nil
to the reference:

object = nil;

It is not a good idea to keep references to objects that might have been deallocated after being

released. By assigning nil you are making sure that code doesn't erroneously attempt to send
a message to an invalid object.

Your program can determine the reference count of an object at any time by sending the -
retainCount message. -retainCount returns an integer count of the number of times
the receiver has been retained including the initial value of one set when the object was
allocated. There is seldom a need to call -retainCount in a working program. When using
an object, the programmer should not care how many other ways the object is used. However,
knowing the retain count of an object can be an invaluable debugging aid in some
circumstances.

At this point, it should make sense that the number of release messages sent to an object over
its lifetime should be equal to the number of -retain messages sent to the same object plus
one. The extra one is for the initial +alloc or +allocWithZone: message that created the
object in the first place. Also keep in mind that the -copy, -mutableCopy, -
copyWithZone: and -mutableCopyWithZone: messages are like a +alloc message,
so they need a matching -release.

This might seem complex, but it really isn't. You simply send one -release to match up
with each +alloc, +allocWithZone, -copy, -mutableCopy, -copyWithZone:, -
mutableCopyWithZone:, or -retain that you have sent.

Unfortunately, reference counting doesn't remain that simple. For example, suppose that we are
writing a method that is expected to return a reference to an object. The following example
shows one incorrect implementation:

-(NSObject *)incorrectMethod1
{
 NSObject *result = [[NSObject alloc] init];
 return result;
}

The method, -incorrectMethod1, allocates a new instance of the NSObject class. The
new instance has a retain count of one. The new instance is then returned. There is a serious
problem with this method. First, the convention that we must send a -release message to
balance the +alloc message has not been followed. The code that calls -
incorrectMethod1 can ignore the object returned, at which point memory has been
leaked. After return, the -incorrectMethod1 method no longer references the object. If
the calling code ignores the value returned, there will not be any remaining reference to the
object and no way to ever release it. The caller will not release the returned object because the
caller did not explicitly call one of the alloc or copy methods that must be balanced with a
release.

Another incorrect implementation calls -release inappropriately, as shown in the following
code:

-(NSObject *)incorrectMethod2
{
 NSObject *result = [[NSObject alloc] init];

 [result release];

 return result;
}

The method, -incorrectMethod2, adheres to the convention of sending a -release to
balance the +alloc. Unfortunately, after sending the -release message, result can be
deallocated. If the calling code relies on the reference returned, it might crash. The calling code
is being given a reference to an invalid (deallocated) object.

How can an object reference be returned from a method without resulting in a memory leak,
and without returning a potentially invalid reference?

The answer is very clever. Cocoa applications contain an auxiliary object called a release pool,
which is a temporary holding place for objects during the short time in limbo between the end
of one method and the point in the caller's code where the object is retained (if it is retained).
When an object is added to a release pool, it is registered to receive a -release message at a
later time. After an object has been added to a release pool, the object can be returned from the
method without creating a leak or returning an invalid object. If the caller wants to keep a
reference to the object, the caller will send a -retain message. At some later point, the
release pool will be deallocated, and at that time it will release all the objects it contains. If the
reference counts any of the objects in the release pool reach zero, those objects are then
deallocated.

Figure 5.1 shows how an object can be allocated in a method and safely returned by adding the
object to a release pool. Two timelines are shown. In Timeline 1, the caller retains the object
returned from a method and the object is not deallocated when the release pool is deallocated.
Because the caller retained the object, the caller must eventually release the object or else it
will be a memory leak. In Timeline 2, the caller does not retain the returned object. As a result,
when the release pool is deallocated, the object will also be deallocated. Because the caller did
not retain the object, the caller does not ever need to release it.

Figure 5.1. This Timeline illustrates the sequence in which an object is allocated,
autoreleased, returned from a method, optionally retained by a caller, and released by a

release pool.

The property of delaying a release message to a returned object until after the calling code has
had a chance to retain the object allows for objects returned from a method to correctly handle
reference counting.

In Cocoa, the NSAutoreleasePool class implements release pools. All the details of
adding objects to a release pool are handled by a single method, -autorelease, declared in
the NSObject class. To place an object in a release pool and thereby schedule the object's
release at a later time, simply call -autorelease as follows:

[object autorelease];

The following code illustrates one correct way of returning an object from a method:

-(NSObject *)correctMethod
{
 NSObject *result = [[NSObject alloc] init];

 [result autorelease];

 return result;
}

In the correct implementation, an object is allocated, initialized, and a reference to it is
assigned to result. The object referenced by result has a reference count of one. When
result is autoreleased, it is added to a release pool. After result is autoreleased, it still has

a reference count of one and has not yet been deallocated.

If the code that calls -correctMethod does not retain the returned object, then the object's
reference count will reach zero and the object will be deallocated when the release pool is
eventually deallocated. If the calling code does retain the returned object, then object's
reference count will temporarily be two. When the release pool is finally deallocated, the
object's reference count will drop to one and the object will not be deallocated. The reference
kept by the calling code remains valid.

The complete rules for using -release and -autorelease follow: Send one -release
or -autorelease message to match up with each +alloc, +allocWithZone, -copy,
-mutableCopy, -copyWithZone:, -mutableCopyWithZone:, or -retain
message that you have sent.

A question might arise at this point. Who creates the release pool and how often does it get
deallocated? It turns out that in Cocoa applications that use the Application Kit framework, a
release pool is created automatically at the start of the internal event loop, and is cleared out at
the end. Of course, you can always create your own pool and dispose of it as described in the
NSAutoreleasePool class documentation. This can be done in special circumstances to
enhance performance and reduce a program's memory requirements. If you are writing a
command-line program that doesn't use the Application Kit framework, then you will have to
create your own pool. It is really easy to do. The following line creates a pool:

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

That's all you need to do; the -autorelease method will find it automatically. At the end of
your run loop or when you want to clean out the pool simply release the pool:

[pool release];

One thing to be careful of is expecting an autoreleased object to be valid for too long.
Normally, an autoreleased object will remain valid within the current scope (that is, current
method) and can safely be returned from a method. It is wise, however, to send a -retain
message as soon as you know you want to keep a reference to an object that was not obtained
by calling one of the +alloc, +allocWithZone, -copy, -mutableCopy, -
copyWithZone:, -mutableCopyWithZone: messages. Of course, if you don't need to
keep a reference to an object don't send -retain, and it will go away automatically when the
release pool is deallocated.

The -release method is much more efficient than -autorelease. Therefore, unless you
need the special functionality of -autorelease, use -release. Applications that overuse
-autorelease tend to run very slowly.

NOTE

Follow these guidelines religiously to avoid memory leaks and attempts to access
deallocated objects:

● If you allocated, copied, or retained an object you are responsible for
releasing the object with either -release or -autorelease when
you no longer need it. If you did not allocate, copy, or retain an object you
should not release it.

● When you receive an object by some means other than an alloc or copy
method, the object will normally remain valid until the end of your
method and it can be safely returned as a result of your method. You must
either retain or copy the object if you need it to live longer than this (for
example, if you plan to store it in an instance variable).

● Use -autorelease rather than -release when you want to return
an object that you will no longer reference. Use -release rather than -
autorelease wherever you can for performance reasons.

The online documentation that comes with the Cocoa development tools includes
an excellent and detailed explanation of the NSAutoreleasePool class, as
well as an analysis of the implications of nested release pools.

Retain Cycles

There is one final problem the preceding rules do not address: retain cycles. A retain cycle is a
special kind of memory leak that can occur with a reference counting scheme. The problem
occurs when two or more objects reference each other. For example, if object A is retaining
object B and object B is retaining object A, the two objects never reach a zero-reference count
because each references the other. If neither A nor B is referenced anywhere else in the
program, then the memory used by A and B constitutes a memory leak. It is possible to have
very complex retain cycles where the minimum reference count is higher than one (multiple
objects depending upon each other), and also cases where a long chain of objects retain each
other in what looks like a circular linked list.

The best solution to the retain-cycle problem is to avoid it. Be careful with your designs.

Tracking Memory Problems

By now it is obvious that reference counting, although a simple solution, also has its quirks and
difficulties. Careful thought while designing objects can solve the difficulties, but even so, we
all make mistakes. The Mac OS X development environment provides several tools to help you
track down memory problems. Here is a brief synopsis to get you started:

● gdb- The debugger for the Cocoa environment that enables you to look at stack frames

and variable values and trace execution of your program

● ObjectAlloc.app- An application that enables you to watch a graph showing the
number of objects in a running application dynamically

● MallocDebug.app- Measures an application's use of dynamic memory

● Sampler.app- Displays the amount of time your application spends in each function
and method

Understanding reference counting is fundamental to Objective-C Cocoa development. No
Cocoa program is running correctly until it is following the reference counting rules.

Book: Cocoa® Programming
Section: Chapter 5. Cocoa Conventions

Accessors

Accessors are methods used to query or change the internal state of an object. The internal state of objects
is usually stored in instance variables. There is commonly a one-to-one correspondence between instance
variables and accessor methods. The convention of using accessors is an extremely good practice that is
ubiquitous in the Cocoa frameworks, but is optional.

The following simple class declaration shows how accessors are used.

@interface MYClass : NSObject
{
 NSRect _myRect;
}

- (void)setRect:(NSRect)aRect;
- (NSRect)rect;
- (void)getRect:(NSRect *)aRectPtr;

@end

NSRect is a C structure defined in NSGeometry.h. The -setRect: method passed the aRect
argument by value even though NSRect is a structure. Similarly, the -rect method returns an NSRect
value. By convention, accessor methods accept nonobject arguments by value, and return nonobject values
even when the values have complex types like the NSRect structure.

An accessor method that sets a value begins with the word set, as in -setRect:. An accessor that returns
a value is named after the value like -rect.

In some cases, an accessor method that returns a value by reference is provided. Accessors that return
values by reference begin with the word get, as in -getRect: in this example. This type of accessor is
very rare, and they are easy to spot because they begin with get. One example is the method -(void)
getBytes:(void *)buffer in the NSData class, which returns bytes by reference in the buffer
argument.

In this example of accessors for nonobject values, the accessors can be implemented as follows:

@implementation MYClass
/* Simple class to encapsulate _myRect */

- (void)setRect:(NSRect)aRect
/* Set _myRect */
{
 _myRect = aRect;
}

- (NSRect)rect

/* Return _myRect by value */
{
 return _myRect;
}

- (void)getRect:(NSRect *)aRectPtr
/* Return the value of _myRect by reference in the memory at aRectPtr
*/
{
 if(NULL != aRectPtr) {
 *aRectPtr = _myRect;
 }
}

@end

Consistent use of accessors in your own classes might seem like a chore, but it will simplify and promote
reuse of your classes. Accessors are even more important when the values being accessed are objects.

Accessing Objects

The following code demonstrates a standard way to implement accessors for object-instance variables. The
code provided here can be used as a template every time you write object accessors. Using this example
and following the memory management conventions will prevent memory errors. Consistent use of object
accessor methods can help localize the reference counting within your code.

@interface MYClassWithObjectAccessors : NSObject
{
 NSObject *_myObject;
}
- (void)setObject:(NSObject *)anObject;
- (NSObject *)object;

@end

@implementation MYClassWithObjectAccessors
/* Simple class to encapsulate _myObject */

- (void)setObject:(NSObject *)anObject
/* Set _myObject the safe way */
{
 [anObject retain];
 [_myObject release];
 _myObject = anObject;
}

- (NSObject *)object
/* Return _myObject */
{
 return _myObject;
}

- (void)dealloc
/* Clean-up */
{
 [self setObject:nil];
 [super dealloc];
}

@end

Almost all memory management can be handled within the accessors. The -setObject: method sets
the _myObject instance variable. Because the _myObject reference must remain valid indefinitely, the
object to be referenced must be retained or copied. The objects referenced by instance variables should be
retained or copied to make sure they are not deallocated while the instance is still using them. The object
previously referenced by the _myObject instance variable will no longer be referenced after the
assignment, so the obsolete object must be released. Finally, the assignment is made.

The order in which the new value is retained and the old value is released is very important. The new value
must be retained before the old value is released. This order of operations assures correct behavior in all
the circumstances in which the accessor might be used.

An accessor that sets an object value can be called in three general circumstances:

It can be called with a nil argument;

It can be called with an argument that is different from the receiver's existing value, or

It can be called with an argument that is identical to the receiver's existing value.

In any of the circumstances, the existing value could be nil.

When it's called with a nil argument, the nil argument is harmlessly retained. It is safe to send any
message to nil as long as you do not count on any return value. The object that will no longer be
referenced by the _myObject instance variable is released, and _myObject is set to nil. The instance
variable ends up being set to nil as requested.

When it's called with an argument that's different from the receiver's existing value the new value is
retained, the old value is released, and the instance variable references the new value as requested.

When its called with an argument that is identical to the receiver's existing value, the order of operations
that is used is required. First, the argument, anObject, is retained causing its reference count to rise to at
least two. Remember that anObject is the same as _myObject and has a retain count of at least one
because _myObject was retained when it was initially set. Then _myObject is released causing its
retain count to drop to no less than one. Finally, the argument is assigned to _myObject, which is a
harmless operation because _myObject and anObject are the same. _myObject is left with the same
retain count and value that it had before -setMyObject: was called. If retain and release are reversed,
_myObject will be released and possibly deallocated. Therefore, the attempt to retain anObject will
fail because anObject is the same as _myObject and has already been deallocated.

Finally, accessors can be used to confine the reference counting memory management of instance variables
to just one method, the set accessor. A good strategy is to make sure that the only method that sends -
retain and -release messages to instance variables is the set accessor. Instance variables are
commonly released in a class's -dealloc method, but even that can be accomplished indirectly using set
accessors. The following is an example of a dealloc method implementation that releases an object
instance variable by calling an accessor with a nil argument:

- (void)dealloc
{
 [self setName:nil]; // accessor will release instance
 // variable and set it to nil
 [super dealloc];
}

Book: Cocoa® Programming
Section: Chapter 5. Cocoa Conventions

Using Memory Zones

Memory zones are a technique that can be used to improve application performance. Memory zones
optimize the location of memory for objects that are used together. The use of memory zones is the final
wrinkle to Cocoa memory management.

Each application for Mac OS X has a very large amount of addressable memory. Each time an application
requests more memory, the operating system provides memory even if all available RAM in the computer is
already in use. To accommodate the application's request for memory, the operating system copies the
contents of some RAM to the computer's hard disk. The operating system then makes the copied RAM
available to the requesting application to reuse. When the memory that was copied to disk is needed again,
the operating system chooses a different block of memory to copy to the disk, and brings the old memory
back into RAM. The capability for applications to use more memory than the available RAM is called
virtual memory. The process of copying the contents of memory to and from the hard disk is called paging
or swapping. Accessing the hard disk and copying memory is time consuming. Too much swapping
degrades system performance and is called thrashing.

In an application that allocates memory for many objects over time, the various objects might be far apart in
memory. If two or more objects are used together, but stored far apart in memory, an inefficient situation
can arise. When the memory for one object is needed, that memory is swapped into RAM from the hard
disk. The object then needs to access another object that is still not in RAM, and even more memory must
be swapped into RAM. In the worst case, the memory swapped in for the second object might force the
memory for the first out of RAM. All the swapping dramatically slows the application.

One solution to this problem is to request locality of storage. In other words, store objects that are used
together close in memory. When one of the objects is needed, the chances are good that all the needed
objects will be swapped into memory at the same time. When the objects are not needed, they are swapped
out together as well.

Cocoa provides a mechanism for requesting that objects are stored close together in memory. Cocoa
provides functions for creating memory zones and allocating memory from specific zones. All the objects
allocated from a specific zone will be close to the other objects in the same zone. Memory zones are
represented by the NSZone type. NSZone and the functions for managing them are described briefly here.
More details are available in the online Cocoa reference documentation. Zones are a very low level and
somewhat esoteric topic. It is worthwhile to know that zones exist and can be used, but the Cocoa classes
hide most of the details and make them work seamlessly without programmer intervention. The use of
memory zones should be one of the last concerns of a Cocoa application developer. Get your code working
and only then consider the use of zones as an optimization if and only if they are needed.

The function to create a memory zone is NSCreateZone(). To recycle a zone and make its memory
available to other applications, use the NSRecycleZone() function. Arbitrary memory can be allocated
from a zone with the NSZoneMalloc(), NSZoneCalloc(), or NSZoneRealloc() functions. These
functions work like the traditional Unix memory-management functions, malloc(), calloc(), and
realloc() to allocate uninitialized memory, allocate memory initialized to all zeros, and change the
amount of the memory allocated respectively. Memory allocated with the NSZoneMalloc(),
NSZoneCalloc(), or NSZoneRealloc() functions can be freed with NSZoneFree(), which is
similar to the standard Unix free() function.

Cocoa objects are always allocated in a zone. The +alloc class method defined in NSObject actually
calls the +allocWithZone: class method specifying a default zone. The default zone can be obtained by
calling the NSDefaultMallocZone() function. Programmers can specify that an object instance should
be allocated from a particular zone by using +allocWithZone: and providing the zone as an argument.
A zone can also be specified when an object is copied. The -copy method declared in the NSCopying
protocol is usually implemented to call -copyWithZone:.

You can determine the zone in which an object was allocated by sending the object a -zone message. If
you decide to use zones explicitly in you application, it is a good idea to make sure objects that allocate
other objects do so using the same zone. For example, the -init method of a custom class might allocate
an instance of another class for use as the value of an instance variable, as shown here:

- (id)init
{
 self = [super init];
 _myInstanceVariable = [[MYHelperClass allocWithZone:[self zone]]
init];

 return self;
}

_myInstanceVariable will be an instance of MYHelperClass that is allocated from the same
memory zone as the object being initialized.

Book: Cocoa® Programming
Section: Chapter 5. Cocoa Conventions

Encoding and Decoding

The Cocoa frameworks provide a convention for initializing an object instance by decoding data that
has previously been encoded. Encoding and decoding object-instance data is the basis for storing
objects on disk, and copying objects to different address spaces. Each class is responsible for encoding
and decoding its own state by implementing two methods, -encodeWithCoder: and -
initWithCoder:, which are declared in the NSCoding protocol. These methods are automatically
called, under certain circumstances, by Cocoa framework classes such as NSCoder, NSArchiver,
and NSUnarchiver. Almost all classes in the Cocoa frameworks conform to the NSCoding protocol
and implement the two coding methods.

A file or block of memory that contains encoded objects is sometimes called an archive. The
NSArchiver and NSUnarchiver classes are used to write and read archives, and they manage
most of the details of the encoding and decoding process. For example, an object that is encoded more
than once will only be stored once in an archive. When the objects in the archive are decoded, all the
objects that referenced a shared object will be restored to reference a shared object that was decoded.
Complex graphs of interconnected objects can be encoded and decoded, preserving all the
interconnections. Encoded data is stored in a compact platform independent format.

Making your own classes conform to the NSCoding protocol is optional. In most cases, if your class
inherits from a class in the Cocoa frameworks, your class will inherit the coding methods. You can
override the inherited methods to call the inherited implementations, and then encode or decode the
unique state of instances of your class.

The NSObject class does not conform to the NSCoding protocol. To add encoding and decoding
support to a class that does not inherit NSCoding conformance, the class must adopt the NSCoding
protocol and implement the -encodeWithCoder: and -initWithCoder: methods.

NOTE

Encoding and decoding are both used by Interface Builder. Interface Builder .nib files
contain encoded objects. Instances loaded from nib files are sent the -
initWithCoder: method so that they can reconstruct themselves from the encoded
data. To use custom classes with Interface Builder, they must implement the NSCoding
protocol.

Encoding Types

The methods -encodeWithCoder: and -initWithCoder: are called with an NSCoder
argument. When an object receives an -encodeWithCoder: message, the object should encode its
state using the methods of the NSCoder instance provided. Almost all types that can be represented by
the @encode Objective-C compiler directive can be encoded. Objects, scalars, C arrays, C structures,
C strings, and pointers to these types can all be encoded and decoded. C unions, void pointers, and

function pointers cannot be encoded or decoded.

For example, consider the following class that stores a mixture of objects and other data types using
instance variables:

@interface MYGrapnic : NSObject <NSCoding>
{
 NSString *_myLabel;
 NSFont *_myLabelFont;
 NSPoint _myLabelPosition;
 id _myExtraData;
 float _myLineWidth;
 NSMutableArray *_myStyles;
 NSColor *_myColor;
}

/* NSCoding methods */
- (void)encodeWithCoder:(NSCoder *)coder;
- (id)initWithCoder:(NSCoder *)coder;

@end

The MYGraphic class is a subclass of NSObject, which does not conform to the NSCoding
protocol. Therefore, the MYGraphic class must adopt the NSCoding protocol explicitly to enable
encoding and decoding. The -encodeWithCoder: method for the MYGraphic class might
implement its -encodeWithCoder: method like this:

- (void)encodeWithCoder:(NSCoder *)coder
{
 [coder encodeObject:_myLabel];
 [coder encodeObject:_myLabelFont];
 [coder encodeValueOfObjCType:@encode(NSPoint) at:
&_myLabelPosition];
 [coder encodeObject:_myExtraData];
 [coder encodeValueOfObjCType:@encode(float) at:&_myLineWidth];
 [coder encodeObject:_myStyles];
 [coder encodeObject:_myColor];
}

The MYGraphic class encodes all its instance variables, but classes that do not encode all their
instance variables are possible also. There is no reason to encode the values of instance variables that
can be computed from other data. There is no reason to encode the values of instance variables that are
not important when the object is decoded.

Data that is encoded must be decoded in the same order using the same types with which it was
encoded. Given the preceding implementation of -encodeWithCoder:, the corresponding -
initWithCoder: method must be implemented as follows:

- (id)initWithCoder:(NSCoder *)coder

{
 self = [super init];
 _myLabel = [[coder decodeObject] reatin];
 _myLabelFont = [[coder decodeObject] reatin];
 [coder decodeValueOfObjCType:@encode(NSPoint) at:
&_myLabelPosition];
 _myExtraData = [[coder decodeObject] reatin];
 [coder decodeValueOfObjCType:@encode(float) at:&_myLineWidth];
 _myStyles = [[coder decodeObject] reatin];
 _myColor = [[coder decodeObject] reatin];

 return self;
}

There are two key requirements for the implementation of -initWithCoder:. It must return self,
and it must decode the same types in the same order that they were encoded. If - initWithCoder:
is implemented in a class that does not inherit NSCoding conformance from its superclass, -
initWithCoder: should then be implemented to call the superclass's designated initializer and
assign the result to the self variable.

A class that overrides inherited -encodeWithCoder: and -initWithCoder: methods must call
the inherited versions. The following class shows one correct technique for overriding the coding
methods. The MYCircleGraphic class is a subclass of the MYGraphic class and is declared as
follows:

@interface MYCircleGraphic : MYGraphic
{
 NSPoint _myCenter;
 int _myRadius;
}

/* NSCoding methods */
- (void)encodeWithCoder:(NSCoder *)coder;
- (id)initWithCoder:(NSCoder *)coder;

@end

There is no need for the MYCircleGraphic class declaration to explicitly adopt the NSCoding
protocol because MYCircleGraphic inherits conformance from the MYGraphic class. The
MYCircleGraphic class might implement its -encodeWithCoder: and -initWithCoder:
methods like this:

@implementation MYCircleGraphic

/* NSCoding methods */
- (void)encodeWithCoder:(NSCoder *)coder
{
 [super encodeWithCoder:coder];
 [coder encodeValueOfObjCType:@encode(NSPoint) at:&_myCenter];

 [coder encodeValueOfObjCType:@encode(int) at:&_myRadius];
}

- (id)initWithCoder:(NSCoder *)coder
{
 self = [super initWithCoder:coder];
 [coder decodeValueOfObjCType:@encode(NSPoint) at:&_myCenter];
 [coder decodeValueOfObjCType:@encode(int) at:&_myRadius];

 return self;
}

@end

The key to these implementations is that they call their superclass, so that it has a chance to encode or
decode its state. After the superclass's state is handled, the variables added by the subclass are encoded
or decoded. Another detail is the assignment of self to the result of the superclass's -
initWithCoder: method. In some rare cases, the inherited -initWithCoder: might substitute a
different instance from the one that received the message. In that case an error will result if the
assignment to self is not made.

Retaining Decoded Objects

Decoding objects follows the Cocoa reference counting conventions. If you obtain an object via
decoding and you want to keep a reference to the decoded object, then you must retain it. Decoded
objects that are not retained will be deallocated when the coder that provided them is deallocated.
Objects can be decoded and retained in one line as follows:

_myName = [[coder decodeObject] retain];

If a class provides set accessors for its object instance variables, the set accessors can be used in
conjunction with decoding as follows:

[self setName:[coder decodeObject]];

Using the accessors when they exist has advantages. Any logic applied to values when they are set can
be implemented in one place, the accessor, rather than in two places, the accessor and also the -
initWithCoder: method. Logic implemented by a set accessor can be arbitrarily complex, but at a
minimum the set accessor will manage the reference count of the decoded instance variable, thus
confining all reference counting of instance variables to just the accessors.

Conditional Encoding

The NSCoder class includes a method, -encodeConditionalObject:, to enable conditional
encoding of objects. Conditional encoding means that a placeholder for the object being encoded is
encoded instead of the object itself. When both classes are decoded they will be restored with a
reference to the same object if the object conditionally encoded in one class is unconditionally encoded

by another. If no class unconditionally encodes the object, then when the classes that conditionally
encoded the object are decoded, they will decode a reference to nil.

Use conditional encoding to avoid encoding too many objects under certain circumstances. For
example, if your application includes many interconnected objects in a complex data structure,
conditional encoding can be used to enable the encoding and decoding of individual objects without
inadvertently encoding all the interconnected objects. Figure 5.2 illustrates a possible configuration of
interconnected objects using solid arrows to indicate which objects unconditionally encode references
to other objects.

Figure 5.2. Interconnected objects can unconditionally encode referenced objects.

It is not possible to encode just one of the interconnected objects depicted in Figure 5.2 because each
will encode all the others. Figure 5.3 shows an alternate configuration that uses conditional encoding
and makes it possible to encode the entire graph of interconnected objects or encode individual objects.
In Figure 5.3, solid arrows are used to indicate unconditionally encoded references and dashed arrows
are used to indicate conditionally encoded references.

Figure 5.3. Interconnected objects can use both conditional and unconditional encoding.

If object A in Figure 5.3 is encoded, objects B and C, and all their interconnections, will also be
encoded. When A is decoded, the entire graph of objects is restored. If either object B or object C is
encoded by itself, just one object will be encoded. Due to the use of conditional encoding, when that
object is restored, its references to other objects will be nil.

Using Version Numbers

The values that are encoded in -encodeWithCoder: must be decoded within -initWithCoder
using the same order and the same types. What happens if a class is modified to store additional values

or use different types? How can the modified class decode values that were encoded by prior versions
of the class?

The Cocoa frameworks include a class versioning system that can be used to enable backward
compatibility when decoding values. The version number of a class can be set with the
+setVersion: method declared in the NSObject class. A good time to set the version of a class is
in its +initialize method as follows:

@implementation MYClass
+ (void)initialize
{
 [MYClass setVersion:3];
}
@end

The +setVersion: message should be sent to the class itself using the class name rather than self
because an inherited +initialize might be called by a subclass in which case self will be the
subclass. You should not set the version of the subclass inadvertently.

The version number of a class can be obtained by sending the +version message to the class.

When decoding objects, you can obtain the version number of the object when it was encoded by
calling the -versionForClassName: method of the coder. Based on the version of the class that
was encoded, different decoding sequences can be used. For example, if the MYCircleGraphic
class, which was previously introduced, is modified to store its radius as a float rather than an
integer, backward compatibility can be maintained, as shown here:

@interface MYCircleGraphic : MYGraphic
{
 NSPoint _myCenter;
 float _myRadius; // Changed to float
}

+ (void)initialize;
/* NSCoding methods */
- (void)encodeWithCoder:(NSCoder *)coder;
- (id)initWithCoder:(NSCoder *)coder;

@end

@implementation MYCircleGraphic

+ (void)initialize
{
 [MYCircleGraphic setVersion:1]; // Default is version 0
}

/* NSCoding methods */

- (void)encodeWithCoder:(NSCoder *)coder
{
 [super encodeWithCoder:coder];
 [coder encodeValueOfObjCType:@encode(NSPoint) at:&_myCenter];
 [coder encodeValueOfObjCType:@encode(float) at:&_myRadius];
}

- (id)initWithCoder:(NSCoder *)coder
{
 self = [super initWithCoder:coder];
 [coder decodeValueOfObjCType:@encode(NSPoint) at:&_myCenter];
 if([coder versionForClassName:@"MYCircleGraphic"] < 1) {
 // Versions prior to 1 saved an integer radius
 int temp;

 [coder decodeValueOfObjCType:@encode(int) at:&temp];
 _myRadius = (float)temp;
 } else {
 [coder decodeValueOfObjCType:@encode(float) at:&_myRadius];
 }

 return self;
}

@end

Using Memory Zones When Decoding

By default, objects that are decoded are created in the default memory zone. In most cases, the default
behavior is fine. If you need to decode objects using a different memory zone, set the zone to use via
the coder's -setObjectZone: method before any objects are decoded. You can obtain the memory
zone that a coder is using by sending the -objectZone message.

Substituting Objects

During encoding, the object being encoded can substitute a replacement class or instance for itself.
Similarly, after an object is decoded, it can substitute another object for itself. The NSCoder class and
its subclasses, NSArchiver and NSUnarchiver, call certain methods that are declared in the
NSObject class to enable substitutions.

The -classForCoder method is called as an object is encoded. Override -classForCoder to
return a different class that should be stored in the encoded data.

Next, the -replacementObjectForCoder: method of the object being encoded is called.
Override -replacementObjectForCoder: to substitute a different instance for the instance
being encoded.

After an object has been decoded, the -awakeAfterUsingCoder: method is called. Override -
awakeAfterUsingCoder: to return a different instance than the one just decoded.

Using Alternative Techniques

The encoding support provided by the NSCoder class and its subclasses is powerful and flexible, but it
has some shortcomings.

The binary data format of encoded values is compact and cross platform, but not documented by Apple.
The encoded data cannot be decoded easily without using the Cocoa frameworks. As a result, using
encoded values to store the document data of your custom applications is not a good choice. Users on
other platforms will not be able to read your documents, even to import them into applications. Other
Cocoa applications will not be able to read the document data unless the other applications include all
the classes that can be encoded.

Although class versioning can be used to maintain backward compatibility when reading objects that
were encoded by prior versions of the class, there is no way to reliably support forward compatibility.
In other words, version 2 of a class can decode version 1, but version 1 cannot decode version 2.

Finally, because encoded values are stored in a cryptic binary format, there is no easy way to
troubleshoot problems with encoded data. If an error was made encoding values, it might be impossible
to ever decode the values.

Fortunately, freely available alternative coding techniques exist. One alternative is property-list
encoding, which is available at www.misckit.com. Each object is encoded in a human-readable format.
Both backward and forward compatibility is possible. Conditional encoding, substitutions, versioning,
and memory zones are all supported. Objects that are encoded multiple times are only stored once in the
encoded data. Property lists can be stored as XML data.

The disadvantage of property list encoding is that the encoded data can be large and slower to encode
and decode than Apples binary implementation. Also, if your class supports both NSCoder encoding
and property list encoding, you will have to implement the NSCoding methods as well as the property
coding methods. Interface Builder and Cocoa's distributed objects technology only use the binary
format.

http://www.misckit.com/

Book: Cocoa® Programming
Section: Chapter 5. Cocoa Conventions

Summary

Although this chapter describes the major conventions used throughout the Cocoa
frameworks, there are many other conventions and examples of good practices to be found
in the frameworks. An awareness of the conventions clarifies the frameworks. When the
conventions are observed in use consistently, they become familiar and even comforting. In
some cases, awareness of the conventions is essential for correct use of the frameworks.

A trend toward accentuation and documentation of conventions, best practices, and
programming wisdom has swept the software industry. Best practices are sometimes called
design patterns. Many of the design patterns used by the Cocoa frameworks are described
in the next chapter.

Book: Cocoa® Programming
Section: Part I: Overview

Chapter 6. Cocoa Design Patterns

IN THIS CHAPTER

● Understanding Design Patterns
● A Catalog of Cocoa Design Patterns

Design patterns are a popular way to describe an object-oriented design. A pattern usually
doesn't include actual code. Instead, it describes general program elements (objects), and
how they can interact to solve a particular type of problem. The key elements of a design
pattern are the pattern's name, the problem it solves, the solution it presents, and the
consequences of using the pattern.

Many class names and concepts are introduced in this chapter that might not yet be
familiar. This chapter does not explain the use of any classes in detail, or even fully explain
the design patterns; instead it provides an overview and terminology. The classes that are
mentioned briefly in this chapter are described in detail throughout this book. One goal of
this chapter is to enable effective use of additional references by correlating standard
industry terminology with Cocoa's terminology. At a minimum, this chapter provides the
definition of terms and patterns that recur throughout the Cocoa frameworks, and this book.

Book: Cocoa® Programming
Section: Chapter 6. Cocoa Design Patterns

Understanding Design Patterns

In general, patterns offer a vocabulary of design solutions to software developers. Systems
that use well-known patterns in their design are easier to comprehend. Having a collection
of named patterns handy serves as a toolbox for developers. You can use these tools
instead of being forced to create a new set of tools for every design you create.

A pattern's name offers a common vocabulary that can be used between developers. The
details of the pattern, and all that it implies, can be communicated rapidly using the name.
Cocoa has its own special set of terms to represent the key concepts around which it is
built. Being familiar with these terms will make it easier to understand and use Cocoa, as
well as make it easier to describe designs to other developers.

Each pattern might apply to a range of situations, which can represent several different
design problems. Part of understanding a particular pattern is to know when to use it and
when not to. Because that is largely a matter of experience, documenting the problems a
pattern is meant to solve enables that experience to be shared with other developers.

The core of a pattern is the solution it offers. This includes the various program elements
(usually objects) that participate in the pattern. How elements collaborate, and the
responsibilities of each element, are also a part of the solution. Patterns don't include actual
code, except perhaps as an example of how a pattern might be applied. Instead, they offer a
generic template that can be modified to best match a particular problem. When a
developer thoroughly understands a pattern she can usually implement it quickly and
efficiently, even though she might not have specific code to cut and paste.

Most pattern definitions list the consequences of using the pattern. Every design decision
includes trade-offs, and choosing whether to use a pattern is like every other design
decision in this respect. Obviously, knowing the consequences of a decision enables you to
make better decisions.

The Cocoa frameworks are remarkably self-consistent. The designers used and reused
several common patterns, and even created a few of their own. Because these patterns recur
throughout the frameworks, it is useful to describe the patterns before diving into the
frameworks themselves. References to named patterns simplify the descriptions of the
frameworks. When a pattern is identified, the problem being solved and the consequences
of the solution are efficiently conveyed.

Design Pattern Terminology

Cocoa tends to use specific terms, which differ from the names that you might find in

object-oriented design texts, for many of its underlying design patterns. It is useful to learn
Cocoa's vocabulary and how it relates to these other terms. Sometimes the term is different
because there really are subtle differences between the concepts. In other cases, they mean
the same thing but the ideas were developed independently, and thus have different names.

The patterns listed here are presented using terminology that is common among Cocoa
developers. Sometimes the patterns are unique to Cocoa, but in many cases, they are found
by other names in other literature.

NOTE

If you want to know more about patterns in general, an excellent starting
point is the seminal "Gang of Four" (GOF) book, Design Patterns: Elements
of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (Addison-Wesley, ISBN 0-201-63361-2).
Patterns from that book are commonly referred to as "GOF patterns" Many of
the patterns found in Cocoa are also found in the GOF book and are presented
in greater detail there. The name of the GOF pattern is provided along with
the name used by Cocoa when this is the case. You don't need to know the
GOF patterns to read this chapter or use Cocoa, but understanding them
might help you to learn Cocoa more quickly.

Book: Cocoa® Programming
Section: Chapter 6. Cocoa Design Patterns

A Catalog of Cocoa Design Patterns

The meat of this chapter is a catalog of common design patterns found in Cocoa. This
catalog includes industry standard patterns and patterns unique to Cocoa. While this
catalog is not comprehensive, it does present the most commonly encountered Cocoa
patterns.

Model-View-Controller

Model-View-Controller, or MVC for short, is considered an architecture more than a
pattern. This is because it is a general way of organizing an application, and is an
architectural feature at a higher, more abstract level than most patterns. Because this
approach to application design permeates Cocoa, it makes sense to discuss it as a part of
the patterns and design philosophies encountered when working with Cocoa.

The MVC architecture was first used with the Smalltalk language in the 1970s, and has
proven to be one of the most successful and commonly used top-level application designs.
Every application has different architectural needs. MVC will not apply in every case, but
it is well-suited to most graphical applications.

MVC divides an application into three major parts or layers. Each part is composed of
many objects, and within the MVC paradigm their responsibilities and functions are well
defined. The pattern is named for its layers.

Model: This is the heart of an application. It contains all the application-
specific data structures and core logic.

View: Views are responsible for providing output to the user and collecting
input. Views are generally graphical, but they can be textual, Web-based,
and even script-based.

Controller: This handles synchronization between the model and views, as
well as some input from the user. The purpose of the controller layer is to
isolate the model and view, so that each can be changed independently of
the other.

If you consider an application to be an "editor" for some well-organized chunk of data, then
MVC becomes a natural means of internal-program organization. The data is all contained
within the model, and the view is the window, or interface, to the data that the application
presents to the user. The controller layer ties the two together.

Cocoa's emphasis on this type of application structure makes it valuable to offer more
details about each layer.

Model

The model should contain the central algorithms and data structures of the application. The
model is the core of the application, contains the application's internal state, and contains
most of the code that is unique to a particular application. It should be possible to reuse a
model with any number of different controller and view subsystems. To enable that reuse,
it is best if the code in the model has no dependencies on the controller or view.

View

The view contains the user interface for an application. In most graphical applications, the
purpose of the user interface is to enable users to view and modify the model's data via its
algorithms. Remember this when a user interface seems to be the most critical and complex
part of an application: A particular user interface has no value without a model to view and
modify, but a model can be used with any number of different user interfaces. Furthermore,
the historic necessity of designing applications around their user interfaces was the result of
inflexibility and inherent complexity in the user interface development tools that were
available. The user interface of a Cocoa application should not be more complex than the
model being viewed. In many Cocoa applications, the view might not contain any code at
all. For example, an application to view the file system might represent the file system as a
columnar browser, an outline, a table, or as scrolling text like a terminal. None of those
views of the file system necessarily require any custom code in the view subsystem of the
application because of the rich classes in the Cocoa frameworks and Interface Builder.

The view should not contain any application state other than state that is intrinsic to a
particular user interface. For example, the percentage of a document that is visible depends
on the nature of the view of the document. The appearance of a button depends on the
purpose of the button in the user interface. Those attributes are naturally part of the view.
However, the information displayed by a document and the value set by a button should be
stored in the model.

Ideally, the view subsystem and the model subsystem should have no interdependence.
However, if avoiding dependence is impractical, the dependence should be entirely from
the view to the model, and not the other way. Dependencies between subsystems result in
the situation where a change to one subsystem necessitates a change in the other. The code
in the model usually becomes stable and mature over time, but the user interface
continually evolves. If a change in the model requires a change in the view, the cost of the
change is mitigated by the fact that the view would likely change anyway. Furthermore,
many changes in the view can be accomplished with Interface Builder, and do not require
any code at all. A change in the model that is required by a change in the view can incur
costs that would otherwise be avoided.

Controller

Ideally, the view subsystem and the model subsystem should have no interdependence. The
controller subsystem exists to reduce the dependencies between the model and the view.
The controller is a layer of insulation between the other subsystems. The controller's
purpose is to prevent changes in the view subsystem from necessitating changes in the
model, and visa versa.

Any change to either the model or the view usually necessitates changes in the controller.
Therefore, the controller should be kept as small and simple as possible to reduce the cost
of those changes. The controller should not contain any application state. For example, if a
user presses a button to delete some information stored in the model, the action of the
button is in the controller subsystem. The controller's action should be implemented to call
the API of the model to delete the information. Then, the controller should use the API of
the view to reflect the deletion, perhaps by requesting that the view redraw. If the controller
is used in this way, the user interface to delete information can be changed to use a menu or
a script command, or both, without impact on the model. Similarly, the model can be
changed to disable the deletion of certain information without any change to the user
interface.

MVC in Cocoa

By making this separation into three layers, an application's interface and internal data
structures are decoupled. As a result, the potential for object reuse between applications is
enhanced. A generic view object, such as a text field, could be created and then reused in
many different, unrelated applications. A model could be used in different applications that
provide different ways to access or modify the model's data. For example, perhaps you
have a desktop application for manipulating some data and a secondary command line or
Web interface that allows access to the same data. Just like generic-view classes and
specialized-model classes can be reused, generic-controller classes can also be reused
across unrelated applications.

The Foundation Kit offers many data structures that provide a basis upon which a model
can be built. This allows you to concentrate on what makes your model special as opposed
to reimplementing yet another standard data structure. In theory, this layer is where most of
your code-writing time should be spent because the model is the part of your application,
which makes it truly unique.

Cocoa supplies a wide variety of views in the Application Kit, therefore, many applications
will not need to create their own custom views. This is a huge time saver, and one of the
ways that Cocoa can improve your productivity.

If you are creating a document-centric application, then the various classes surrounding the
NSDocument class will provide much of the controller logic you need. The
NSDocument class is described in Chapter 9, "Applications, Windows, and Screens."

Sadly, in other parts of the controller layer, Cocoa does not yet provide much help. The
Application Kit focuses on the view layer, whereas the Foundation Kit focuses on the
model. There is no generic "controller framework."

The lack of a controller framework is one area that could stand improvement. Note that
Apple does have some generic controller objects that would help. They are in the
EOInterface framework, which is a part of the Enterprise Objects Framework.
Unfortunately, this is not a part of Cocoa, so it isn't something every Cocoa developer can
use. Perhaps sometime in the future these classes, or something similar to them, will
become a part of Cocoa.

Until that time, however, there is no controller framework that is a part of Cocoa itself. As
a result you will often spend time writing code for your application's controller layer. Most
developers don't design and create reusable, generic-controller classes because it is difficult
to do well and takes much more time to create the objects. Few developers have the time
and resources to "do it right," so most Cocoa application developers create their own
controller classes each time. This is reasonable, especially given the time constraints of
most projects. Unfortunately, very few of these custom classes are reusable from one
application to the next.

Cocoa applications often have two features that do not fit well into the MVC architecture:
undo and user preferences/defaults. Each can reasonably be implemented in the controller
or the model, but each should be exclusively in one or the other. For example, setting and
getting user preferences/defaults can be implemented in the controller on the grounds that
the user defaults system is just another view, and the controller should communicate
between the user defaults view and the model. On the other hand, user defaults often
contain data (Application State) that is part of the model. Similarly, undo can be regarded
as recorded commands to modify the model, and therefore just another view that is like a
scripting system that communicates with the model via the controller. On the other hand,
undo can be considered preserved application state, and therefore best implemented in the
model.

A lot more could be said about how to design using the MVC approach, but it would
require a complete book. Any good book on object-oriented design will give more
information about it, so we recommend that you read a few books on design if you aren't
comfortable with the concepts behind MVC. While working in the other sections of this
book, keep MVC in mind to help you remember the proper uses of the various classes you
encounter.

Class Clusters

Class clusters are a means of hiding complexity in the inheritance hierarchy. The general
idea is similar to the GOF Facade pattern, which attempts to hide a complex graph of
objects behind a single object. Instead of hiding a group of interacting objects, a class
cluster hides several different classes behind one abstract superclass. Instead of knowing

anything about the subclasses, you only interact with the API defined by the abstract
superclass. The actual instances you manipulate will always be subclasses of the abstract
superclass, but you never know the actual class you are dealing with, and you don't need to
know.

The biggest impact of class clusters is that you'll see some unfamiliar class names in the
debugger, usually with the word "Concrete" in the name. For example, you might see
something like NSConcreteArray when you are working with an NSArray. A large
portion of the classes in the Foundation Kit are actually class clusters. The collection
classes and NSString are the ones you are most likely to encounter.

In the most general terms, you can write Cocoa programs without ever worrying about the
details of a class cluster. Just don't be thrown if you see unexpected class names when
running the debugger. The other important detail is that creating a subclass of a class
cluster is a tricky proposition and should be undertaken with utmost care. For the gory
details of class clusters, including how to subclass them, you should refer to Appendix A,
"Unleashing the Objective-C Runtime."

Shared Objects

One of the simplest patterns seen in Cocoa is called the "shared object" in Cocoa's
documentation. In GOF terms, this is known as a "Singleton." A shared object is used in
cases where a particular class should be instantiated once and only once. One of the most
obvious examples of a shared object is the central application object. Every Cocoa
application has a single NSApplication instance. This makes sense; an object that
represents a running application should only appear once per application.

Several other Cocoa classes you will learn about are also shared objects. NSWorkspace
represents the Mac OS X Finder and is a shared object. Some of the standard panels Cocoa
offers, such as the font and color panels, are also shared. Some of the scripting objects use
the shared object pattern.

To implement this pattern, the class object provides a method that is globally accessible
and can be used to obtain the shared-object instance. At the same time, the +alloc
method is disabled to prevent you from creating extra instances. The single, shared instance
is created the first time you ask for it, and then the same instance is returned every time
thereafter. Usually, the method used to obtain a shared instance includes the word "shared"
and the name of the class minus the "NS" prefix as in these examples:

From NSWorkspace.h:

+ (NSWorkspace *)sharedWorkspace;

From NSApplication.h:

+ (NSApplication *)sharedApplication;

You might also see this more generic method used sometimes:

+ (id)sharedInstance;

Finally, shared instances can sometimes be obtained by calling the +new class method.
This use of the +new method is left over from prior versions of the frameworks and is
deprecated. The +new method plays a crucial role in the earliest frameworks that were
developed for Objective-C, but should not be used with Cocoa.

For some classes it is also possible to find out whether or not the shared instance has
already been created. For example:

From NSSpellChecker.h:

+ (NSSpellChecker *)sharedSpellChecker;
+ (BOOL)sharedSpellCheckerExists;

Because Cocoa is object oriented, it is important that developers be able to subclass a
shared object and, instead of the original, use an instance of the subclass as the shared
instance. It turns out that, thanks to Objective-C, this is easy. Simply create your subclass,
and then call the appropriate accessor method, but with your subclass's class object as the
receiver instead of the superclass. For instance, suppose you have a special subclass of
NSSpellChecker. Before any other part of your application asks for a spell checker,
you would ask for it yourself, like this:

[MySpellchecker sharedSpellChecker];

This should return an instance of your subclass even if you haven't overridden the
+sharedSpellChecker method itself.

Enumeration

Cocoa's Foundation Kit offers enumerators for all its collection classes. This pattern is
similar to the GOF Iterator pattern. Enumerators provide a way to loop through any
collection of objects and do something with each object. Rather than requiring you to write
a specialized loop for each kind of collection, you can enumerate all objects from any type
of collection the same way. You simply ask the collection for an enumerator object, and
then ask the enumerator for the next object in the sequence until it stops returning objects.
Code to do this for an arbitrary collection class, myCollection, looks like this:

id instance;

id enumerator = [myCollection objectEnumerator];
while (instance = [enumerator nextObject]) {
 // do something with instance
}

The code first obtains an enumerator from the collection class. Next, the enumerator is
asked for the next object in the sequence. When the enumerator runs out of objects, it will
return nil and then the loop will exit.

Every collection class in the Foundation Kit offers some kind of enumerator. Some other
objects offer enumerators, too, when it makes sense. The only thing that changes is the
method you call to obtain the enumerator itself. This changes because sometimes more
than one kind of enumerator is available. For example, NSArray enables you to pass over
all its objects in forward or reverse order. The two methods available for this have obvious
names:

From NSArray.h:

- (NSEnumerator *)objectEnumerator;
- (NSEnumerator *)reverseObjectEnumerator;

In the case of an unordered collection, only one enumerator may be available because
there's no concept of forward or reverse. Other collections, such as an NSDictionary,
might have more than one group of objects to enumerate over. A dictionary associates pairs
of objects with one object being the key, and the other being the value. You can enumerate
over just the keys or just the values:

From NSDictionary.h:

- (NSEnumerator *)keyEnumerator;
- (NSEnumerator *)objectEnumerator;

However, no matter how you get the enumerator, you always use it the same way.
Sometimes it is also useful to work in the other direction and create a collection containing
all the objects that would be returned by an enumerator. To do this, simply ask the
enumerator for an NSArray containing all the objects it would have returned:

myArray = [myEnumerator allObjects];

Target/Action

When a user manipulates one of Cocoa's user interface objects, it will send a specific
message to a specific object. This differs from many other application frameworks on other
platforms that insert an event into the application's event loop for later interception and

decoding. In Cocoa, this process of sending a direct message in response to a user action is
known as target/action. Using this terminology, the target is the object that receives the
message, whereas the action is the message that is sent.

Actions are invoked when buttons are clicked, when editing finishes on a text field, when a
slider is moved, and so on. Each interface object can have its own unique target and action.
Usually, only one interface object will send a particular action. This means there is rarely a
need to test to see what happened or which interface item was activated. Sometimes an
action might be sent by more than one object. For example, perhaps a particular button
triggers the same action as an item in the application's main menu. In a case like this, you
might want to know which control sent the action message. This is easy because all actions
have a single parameter: the message's sender.

To make use of target/action, you must do two things. First, create objects that implement
action messages. An action message will have a prototype that looks like this:

- (IBAction)someAction:(id)sender;

The name -someAction: will change depending on what your action method is
supposed to accomplish. When you have implemented your action method, you can use
InterfaceBuilder.app to connect an interface object with an instance of the class that
implements the action method. When that interface is used in your application, the action
message is sent to the target you selected in Interface Builder every time that the control is
activated.

It is also possible to create a target/action connection between objects programmatically.
Here's the code you would use to do it:

[myControl setAction:@selector(someAction:)];
[myControl setTarget:myTargetObject];

To determine what a control's target or action is, simply ask it using the -target or -
action methods. If you are implementing a control of your own, you don't even have to
know how to send an action because the NSControl class implements a method you can
use to send action messages:

- (BOOL)sendAction:(SEL)theAction to:(id)theTarget;

You can invoke this on any control subclass to get it to send an arbitrary action message to
an arbitrary target.

Commands

Those who are familiar with the GOF patterns might note that target/action seems to be an

implementation of the Command pattern. Although the command pattern, or something
like it, could be used to implement something like target/action, it is not needed in
Objective-C. The command pattern is used in more static object-oriented languages to
simulate the dynamic facilities that are missing. For an object to send a message that it has
never seen before in a static language would be generally impossible. To get around this,
you would create an abstract superclass called Command, which would implement a virtual
method such as invoke. Then, you would create a subclass for every method that you might
need to send. Finally, the sender would be handed an instance of some arbitrary Command
subclass and call invoke on that object when it needs to send the message. By doing this,
one object can send a message to another object even though the message was unknown
when the sender class was compiled.

Because Objective-C is more dynamic, however, there is no need to jump through all these
hoops to send an arbitrary message. Instead, selectors are passed to the sending object to
specify which message should be sent. The sender then uses the -performSelector:
method or, if appropriate, a variant such as -performSelector:withObject: to
invoke the method.

Selectors only specify the message to be sent and not the receiver. In some cases this is
desirable, but not always. If you need to specify both the message and the receiver with a
single object, the NSInvocation class can be used. An NSInvocation encapsulates a
message, a receiver, and all the parameters of the message. The NSInvocation class is
the closest Cocoa equivalent to the GOF Command pattern.

Delegates

One of the most common mistakes made by a new Cocoa developer is to subclass a Cocoa
object without really needing to. Normally, they want to change the object's behavior, and
that's why they make a subclass. In most other object-oriented- application frameworks,
subclassing is the only way to alter the behavior of a class. Instead, Cocoa introduces the
concept of delegation as an alternative to subclassing. No specific GOF pattern describes
delegation exactly; delegation is something of a hybrid of the Observer and the Chain of
Responsibility GOF patterns.

Delegation is a way for a framework designer to defer design choices. Instead of doing
everything one way and that way only, many Cocoa classes are equipped to ask some other
object what they should do in a given situation.

For example, if the user clicks the close button in a window's title bar, the default action
would be to close the window. But what if the window contains an altered document and
the application needs to enable the user to save their changes before the window is closed?
In Cocoa, the window will ask another object, "I want to close now, is that OK?" The
object can then respond yes or no, perhaps after presenting a sheet to ask the user whether
to save the document or cancel the window close. No subclassing is required to change the
window's behavior. Instead, another object is provided that can answer the question in an

application and context specific way.

This other object that gets to participate in the decision is known as the delegate. The
messages sent by an object to its delegate are known as delegate messages. No standard
terminology exists for the object that sends delegate messages to a delegate. For lack of a
better term, this book will use the word delegator to identify such an object. Typically, the
documentation and header for every delegator class describes all the messages that might
be sent to its delegate.

Many of the more complex Application Kit classes, such as NSApplication,
NSWindow, NSTableView, and NSToolBar, are delegators.

Some messages to delegates don't require a response from the delegate and are just sent to
let the delegate do something before or immediately after a particular event has happened.
For example, a delegate can receive a message just before and just after a window is placed
onto the screen. This offers the delegate the opportunity to perform any special
initialization or other operations at the appropriate time.

A delegate is not required to implement any particular delegate messages. It only needs to
implement the messages that are interesting to it. The delegator will always check to see if
its delegate responds to a particular message before trying to send the message. If the
delegate doesn't respond to a given message, it simply won't be sent.

NOTE

Checking to see if a delegate responds to a message before sending the
message might seem inefficient. The Cocoa implementation is actually a bit
smarter. When a delegate is set, Cocoa will determine the messages it can
handle and cache that information for use when a delegate message needs to
be sent.

One limitation of delegates is the fact that there is only a specific set of delegate messages
known to a delegator. If the designer of a delegator didn't send out a delegate message for
some event that you want to catch or influence, a delegate won't work. In that case a
subclass of the object might be the only solution. Luckily, there are not many places in
Cocoa where a subclass is required. The existing sets of delegate messages provide a rich
collection that covers nearly everything you'll need.

Another limitation of delegates is that objects usually have only one delegate. There is no
way, for example, for an NSApplication instance to have multiple delegates. If there is
a need to have more than one object receive delegate messages from a single delegator then
have your delegate pass messages on to other delegates.

In the case of messages that require a response, such as "do I close the window?"
forwarding the message to other objects is the only solution. On the other hand, if the other
delegates only require notification of events, such as "the window closed," and they don't
need to participate in any decisions, then the next pattern can be used to solve the multiple
delegates problem.

Notifications

Cocoa often uses notifications to tell objects in an application that something important has
happened. For any given notification, there can be multiple receivers of the message.
Multiple objects can send or post a given notification, as well. Some notifications come
with extra information detailing the event that they represent, and others do not.

The central figure of the notification pattern is the NSNotificationCenter, which is
described in Chapter 7. In GOF terms, the objects that register for a notification would be
known as observers. The NSNotificationCenter and NSNotification classes
provide a generic, flexible, and reusable implementation of the GOF Observer pattern.
Therefore, it should never be necessary for you to implement the pattern yourself.

To receive a notification, an object must register with a notification center. Usually, an
application has only one notification center, known as the default center, although you can
create more if necessary. When registering for a notification, an object can specify the
details of how it wants to receive the notification. It is also possible to specify the objects
from which a receiver accepts notifications.

When it is time to send out a notification, the sender "posts" the notification to the
notification center. The notification is automatically passed on to all the objects that
registered to receive it. Some notifications carry extra information about the event they
represent in a user info parameter. It is up to the object posting a notification whether to
add that information prior to posting.

Unlike delegates, notifications enable multiple objects to receive notification of a given
event. There can be any number of observers. Another benefit of notifications is that an
object can register for a notification without knowing who the sender is and the sender
doesn't have to know anything about objects that observe the notifications it posts. As
objects register and post notifications, the interactions between objects can emerge
dynamically. This reduces the need for global variables to help an object find other objects
it needs to communicate with.

One limitation of notifications is that the implementation is slower than that of delegate
methods because the notification center adds a layer of indirection. Furthermore, objects
that observe a notification cannot send a response directly back to the object that sent the
notification in the same way a delegate can.

Proxies

Cocoa's Distributed Objects technology includes the concept of a proxy, which is more
specific than the GOF Proxy pattern. This can be a point of confusion for those new to
Cocoa. Because the same term can mean two different things depending on context, this
section will take care to explicitly say "GOF Proxy," if that is what is meant.

In Cocoa, a proxy is a stand-in for another object that is in a different process or different
thread. Sending messages to the proxy is the same as sending them to the actual object. The
proxy transparently bundles the message, and sends it to the object in the other process.
The programmer doesn't have to worry about whether or not a proxy is involved, or
whether the ultimate receiver of a message is in the same process as the sender. Just send it
a message and the right thing will happen. Some designers call this an Ambassador.

The GOF Proxy pattern includes this function. It can also serve other functions. Therefore,
a Cocoa proxy is a GOF Proxy, but a GOF Proxy is not necessarily what Cocoa calls a
proxy. The other types of GOF Proxy do appear in Cocoa. Some have different names
while others have no specific name.

Another job of a GOF Proxy might be to allow for the lazy allocation and loading of an
expensive resource. The NSImage class is an example of this kind of proxy. In this case,
the object has two parts: The external part of the image, which is the interface you
normally access, and the actual image data, which is an NSImageRep or image
representation in Cocoa terms. The image can tell you information about itself without
needing to load and decode all the data. In fact, the data can be kept on disk until it is
actually used. This approach helps reduce memory usage in the case where some images
might never be displayed.

NSImage takes this a bit further, however, and actually can act as a proxy for multiple
image representations, choosing the best for a particular context. In this respect, the object
acts as a GOF Facade. A Facade is an object that presents a single, simple interface to a
more complex graph of underlying, cooperating objects.

Another Cocoa example that combines the Proxy and Facade patterns is the
NSWindowController, which usually acts as a cover for the graph of objects inside
one of Interface Builder's .nib files. It won't load the .nib itself until it absolutely has
to. At the same time, a window controller subclass usually acts as the application's
connection to the objects inside the .nib. In the process, it can also perform another
potential proxy duty: managing access to the object(s) it is covering.

A final example of Proxy behavior is not yet found in Cocoa proper, but is found in Apple's
Enterprise Objects Framework (EOF). Some proxies stand in for an object that hasn't yet
been created and might never actually be needed. In the Enterprise Objects Framework, an
EOFault performs this duty. It stands in for objects that are still in a database so that there
is no need to fetch a large chunk of a database's contents as a result of fetching an object

with references pointing all over the database. Because those references might never be
touched by the application, a fault object is put in place to stand in for the real object and
data. If the application ever tries to access the object, then the fault will automatically
transform itself into the real object and fetch the requested data.

Although Cocoa has nothing like this at present, it might have a class with similar behavior
in the future. Such fault objects can be useful for dealing with any type of object
persistence, and not just for databases.

In general, the GOF Proxy and Facade patterns are used extensively throughout Cocoa, and
often you will find both patterns in use together.

Facades

As explained in the previous sections on class clusters and proxies, a Facade is an object
that presents a single, simple interface to a complex graph of cooperating objects. It is
common throughout Cocoa to find the Facade pattern used in conjunction with other
patterns.

Many of the Application Kit objects you use, especially the more complex ones, are
Facades. Two of the Facades are the NSText and NSImage classes.

The way NSText is used is a great example of this; most Cocoa developers can just use
NSText itself and not worry about what happens inside. This is easy for the developer and
good enough for many situations. The trade-off is that you lose some flexibility,
configurability, and extensibility in exchange for that ease of use. A few developers will
want, or need, to make specific customizations and will pull back the Facade. In doing so,
they expose themselves to a large collection of new classes that they have to learn in
conjunction with a complex graph of objects that takes time to fully understand. The power
and customizability comes with a huge price in complexity.

Prototypes

Some of Cocoa's objects make direct use of the GOF Prototype pattern. A prototype is an
instance that is not used directly. Instead, it is used as a sort of template for creating new
instances. When a new instance is needed, the prototype is cloned. This is very useful for
generic containers such as the NSMatrix. When a matrix grows in size and needs more
elements, it copies a prototype to obtain the new elements.

The Prototype pattern enables you to create any appropriate instance and configure it
however you like. Because of this flexibility, the NSMatrix class doesn't need to know
anything about the instances it contains, and can simply create and install them
automatically, as needed, without requiring your intervention.

This is also useful for incorporating dynamically loaded code from bundles into your
application. A developer could use this pattern with multiple prototypes to create a palette
of preconfigured objects in their programs, too. The objects on an Interface Builder palette
are all prototypes.

In the case of NSMatrix, it is even possible to edit the prototype itself in Interface
Builder. Being able to control this from Interface Builder saves a lot of code when setting
up new dynamic interfaces.

Some of the other views provided in the Application Kit use a slightly different kind of
prototype. These prototypes are actually both shared and used between objects. Reuse of
instances in this way is common throughout Cocoa, especially for input, input validation,
and output formatting.

As an example, consider the NSTextField class. It presents a simple, editable field of
text to the user. However, it uses an NSText object to handle the editing itself. Since
NSText objects are heavyweight classes because of all the internal objects they use behind
the Facade, it is inefficient to create an NSText object for every single field in the
interface. Instead, all the text fields share a single NSText object, known as the field
editor.

In another example, the NSTableView object has an internal object that formats the rows
of a table for display. It is shared between the rows. The way this object is configured will
determine the look of all the rows that it formats.

Archiving and Coding

Cocoa's Foundation Kit offers a way to "freeze dry" an object, so that it can be brought
back to life at a later time. The object, when frozen, could be stored in memory, on a disk,
in a database, or by some other means. The process of freezing an object is known as
archiving or object serialization, and is performed by the NSCoder class. A coder can
freeze any object that conforms to the very simple NSCoding protocol. It can also
unfreeze any objects it or any other coder has frozen.

Encoding and decoding are described in Chapter 5, "Cocoa Conventions."

The frozen data produced by a coder contains the complete state of an object, and therefore
is similar to the GOF Memento pattern. Archiving is a little different from Memento,
though, because it is not usually used to restore an existing instance to a previous state.
Instead, it is used to store an object so that the live object can be destroyed and later re-
created exactly as it was. Another use for archiving is to create duplicate instances, or
move an instance from one process to another.

NOTE

Another example of the Memento pattern in Cocoa is the undo system.
Cocoa's undo system usually doesn't do archiving to save and restore the state
of object, but archiving could be used as part of a brute-force undo
implementation.

Nearly all Cocoa objects conform to the NSCoding protocol. This enables live objects to
be manipulated and edited by Interface Builder. When the objects are saved into a .nib
file by Interface Builder, they are first frozen by an NSCoder instance so that they can be
written out as a part of the file. Coders are smart enough to freeze an entire graph of
objects, even if it has cycles in it. They keep track of both the objects in the graph and the
connections between the objects.

When an object is unfrozen, the coder will also send it a "wake up" message so that the
object can take care of any special tasks it might need to perform to become fully "alive"
again.

Subviews

In Cocoa, every area of screen real estate inside of a window is controlled by a subclass of
the NSView object. Although views should not be laid out so they overlap each other, one
view can completely enclose another. In this case, the enclosing view is known as a
superview, and the view that is enclosed is called a subview. Often the superview will add
some drawing around the subview or tile several subviews together to create a complex
user interface element. This is a hybrid implementation of the GOF Composite and
Decorator patterns, and not a specific pattern by itself.

The Composite pattern is a way for one view to build itself out of several others. An
example of a composite view would be an NSTableView object. This object uses
different objects to represent the table column headers, the cells, and the scrollbars. All
these views are assembled and controlled by the enclosing table view.

The Decorator pattern is a way for one view to add extra "decorations" around another
view. For example, the NSScrollView object can take any view and add vertical and
horizontal scrollbars to it. The most common view to put inside a scroll view is an
NSText instance, to create a scrollable text area. Any view could be put inside, though.
Another decorator is the NSBox class, which can optionally add a border and/or title
around a group of views.

All Cocoa views can have subviews and superviews, so they all can potentially be a
composite, decorator, or both.

Responder Chain

The responder chain is not a pattern, but rather another implementation of a pattern. It is
fully explained in Chapter 8, "Application Kit Framework Overview." It is mentioned here
because it is a concrete implementation of the GOF Chain of Responsibility pattern. In
short, the responder chain handles input from the user. Its job is to route input events to the
right place.

For example, if the user chooses the Copy command from the Edit menu, what should the
target for the menu item's -copy: action be? Whatever view currently has the focus and
active selection is given the first opportunity to handle the message. If the focused view
doesn't handle the message, it will be passed along to the control's window, and then, if it's
still not handled, the application object. A message like -quit: will usually make it all
the way to the application object. If an event isn't handled and drops off the end of the
chain, the application will beep at the user to alert him that his action wasn't understood.

The Application Kit has created a chain of objects that might be able to respond to the
event, and it includes the currently focused interface control at the start and the application
at the end. The Application Kit updates and manages this chain as the user moves from
control to control and window to window. In effect, the dispatching and routing of an
application's input events becomes automatic. By design it happens as a consequence of the
object graph's structure.

When a control's target is set to nil, it knows to send its action to whichever object is at
the head of the chain. This allows targets to be dynamically updated in a contextual
manner. Thus, you don't need to write any code to retarget your menu items. In fact, it is
even possible to determine if any object in the responder chain will handle a given message
or not. By making use of this information, Cocoa can automatically enable and disable
menu items as the user changes focus.

Book: Cocoa® Programming
Section: Chapter 6. Cocoa Design Patterns

Summary

With the responder chain, the target/action and the Chain of Responsibility patterns have
been tied together in Cocoa's design. Several other examples of patterns being combined by
Cocoa have been shown throughout this chapter. This type of interaction between the
patterns is common. Because Cocoa consistently applies the patterns, you will probably
find it easy to learn despite the huge size of the APIs. You will find that things tend to
work the way you would expect when you are comfortable with the underlying patterns.

As you become more proficient, you'll even be able to guess at method names without ever
having read an object's documentation. You will also find that if you try to use these same
patterns as you write code, your objects will be better able to leverage the Cocoa's power.

This discussion of patterns in Cocoa is just an overview. This chapter offers only brief
descriptions of the most common, most reused patterns found in the Cocoa frameworks,
while focusing more on their application within the frameworks than on theory.

Keep in mind that entire books have been written to describe patterns. This chapter is just a
starting point.

This chapter concludes the section of the book dedicated to background information,
languages, conventions, and patterns. The background information presented so far will be
essential for understanding the frameworks. Beginning in the next chapter, details about the
Cocoa frameworks, and techniques to unleash their power, are presented.

Book: Cocoa® Programming

Part II: The Cocoa Frameworks

IN THIS PART

 7 Foundation Framework Overview

 8 The Application Kit Framework Overview

 9 Applications, Windows, and Screens

 10 Views and Controls

 11 The Cocoa Text System

 12 Custom Views and Graphics Part I

 13 Custom Views and Graphics Part II

 14 Custom Views and Graphics Part III

 15 Events and Cursors

 16 Menus

 17 Color

 18 Advanced Views and Controls

 19 Using Pasteboards

 20 Adding Online Help

 21 Multimedia

 22 Integrating with the Operating System

 23 Networking

 24 Subprocesses and Threads

 25 Printing

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 7. Foundation Framework Overview

IN THIS CHAPTER

● Mutability
● Class Clusters
● Typed Storage
● Collections
● Property Lists
● Run Loops and Timers
● Support Types
● String Processing
● Bundles
● File System Access
● Defaults System
● Notifications
● Related Core Foundation

The Foundation framework contains the classes, functions, and data types that are used by
all Cocoa applications. The Foundation framework is the foundation on which other Cocoa
frameworks are built. Much of the power of the Cocoa frameworks results from the
consistent use of foundation classes. Functions and methods throughout Cocoa use features
provided by the Foundation framework. For example, methods that use strings use
instances of the foundation NSString class.

The Foundation framework can be used for both nongraphical and graphical applications. It
contains a wide range of classes including classes that implement strings, values,
collections, dates, and timers. Operating system features such as file system access,
networking, process information, threads, command-line arguments, and even user
preferences are encapsulated by foundation classes. The Foundation framework is present
in every copy of Mac OS X. A more or less complete reimplementation of the Foundation
framework exists as part of the open source GNUstep project for Linux available at www.
gnustep.org.

http://www.gnustep.org/
http://www.gnustep.org/

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Mutability

Many of the classes in the Foundation framework are immutable meaning that instances are
created with a particular value or content, and the value does not change for the life of the
instance. If another value is needed or different information must be stored, a new instance
is created with the new value rather than changing the value of an existing instance. The
value stored by an immutable object never changes after the object is initialized.

In contrast to immutable objects, the value or content of mutable objects can be changed
any number of times. In most cases, when the Foundation framework includes an
immutable class, a mutable variant is also available. Mutable classes are commonly
implemented as subclasses of immutable ones. The mutable classes extend their respective
superclasses by adding methods to change the value or contents of instances. Many
immutable classes also provide a -mutableCopy: method that returns a mutable copy of
the immutable object.

NOTE

A common mistake made by programmers is the over use of mutable classes.
Use mutable classes only when necessary to simplify an algorithm. Mutable
classes do not share many of the optimizations of memory and performance
that benefit immutable classes.

Immutable classes are implemented to enable efficient memory use. For example, when an
instance of the immutable NSString class is initialized with a value, the exact storage
needed for the string is allocated. When a mutable string is used, undesirable inefficiencies
results from the need to handle changes in the length of the stored string. The same storage
issues and optimizations apply to other classes that store arbitrary amounts of data
including collection classes.

Common operations such as copying are optimized when immutable classes are used.
Because the value of an instance of an immutable class cannot change, there is no need to
allocate any new storage for a copy. Copying is implemented to return another pointer to
the original instance. One instance can be safely shared.

Mutable Instance Variables

If a pointer to a mutable instance variable is returned from a method, the encapsulation of
the class that owns the instance variable might be violated. In such cases, other code might

change the value stored by the mutable object without using methods of the class that owns
it. However, when a class uses an immutable instance variable, the class can safely return a
pointer to the instance variable from accessor methods. There is no danger that the returned
object will be modified without its owner's knowledge. Returning immutable objects from
accessor methods simplifies implementation, promotes efficiency, and preserves the
encapsulation of the object that implements the accessor methods.

In the following example, a simple class stores an immutable string using the NSString
class described later in this chapter. The immutable string is safely returned from an
accessor method:

@interface MYSimpleClass
{
 NSString *_myStringValue;
}

- (NSString *)safeStringValue;

@end

@implementation MYSimpleClass

- (NSString *)safeStringValue
{
 // The instance variable can be safely returned
 return myStringValue;
}

@end

However, if MYSimpleClass is implemented with a mutable string and provides access
to that mutable string, the encapsulation of the class might be violated:

@interface MYSimpleClass
{
 NSMutableString *_myStringValue;
}

- (NSMutableString *)unsafeStringValue;

@end

@implementation MYSimpleClass

- (NSMutableString *)unsafeStringValue
{
 // The instance variable can not be safely returned
 // because it may be modified externally and violate the
 // encapsilation of MYSimpleClass
 return myStringValue;
}

@end

The mutable instance variable cannot be directly returned from an accessor method without
inviting violations of MYSimpleClass's encapsulation. The value stored by the mutable
variable could be modified outside MYSimpleClass.

Two techniques are used to return a mutable object from a class without violating that
class's encapsulation. A mutable instance variable is safely returned by a method typed to
return an immutable object. Programmers might take advantage of the fact that the returned
object is actually mutable, but a determined programmer can circumvent any protection.
Programmers should respect the return type specified by a method and not assume that the
returned value is actually a subclass of the specified type. Also, if it is necessary to return a
mutable object with the intention that programmers will modify the returned object, return
a mutable copy of the instance variable.

@interface MYSimpleClass
{
 NSMutableString *_myStringValue;
}

- (NSString *)safeStringValue1;
- (NSMutableString *)safeStringValue2;

}

@implementation MYSimpleClass

- (NSString *)safeStringValue1
{
 // The instance variable can be safely returned.
 // The caller will have to cast the return value
 // to violate MYSimpleClass's encapsulation
 return myStringValue;
}

- (NSMutableString *)safeStringValue2

{
 // A mutable copy of the instance variable is returned
 return [[myStringValue mutableCopy] autorelease];
}

@end

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Class Clusters

The Foundation framework and other Cocoa frameworks contain several class clusters.
Class clusters consist of multiple hidden classes that are accessed through an abstract
public superclass. In Objective-C, when an object is described as abstract it means that
programs use instances of classes that inherit from the abstract class, but rarely use
instances of the abstract class itself. Concrete subclasses of the abstract class are used.
Chapter 6 introduced the class cluster design pattern. Apple provides excellent
documentation about class clusters and the reasons for using them at http://developer.apple.
com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Foundation/
Concepts/ClassClusters.html , and in the online documentation that comes with Apple's
developer tools.

The primary motivation for using class clusters in a framework is to simplify the use of
multiple complex classes. Simple concepts might sometimes require complex
implementations for reasons of flexibility or optimization. Class clusters attempt to present
simple class interfaces that match simple concepts and hide the true complexity of
implementations from users of a framework. Having a few classes that conceal a multitude
of hidden classes reduces the number of classes that must be learned to use a framework.

Prominent Foundation class clusters are accessed via the NSArray, NSCharacterSet,
NSData, NSDictionary, NSNotification, NSScanner, NSSet, and NSString
abstract classes. These classes are commonly used but seldom subclassed.

The class clusters in the Foundation framework simplify complex multiclass
implementations, but the price of that simplification is increased difficulty when
subclassing a member of a class cluster. An example of a custom subclass of a class
cluster's abstract superclass is provided in Appendix B.

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Foundation/Concepts/ClassClusters.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Foundation/Concepts/ClassClusters.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Foundation/Concepts/ClassClusters.html

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Typed Storage

Many programming languages provide built-in data types for the storage of common values. The C language contains
only the bare minimum of built-in types that map well to the hardware limitations of almost every CPU family. The
philosophy of the C language is to implement as little as possible in the language itself and execute complex ideas in
libraries. As a small extension of C, Objective-C adheres to the same philosophy. Objective-C adds only a small
number of standard data types, and they are all defined in terms of C built-in types such as char * and pointers to
structures. Apple's Foundation framework contains classes that enhance the basic capabilities of Objective-C and
manage data types that are more complex and powerful than the built-in types.

In some cases, the classes in the Foundation framework act as simple object wrappers around standard data types. The
object wrappers encapsulate data along with the available operations on the data. The wrappers also aid memory
management and storage of data in XML documents or other contexts. Storing simple data types as objects enables the
use of those types in conjunction with collection classes.

Foundation classes that provide powerful features far beyond the limits of the built-in types are available. Strings with
numerous encodings including 7-bit ASCII and Unicode are supported. Date and time management classes prevent the
types of problems encountered with the year 2000 roll over. Classes that encapsulate large blocks of binary data in
efficient ways are available. For example, arbitrary data from files on disk is mapped into virtual memory so that it can
be accessed in random order without the need to load it all into memory at once.

Strings

Strings are one of the most common types used in any program. The C language does not have a built-in string data
type. Strings are usually simulated via pointers and arrays. The Foundation framework provides classes that manage
almost every detail of string manipulation including memory management, encoding systems including Unicode,
searching, truncating, concatenating, and more.

NSString

The NSString class is the public face of a class cluster. Private subclasses exist to efficiently handle 7-bit ASCII
strings, constant strings compiled into a program, Unicode strings, and gigantic strings that are mapped into virtual
memory.

When an instance of NSString is initialized, an instance of one of the private subclasses is created based on the
encoding and size of the requested string instance. NSString instances are immutable. They are initialized with a
particular value that never changes. The immutability enables several optimizations in the implementation and usage
of strings.

One of the most common ways to create NSString instances is the use of the @"" construct provided as an
extension to the Objective-C language in Apple's compiler and runtime. The open source Gnu implementation of
Objective-C and the Gnu runtime include the same support. Any string declared between the quotes of a @""
expression is created at compile time as a constant instance of NSString using 7-bit ASCII encoding. Such strings
might be stored along with executable code in the resulting application's binary.

Constant strings created with @"" are full objects and are used in any context that NSString instances created other
ways are used. For example, messages can be sent to constant string objects as follows:

[@"This is a 7 bit ASCII string" length];
[@"The quick brown fox" stringByAppendingString:@" jumped over the log"];

Convenience allocators provide another common way to create NSString instances. Following the Cocoa
conventions, class methods that include a variation of the class name return new autoreleased instances. The simplest
convenience allocator for NSString is -stringWithString:. It accepts a string argument and returns a new
immutable string instance with the same contents as the argument. The -stringWithString: method is used to
copy strings and serves as an example of the power that class clusters provide. The subclass of NSString that is
returned from -stringWithString: depends on the argument. If the argument is a multimegabyte string that is
partially stored on the hard disk, an NSString implementation optimized for that case is used. If the argument is a
short constant string compiled into the application, the string returned from -stringWithString: might just be
another pointer to the same string contents.

Many convenience allocators and corresponding initializer methods are provided. The guidelines for using the
convenience allocators versus the combination of +alloc and an initializer are the same as for other classes. If the
instance that is being created is intended to be returned from a method and is not stored by the object that is creating
the string, the convenience allocators should be used. Otherwise use +alloc and an initializer.

The online class documentation describes each of the available initializers and the convenience allocators, but three
groups of methods deserve special recognition here. First, the NSPathUtilities category of NSString provides
methods that manage file system paths. Methods such as -stringByDeletingLastPathComponent: are very
handy, but they are frequently overlooked. Second, string objects are created from C pointers to characters via -
initWithCString:, and the -lossyCString method returns a pointer to any 7-bit ASCII characters stored by
the receiving string object, performing conversions as necessary. Third, NSString provides the following methods
that accept formats and arguments similar to the printf() function in the standard C libraries: -
initWithFormat:... and -stringWithFormat:... . For example, the following code produces a new
instance of NSString containing a formatted string, a number, and a new line character:

[[NSString alloc] initWithFormat:@"Name: %s Number: %d\n",
 "John Smith", 42];

Most of the standard format string arguments are supported, but Mac OS X v. 10.1.2 and earlier versions contain some
errors and omissions from the ANSI standard. Bug reports have been submitted and Apple is aware of the problems.
They are not severe and will probably be resolved in future releases of the operating system and libraries.

An additional format beyond those supported by standard printf() is also available. The %@ format uses the object
argument's description. For example, the following code is similar to the previous format example, but it uses a
constant string object instead of a C string constant:

[[NSString alloc] initWithFormat:@"Name: %@ Number: %d\n",
 @"John Smith", 42];

The distinction is subtle. Whenever a %@ is encountered in a format string, the corresponding object argument is sent a
-description message. The -description message returns an NSString instance, and that string is used to
produce the formatted string. Because the NSString class implements -description to return itself, the format
that uses a C string constant and the format that uses a string object both produce the same result. However, object
descriptions enable many powerful uses. For example, the following code creates an instance of NSString
containing the name of a private subclass of NSString:

[[NSString alloc] initWithFormat:@"Class name: %@", [@"Constant string"
class]];

In the example, when the -class message is sent to the constant string instance, its class object is returned and used
as the argument in the formatted string. The -description method is implemented by class objects to return the
name of the receiving class. In this case, the name of the private subclass of NSString that was created by the
compiler is returned.

NOTE

Objective-C class objects are true objects and can respond to any messages defined for the NSObject
class. Because the NSObject class declares the +description message, all class objects can
respond to it. The -description and +description methods are also used by Apple's version of
the gdb debugger when the debugger's print-object (po) command is invoked.

Objects return arbitrary strings from their -description methods. In some cases, the strings are long and complex.
For example, the foundation collection classes implement -description to return a string containing the
descriptions of all the contained objects. When collections contain other collections, tremendous amounts of
information might be revealed by one -description message.

The NSString class inherits the -compare: method from the NSObject class. The -compare: method is used
to compare strings with arbitrary objects, but NSString also provides the -isEqualToString: method to
perform optimized comparisons when the object being compared is known to be another string. Use -
isEqualToString: instead of -compare: whenever possible.

Methods for searching strings and obtaining substrings are available. The online documentation that comes with
Apple's developer tools lists available NSString operations. String objects are used extensively throughout the
Cocoa frameworks, and the most common NSString methods quickly become second nature to Cocoa programmers.
NSString's -length method returns the number of stored Unicode characters in the string. The -
characterAtIndex: method returns the Unicode character at a particular index in the range 0 to (length -
1).

NSMutableString

NSMutableString is a subclass of NSString and therefore inherits all NSString's capabilities.
NSMutableString adds methods to change the contents of existing instances. Use mutable strings when they
simplify an algorithm, or when it is necessary to make several small changes to a single string without varying its
length very much. Mutable strings do not share many of the optimizations of memory and performance that benefit
immutable instances.

Raw Data

Strings are one of the most common types used in programs. Because the ANSI C language does not provide any high-
level abstractions for strings, they are usually implemented as pointers to bytes or as arrays of bytes in ANSI C. The
Foundation framework provides the NSString class to encapsulate true strings whether they store bytes or complex
multibyte character encodings, but many programs still need to store and manipulate arbitrary bytes. Examples of
arbitrary data stored as bytes include images, archived objects, and data received over a network connection.
Traditional C programs commonly store such data the same way they store strings. Arrays of characters are used, and
values are accessed via pointers to characters. The Foundation framework provides the NSData class to store and
access arbitrary data that might not be correctly interpreted as strings.

NSData

The NSData class cluster encapsulates arbitrary bytes. No special meaning or significance is applied to the stored
bytes. The data might represent a compressed TIFF format image, a sound loaded from the hard disk, or a complex
graph of archived objects. The NSData class manages the memory used to store the bytes and controls access to the
bytes. The NSData object is immutable.

Instances of the NSData class are used throughout the Cocoa frameworks. Some of the hidden classes in the NSData
class cluster use virtual memory features of Mac OS X to optimize storage of large amounts of data. When NSData
objects are initialized with the contents of large files on disk via methods such as -initWithContentsOfFile:,

the files are mapped into the process's virtual memory address range and portions of the files are brought in and out of
memory on demand. This behavior enables random access to the bytes stored by NSData objects without requiring
that every byte be loaded into memory at once. Mapping existing files into virtual memory also avoids the need to ever
load bytes that are not accessed. If an NSData object is initialized with the contents of a 100MB file, but only a few
bytes of the file are ever read, only a small part of the file is ever loaded into memory.

NSData's -bytes method returns a pointer to the data stored. The -length method returns the number of bytes
stored. All other NSData methods are implemented using these two methods.

NSMutableData

The NSMutableData class extends the NSData class to enable modification of the stored data. The storage
allocated by NSMutableData objects grows and shrinks automatically as bytes are added or removed. The
NSMutableData class is used to avoid manual memory allocation using functions such as malloc() and
realloc(). NSMutableData encapsulates memory management of arbitrary data using the standard Cocoa
memory conventions and helps avoid dynamic memory allocation errors.

The decision to use mutable or immutable data is similar to the decision to use mutable or immutable strings.
Immutable data objects benefit from many optimizations that are not possible with mutable objects, but some
algorithms might require mutable data. Use the immutable NSData class to maximize operating system optimizations
when very large amounts of memory are stored, or when the bytes stored are read only. Use NSMutableData in
situations where dynamic memory allocation is required and when there is a need to modify the bytes that are stored.

NSMutableData's -mutableBytes method returns a pointer to the bytes stored. The stored bytes are modified
via the pointer. The -setLength: method expands or reduces the number of bytes stored. If the storage is increased,
the new bytes are initialized to zero.

Values

The Foundation framework provides object wrappers for nonobject data types. The NSValue class, and its subclasses
NSNumber and NSDecimalNumber, encapsulate nonobject types within objects so that they can be managed using
Cocoa's memory management conventions and stored within collections such as NSArray and NSDictionary that
only store objects.

NSValue

The NSValue class is immutable and provides an object wrapper around fixed-size, nonobject data types. NSValue
only wraps values of fixed-size types such as int, float, pointers, and structures. NSValue does not store variable
length arrays of values or arbitrary numbers of bytes. NSString and NSData are better suited to storing large or
variable amounts of data.

NSValue instances are created and initialized with the value of a nonobject data type. The initializers and
convenience allocators used to create an NSValue instance require a pointer to the value to be stored and a string that
defines the type of the value being stored. The type of the data being stored can be obtained by using the @encode()
compiler directive described in Chapter 4. For example, the following code creates an instance of NSValue that stores
a double value and another one that stores a structure.

typedef struct _MYSampleStruct
{
 int anInt;
 _MYSampleStruct *nextStruct;
} MYSampleStruct;

{

 double doubleValue = 5.5;
 MYSampleStruct sampleStruct = {10, NULL};

 NSValue *aDoubleValue = [NSValue valueWithBytes:&doubleValue
 objCType:@encode(doubleValue)];
 NSValue *aStructValue = [NSValue valueWithBytes:&sampleStruct
 objCType:@encode(sampleStruct)];
}

The +valueWithBytes:objCType: convenience allocator is used in the example and returns autoreleased
instances. The NSValue class provides additional dedicated convenience allocators for many of the data types
commonly wrapped including pointers. If NSValue is used to store pointers, remember that only the pointer is stored.
Do not deallocate the values referenced by the pointer before the NSValue instance is deallocated or the NSValue
instance will be left storing an invalid pointer.

NSNumber

NSNumber extends the NSValue class with a set of methods for storing and accessing numeric values. The
following standard C data types are directly supported by NSNumber in both signed and unsigned variants: BOOL,
char, short int, int, long int, long long int, float, and double. NSNumber overrides the -
compare: method inherited from NSObject to enable standard numeric ordering of NSNumber instances. The
number stored by an NSNumber instance can be a obtained in any of the supported types, and standard numeric
conversions are applied. For example, when the int value of an NSNumber that is storing a double value is
requested, a conversion from double to int is performed using the same conversion rules as standard C. The
NSNumber instance continues to store a double, the conversion only applies to the returned value.

NSDecimalNumber

NSDecimalNumber is a subclass of NSNumber that stores numbers in a format that reduces cumulative errors that
occur when performing decimal arithmetic on binary values. Binary numbers stored in a computer do not have infinite
precision and therefore must approximate some values that are stored. Decimal numbers stored in a computer do not
have infinite precision either, but the two different number systems have different limitations. Each number system is
forced to approximate different values. It is usually best to store decimal numbers, such as the balance of a bank
account, in an encoding that preserves the expected precision of decimal numbers rather than converting back and
forth to standard binary encoding.

NSDecimalNumber uses a decimal encoding and stores values with 38 digits of precision in the range from 10-128 to
10127. Like NSNumber, NSDecimalNumber is an immutable class. Different rounding schemes and error handling
behaviors are used with NSDecimalNumber. The NSDecimalNumberBehaviors protocol defines the available
behaviors and is described in the online documentation that comes with Apple's developer tools.

Dates

The Foundation framework provides rich capabilities for storing dates and times, and comparing them. Dates are
represented as seconds and fractions of seconds since a reference date, and can be output in a variety of forms
including as a month within a year or a day within a week. Dates and times are represented by several different objects
with different capabilities, but all dates are immutable and represent a single instant in time.

Dates and times are stored as time intervals from a reference time. Cocoa uses the first instant of January 1, 2001 GMT
as its system-wide, absolute reference date. Double precision, floating-point values storing seconds provide greater
than millisecond accuracy for dates 10,000 years apart.

NSTimeInterval

NSTimeInterval is the type used to store time intervals within Cocoa. NSTimeInterval is not a class. It is a
type that refers to double precision, floating-point values. Time intervals are often obtained by calling the
+timeIntervalSinceReferenceDate class method of the NSDate class. The returned time interval is the
interval between the system's absolute reference date and the current date and time. After January 1, 2001, all time
intervals returned from +timeIntervalSinceReferenceDate are positive.

One way to time the execution of code is to obtain NSTimeIntervals before and after the code executes and
compare the intervals. For example, the following code calculates the number of seconds needed to execute a long-
running calculation and provides better than millisecond accuracy:

NSTimeInterval startInterval;
NSTimeInterval stopInterval;
NSTimeInterval elapsedInterval;

startInterval = [NSDate timeIntervalSinceReferenceDate];
// execute some long lasting calculation here
stopInterval = [NSDate timeIntervalSinceReferenceDate];

// calculate the time elapsed in seconds with
// sub-millisecond precision
elapsedInterval = stopInterval - startInterval;

NSDate

NSDate is the abstract public interface of a class cluster. When an instance of NSDate is initialized, an instance of
one of the private subclasses of NSDate is returned. NSDate provides the foundation for all time storage within
Cocoa.

NSDate provides an interface for creating and comparing dates. Time intervals between dates are computed. The
private subclasses of NSDate are implemented to be efficient and immutable. Different subclasses of NSDate might
use different reference dates and different calendar systems. The public NSCalendarDate subclass of NSDate
provides dates using the Gregorian calendar and international time zones.

NSCalendarDate

NSCalendarDate extends NSDate to represent dates using the Gregorian calendar. NSCalendarDate uses an
associated time zone to control the way times are displayed and interpreted. Like NSDate, NSCalendarDate stores
a time interval from the system's absolute reference date. The time interval stored is independent of time zone, and
NSCalendarDate can be compared with other NSDate objects without concern for time zone differences. The
associated time zone only affects how dates are initialized and output.

NSCalendarDate instances are initialized with dates provided as strings or by values corresponding to year, month,
day, hour, minute, and second. NSCalendarDate instances can also be initialized as offsets from other dates.

NSCalendarDate instances provide a string description of themselves using different location, language
information, and formats. A wide range of output options are available for dates, and NSFormatter objects are used
to fine-tune the way dates are presented to users.

NSTimeZone

NSTimeZone is an abstract class that helps date objects reflect time zone-related, location-specific information. The
NSTimeZone class stores the name of a time zone, but it does not store a temporal offset from GMT for the zone.
The Foundation framework includes subclasses of NSTimeZone that store offsets from GMT and Daylight Savings
Time information.

Time zone objects are obtained by calling the +timeZoneWithName:, +timeZoneWithAbbreviation:, and
+timeZoneForSecondsFromGMT: class methods of the NSTimeZone class. The default time zone in effect for
the computer can be obtained via the +defaultTimeZone method.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Collections

Collections are an essential component of most applications, and the Foundation framework
provides rich collection classes to meet most needs. All the collection classes take advantage
of Cocoa's reference-counted memory management conventions and the power of Objective-
C. The Foundation collection classes are able to store any type of object that conforms to the
NSObject protocol. The collections even store heterogeneous objects. In other words, a
single collection object stores many different classes of objects at the same time.

The Foundation framework includes classes for arrays, dictionaries, and sets. Arrays provide
ordered storage that enables random access to stored elements via an index specifying a
position within the collection. Dictionaries provide unordered associative storage. Each
stored object has an associated key object. The stored objects are accessed via the keys. Sets
provide unordered storage, which guarantees that no object is stored within the collection
more than once.

The collection classes only store objects. It is possible to store nonobject values within a
collection by wrapping the values within an object such as NSValue or NSNumber. It is not
possible to store nil within the collections.

The Foundation collection classes are intended to solve common problems. They are highly
optimized and handle a wide variety of uses. The collection classes are implemented as class
clusters, and various private subclasses exist to optimize different uses. For example, a
private subclass of NSMutableArray exists to optimize insertion at either the beginning or
end of the collection. Nevertheless, some programs might have specific needs that are not
well-suited to solutions using the standard collections. The Foundation collection classes are
handy, but do not hesitate to write new classes if there is a specific need.

One consequence of the implementation of collection classes as class clusters is that they are
difficult to subclass. An example of subclassing a class cluster is provided in Appendix B.

Arrays

Arrays provide ordered indexed storage. The objects stored in an array are accessed by index.
The Foundation framework implements arrays using the NSArray class cluster. NSArray
and NSMutableArray are abstract public interfaces. When an array is initialized, a private
subclass of NSArray is created.

The Foundation framework provides array classes that are used extensively throughout
Cocoa. Arrays are used to store the list of files in a directory, the list of documents open in an
application, the list of file types that an application can open, and much more. Arrays can be

loaded and saved from files and stored as property lists.

NSArray

NSArray is an immutable class. The array is initialized with certain contents and the
contents do not change during the life of the collection. Each object stored in an array is
automatically sent a -retain message and therefore is not deallocated until after the array
is deallocated. NSArray's -count method returns the number of objects stored in an array.
The -objectAtIndex: method provides access to the object at a particular index in an
array. Valid indexes are in the range 0 to count - 1. If an object at an invalid index is
requested, -objectAtIndex: raises a NSRangeException exception.

A new autoreleased array with the sorted contents of an existing array is obtained by using
the -sortedArrayUsingFunction:context: or -
sortedArrayUsingSelector: methods. All the objects in an array can be asked to
perform a particular method by calling NSArray's -makeObjectsPerformSelector:
or -makeObjectsPerformSelector:withObject: methods. Arrays can also be
written to files via -writeToFile:atomically: or converted to strings via -
description or -componentsJoinedByString:.

NSMutableArray

NSMutableArray extents the NSArray class to enable modifications to an existing array.
As objects are added to a mutable array, additional storage is allocated as necessary, and the
added objects are retained. As objects are removed from a mutable array, the objects are
released. If an object removed from an array is not retained by any other object, the object is
immediately deallocated when the array releases it.

Mutable arrays are sorted using either the -sortUsingFunction:context: method or
the -sortUsingSelector: method.

Dictionaries

Dictionaries store associated key value pairs. Dictionaries provide an efficient way to retrieve
data associated with a key. Each key is unique within a dictionary, but any number of
different keys can be associated with the same value. The keys and values stored in a
dictionary are not ordered.

NSDictionary

The NSDictionary class implements an immutable dictionary using a hash table. Because
NSDictionary instances are immutable, they must be initialized with their key value
pairs. The internal use of a hash table provides efficient access to values. Similar to all the
Foundation collection classes, NSDictionary retains the objects that it stores.

The NSDictionary class is used extensively throughout Cocoa. For example, dictionaries
are passed as arguments to notifications. User defaults and preferences are stored as
dictionaries. Dictionaries can be stored in files and represented as strings in a variety of
formats including XML.

NSDictionary's -count method returns the number of key value pairs stored in the
collection. The -objectForKey: method returns the object associated with a specified
key or nil if the key is not stored in the dictionary. The -keyEnumerator method returns
an enumerator object that can be used to iterate through all the keys stored in the dictionary.

NSMutableDictionary

The NSMutableDictionary class extends the NSDictionary class to enable
modifications to the contents of an existing dictionary. When keys and values are added and
removed from mutable dictionaries, the storage for the objects grows and shrinks
automatically. If -setObject:forKey: is called with an existing key, the object
associated with that key is replaced by the new object. Each key is only stored once in each
dictionary.

The objects (values) that are added to a mutable dictionary are retained by the dictionary and
released when they are removed. NSMutableDictionary stores copies of the keys
specified when objects are added. Therefore, objects used as keys must conform to the
NSCopying protocol. Any object that conforms to NSCopying may be used as a key as
long as an additional constraint is met. The NSObject class declares the methods -
isEqual: and -hash. If two keys are considered equal by the -isEqual: method, those
two keys must also return the same value from their -hash methods.

NOTE

The NSCopying protocol, the -isEqual: method, and the -hash method
are all defined in NSObject.h within the Foundation framework. NSObject
provides many powerful methods that can be used with almost any object.
NSObject's methods support Cocoa conventions described in Chapter 5,
"Cocoa Conventions."

Although any object that has the capability to be copied might be used as a key in a mutable
dictionary, dictionaries can only be used in property lists if all keys are NSString
instances. Similarly, dictionaries can only be represented as property lists if all the values
stored can be represented in a property list.

Sets

In the Foundation framework, a set is an unordered collection of objects with the property
that each object is stored only once. That concept contrasts arrays and dictionaries, which
store any number of references to the same object. Sets are used to efficiently determine if a
particular object is contained within a collection. Sets are an alternative to arrays when the
order of the contained objects is not important, but determining if an object is contained
needs to be fast.

NSSet

NSSet is the public abstract interface to a class cluster. Its -count method returns the
number of objects in the set. The -member: method returns non-nil if and only if the
specified object is contained by the set. The -objectEnumerator method returns an
enumerator that is used to access all the objects in the set.

The objects stored in a set must implement the inherited NSObject methods -isEqual:
and -hash so that any two objects that are equal according to -isEqual: also return the
same value from their -hash methods.

NSMutableSet

NSMutableSet extends the NSSet class to enable modifications to the contents of a set.
Objects that are added to a set are retained, and objects that are removed are released. The
storage for a mutable set grows and shrinks as needed. Objects are added with the -
addObject: method and removed with the -removeObject: method.

NSNull

The Foundation collection classes cannot store nil values. When there is a need to store a
placeholder value in a collection, the NSNull class is used. A single shared instance of the
NSNull class is obtained by calling the +null class method.

Enumerators

An enumerator is an object that enables flexible access to the contents of a collection.
Enumerators are called iterators in other frameworks. The Foundation framework provides
the abstract NSEnumerator class. Foundation collection classes have methods that provide
instances of concrete NSEnumerator subclasses to meet a variety of needs.

The following code shows one way to access all the objects stored in a preexisting collection
referenced by aCollection:

NSEnumerator *enumerator = [aCollection objectEnumerator];
id object;

// loop to obtain each object in aCollection
while (nil != (object = [enumerator nextObject])) {
 // object is a pointer to one of the objects in
aCollection
}

One of the key aspects of this example is the fact that the specific type of collection
referenced by aCollection is not specified. The code works equally well if
aCollection is an NSArray, NSDictionary, or NSSet. When an enumerator is
initialized it is ready to return the first object in the associated collection. The first time -
nextObject is called, the first object is returned. Each subsequent time -nextObject is
called, another object in the collection is returned. When all the objects in the collection have
been returned, the -nextObject method returns nil.

Do not modify mutable collections while an enumerator is in use. Addition, removal, and
reordering of the contained objects corrupts the enumerator object. Enumerators retain their
associated collection so that collections are not deallocated while an enumerator is in use.

All the Foundation collection classes implement the -objectEnumerator method to
return an initialized and autoreleased instance of an NSEnumerator subclass. Some of the
collection classes are also capable of providing specialized enumerators. For example, the
NSArray class implements the -reverseObjectEnumerator method to enumerate
the contents of the array in reverse order. The NSDictionary class provides the -
keyEnumerator method for enumerating the keys used to store the objects enumerated by
the -objectEnumerator method.

Enumerators provide a general mechanism for accessing all the elements in a collection
regardless of the specific type of collection. In many cases, using an enumerator requires
fewer lines of code than an alternative approach. Enumerators decouple the uses of a
collection from the type of the collection and therefore enable the flexibility to change
collection types later without breaking code all over an application. Enumerators also take
advantage of optimizations that might not be obvious or practical when the contents of a
collection are accessed in a different way.

Deep Versus Shallow Copying

Two different approaches to copying collections exist. A shallow copy is a copy of the
collection itself, but not its contents. In other words, when a collection is shallow copied, the
result is a second collection containing references to the same objects contained by the first.
A deep copy copies the objects within the collection as well. When a deep copy is used, the
result is two collections containing references to different objects.

By default, the Foundation collection classes all implement shallow copying. One technique
for obtaining deep copies of collections is to use the NSArchiver and NSUnarchiver

classes. Archiving is described in Chapter 5. If all the objects stored in a collection conform
to the NSCoding protocol, the collection is copied using code like the following:

id MYDeepCopyObject(id <NSCoding> anObject)
// This function accepts an object conforming to
// the NSCoding protocol and returns a deep copy
{
 return [NSUnarchiver unarchiveObjectWithData:[NSArchiver
 archivedDataWithRootObject:anObject]];
}

The MYDeepCopyObject function accepts any object that conforms to the NSCoding
protocol and returns a deep copy of that object. If anObject is a collection, the entire
collection and all the contained objects are copied. In fact, anObject can be the root of an
arbitrary graph of interconnected objects and the entire graph is copied.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Property Lists

Property lists enable convenient storage of application data without the need to write a lot of code or
invent a new file format every time. Property lists are used extensively by Cocoa applications. User
defaults and preferences are stored as property lists. Information such as the icon to use for a
particular document type is stored in a property list. The Project Builder application uses property lists
to store information about the project being built, such as which files to include in the build and which
compiler options have been specified.

NOTE

Apple's developer tools come with a PropertyListEditor application that helps
users graphically edit a property list. The PropertyListEditor application can be
used to edit any property list including the user's preferences and defaults. When
property lists are stored in files, the extension .plist is often used.

Property lists are a textual representation of NSString, NSArray, NSDictionary, and NSData
objects. In fact, the -description method is implemented by each of these classes to return a
string containing the property list representation of the receiver and any objects contained by the
receiver. Almost any combination of NSString, NSArray, NSDictionary, and NSData objects
can be read or written as a property list. For example, it is possible to store an array of dictionaries that
each map string keys to data values in a property list.

There are two encoding styles for property lists. One is formatted to be very easy to read. The other
uses industry standard XML formatting. Only NSString, NSArray, NSDictionary, and
NSData objects are directly supported for use in both styles of property list. An additional constraint
is that the keys used in a dictionary must be strings for the dictionary to be stored in a property list.
XML property lists also store NSNumber and NSDate objects that cannot be directly stored in the
other property list style.

Property lists obtained via the -description message use the more readable format. One reason
for this is that the -description method is used within Apple's gdb debugger to show the contents
of objects. XML data would be hard to read in that context. An existing string containing a property
list can be used to recreate the objects described by the property list using NSString's -
propertyList method.

The NSArray and NSDictionary classes implement the -initWithContentsOfFile:
method to read an XML property list stored in a file at a specified path. In each case, the property list
read must define an array or dictionary as appropriate. If the file being read to initialize an array or
dictionary contains errors, the NSParseErrorException exception is raised.

Convenience allocators are also available. NSArray implements

+arrayWithContentsOfFile:, and NSDictionary implements
+dictionaryWithContentsOfFile:. In each case, if the file being read to initialize an array
or dictionary contains errors, nil is returned. An array or dictionary that contains only objects suitable
for property lists is written to an XML property list file using the -writeToFile:atomically:
method.

Using the non-XML property list style, numbers can be converted to and restored from strings easily
by using NSString methods such as -doubleValue and -intValue. With both property list
styles, many classes and structures are converted to and restored from strings. For example, the
NSStringFromRect() and NSRectFromString() functions exist to convert rectangle
structures to and from strings. Rectangle structures are briefly described in this chapter and in Chapter
12, "Custom Views and Graphics Part I." Objects that are not easily represented as strings are stored
in property lists as data. Any object or graph of objects that all conform to the NSCoding protocol
might be archived into an NSData instance. The following example demonstrates how an existing
NSColor instance is encoded into data:

// Obtain an autoreleased NSData object initialized by encoding an
// existing instance of the NSColor class.
NSData *tempData = [NSArchiver archivedDataWithRootObject:
aColor];

When an object or graph of objects has been encoded as NSData, the data can be stored in a property
list. This technique is used to store colors in each user's preferences property list.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Run Loops and Timers

Run loops are described with more detail in Chapter 8, "The Application Kit Framework
Overview," because most features of run loops apply to applications with graphical user
interfaces. However, run loops are implemented within the Foundation framework by the
NSRunLoop class, and some features of the Foundation framework such as timers rely
upon run loops. Each thread in a Cocoa application has one corresponding NSRunLoop
instance that helps the thread communicate with the operating system. The run loop for the
main thread in each application is created automatically. Other threads need to create an
NSRunLoop instance in code.

NSRunLoop

An instance of the NSRunLoop class monitors a set of possible input sources from the
operating system. The NSRunLoop class shields applications from requiring detailed
knowledge of the underlying operating system to operate effectively. NSRunLoop
simplifies the implementation of many common application features such as nonblocking
file system access and timers.

NSTimer

The NSTimer class is used in conjunction with the NSRunLoop class to schedule delayed
or periodic events. An NSTimer instance is created and initialized with the time interval
of the delay, a selector that identifies a message to send when the interval has elapsed, and
the object that should receive the message. Timers can be configured to send messages at
repeating intervals.

NSTimer is used as an alternative to multithreading in some cases. Different processing
jobs can be scheduled to execute at different times by using NSTimer to simulate
concurrent execution. For example, a find panel in an application is used to start a
repeating timer, which sends a message to search through the application's data structures a
few at a time. The user can continue to use the application during the search while
progressive results are displayed in the find panel.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Support Types

In addition to classes, the Foundation framework includes several functions and types
based on C structures. The NSTimeInterval type has already been mentioned.
NSTimeInterval is implemented using the C double type. Structures that store
points, sizes, and rectangles are defined in the Foundation framework. Another type used
extensively is NSRange.

NSRange

NSRange is a C structure used to identify a location and a length. For example, an
NSRange can be used to specify a range of characters to delete from a mutable string
using NSMutableString's -deleteCharactersInRange: method. The location
is the index of the first character to delete. The length is the number of characters to delete.
The NSRange structure is used by many Cocoa classes. NSRange is defined as follows:

typedef struct _NSRange {
 unsigned int location;
 unsigned int length;
} NSRange;

The Foundation framework contains a category that extends the NSValue to class to enable
storage of NSRange values as follows:

@interface NSValue (NSValueRangeExtensions)

+ (NSValue *)valueWithRange:(NSRange)range;
- (NSRange)rangeValue;

@end

Ranges are converted to and from strings with the NSStringFromRange(NSRange
range) and NSRangeFromString(NSString *aString) functions.
NSMakeRange(unsigned int loc, unsigned int len) is used to obtain a
new range. Ranges can be compared, intersected, and combined. The
NSLocationInRange(unsigned int loc, NSRange range) function is used
to determine if a location is within a range.

NSGeometry

The NSGeometry.h header file that is part of the Foundation framework defines several

data types that are useful for drawing and geometric operations. These types are part of the
Foundation framework because they are used even in nongraphical applications. The
NSPoint type is a C structure that stores the floating point X and Y coordinates of a point.
The NSSize type is a structure that stores floating point width and height values. The
NSRect structure consists of a point called the origin and a size:

typedef struct _NSPoint {
 float x;
 float y;
} NSPoint;

typedef struct _NSSize {
 float width; /* should never be negative */
 float height; /* should never be negative */
} NSSize;

typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

The Foundation framework contains the constant NSZeroPoint, NSZeroSize, and
NSZeroRect global values that are useful for initializing geometric structures.
NSMakePoint(float x, float y), NSMakeSize(float w, float h), and
NSMakeRect(float x, float y, float w, float h) are also used to
initialize structures. These types and functions are described and used in Chapter 12.

Just like the NSValue class is extended to store NSRange values, the Foundation
framework contains a category that extends NSValue to store NSPoint, NSSize, and
NSRect structures. A category also extends the NSCoder class to enable encoding and
decoding of geometric types:

@interface NSCoder (NSGeometryCoding)

- (void)encodePoint:(NSPoint)point;
- (NSPoint)decodePoint;
- (void)encodeSize:(NSSize)size;
- (NSSize)decodeSize;

- (void)encodeRect:(NSRect)rect;
- (NSRect)decodeRect;

@end

Finally, the geometric types are converted to and from strings using

NSStringFromPoint(NSPoint aPoint), NSStringFromSize(NSSize
aSize), NSStringFromRect(NSRect aRect), NSPointFromString
(NSString *aString), NSSizeFromString(NSString *aString), and
NSRectFromString(NSString *aString). When converted to strings, the
geometric types can be used in property lists.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

String Processing

The Foundation framework contains powerful string processing capabilities. Some are implemented directly by
NSString methods such as -rangeOfString: and -componentsSeparatedByString:. The Foundation
framework provides the NSCharacterSet and NSScanner classes that are used together to enable additional
types of string processing. A character set defines a set of Unicode characters, and a scanner is used to find patterns
involving characters from a set.

NSCharacterSet

The NSCharacterSet class encapsulates a set of Unicode characters. NSCharacterSet is the public interface
to a class cluster containing private classes optimized for different situations. For example, a character set composed
solely of the ASCII subset of Unicode characters has different performance characteristics than a character set
representing an Asian language using Unicode-composed character sequences. Character sets are primarily used
when scanning for patterns in a string. NSMutableCharacterSet is a subclass of NSCharacterSet that adds
methods to modify the contents of an existing set.

NSCharacterSet instances are usually obtained via convenience allocators such as
+alphanumericCharacterSet, +decimalDigitCharacterSet,
+lowercaseLetterCharacterSet, and +characterSetWithCharactersInString:. In many cases,
the easiest way to generate a character set is to invert an existing set. NSCharacterSet implements the -
invertedSet method to return an autoreleased NSCharacterSet instance containing all Unicode characters
except the ones in the original set. The following example initializes the nonWhiteSpaceSet variable to a set
containing all Unicode characters except spaces, tabs, and other white space characters:

NSCharacterSet *nonWhiteSpaceSet = [[NSCharacterSet
 whitespaceCharacterSet] invertedSet];

NSCharacterSet is a CPU and memory resource intensive class. Profiling reveals that NSCharacterSet
methods such as -invertedSet consume a large share of the processing time in applications that use
NSScanner or perform a lot of complex operations with NSString. As with any powerful high-level technology,
the best practice is to implement Cocoa applications using the most straightforward and simplest techniques
available. Use NSCharacterSet and NSScanner when they save even a little work. When the application is
working correctly, profile it, and determine where any performance problems exist. In most cases, slight changes to
algorithms yield more performance improvements than avoiding NSCharacterSet, but NSCharacterSet is a
common source of performance problems.

NSScanner

The NSScanner class is used to scan strings for patterns and return substrings or numeric values. NSScanner
instances are usually initialized with a string to scan via +scannerWithString: or -initWithString:. The
scanner can be configured to be case sensitive or not via -setCaseSensitive:. The -isAtEnd method can be
used to determine that all characters from a string have been scanned.

The following example uses NSScanner's -scanUpToCharactersFromSet:intoString: and -
scanCharactersFromSet:intoString: methods to scan a string for substrings separated by punctuation
and white space characters, and then stores the substrings in a mutable array.

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 NSMutableArray *resultArray = [NSMutableArray array];
 NSString *testString = @"{Bush, George, W.},{Clinton, William, J.}";
 NSCharacterSet *nameCharacterSet = [NSCharacterSet
alphanumericCharacterSet];
 NSScanner *nameScanner;

 // Initialize a scanner with the string to scan
 nameScanner = [[NSScanner alloc] initWithString:testString];

 while(![nameScanner isAtEnd])
 {
 // Skip characters that can not be in a name and
 // discard the sub-string that does not include a name
 [nameScanner scanUpToCharactersFromSet:nameCharacterSet
 intoString:nil];

 // if there are any characters left they must be part of a name
 if(![nameScanner isAtEnd])
 {
 NSString *foundName; // this variable will hold pointer
 // to autoreleased string created
 // by the scanner
 [nameScanner scanCharactersFromSet:nameCharacterSet
 intoString:&foundName];

 // Store the name in an array
 [resultArray addObject:foundName];
 }
 }

 [nameScanner release];

 // Output the description of resultArray
 NSLog(@"%@", [resultArray description]);

 [pool release];
 return 0;
}

The example code stores the strings Bush, George, W, Clinton, William, and J in resultArray.

NSScanner provides methods for extracting various numeric values from a string. The -scanDecimal:, -
scanDouble:, -scanFloat:, -scanInt:, -scanHexInt:, and -scanLongLong: methods convert
strings into numbers and store the numbers using the specified type. These methods return YES if a number was
successfully scanned. The argument to each method is a pointer to storage of the correct type. Scanned values are
stored at the specified address. In each case, excess digits are skipped so that the next character scanned is beyond the
last digit in the number. If the scanner cannot find a string representation of a number, the methods for extracting
numeric values return NO, and the value stored in the memory referenced by the argument is undefined.

Regular Expressions

The Foundation framework does not directly support string processing via regular expressions. Regular expressions
describe complex patterns within strings and are used with many languages including Perl and shell scripts.

NSString supports multiple-string encoding systems including Unicode. Implementing regular expressions for
complex encoding systems is very difficult. Unicode in particular is problematic. Even though NSString does not
support regular expressions directly, the C Regex functions that are part of Mac OS X's BSD subsystem can be used
with C strings obtained from the NSString class. In addition, several third-party libraries extend the NSString
class via categories to directly support regular expressions with certain constraints.

Both the Omni Foundation framework available at http://www.omnigroup.com/ftp/ pub/software/Source/MacOSX/
Frameworks and the MOKit framework at http://www.lorax.com/FreeStuff/MOKit.html provide regular expression
features for Foundation framework-based applications.

Formatters

Formatters format strings for presentation in a user interface. For example, formatters represent currency and dates
using formats appropriate for different countries and languages. Formatters also validate user input to ensure that
input values conform to specified formats. Formatters convert textual user input into objects such as NSNumber or
NSDate instances.

The NSFormatter class is part of the Foundation framework, but it is used in combination with the Application
Kit's NSCell class. NSFormatter is an abstract class. Subclasses such as NSNumberFormatter and
NSDateFormatter exist to handle specific formatting needs. The NSFormatter class is described in more
detail in Chapter 10, "Views and Controls." An example subclass of NSFormatter is provided in Chapter 11, "The
Cocoa Text System."

http://www.omnigroup.com/ftp/ pub/software/Source/MacOSX/Frameworks
http://www.omnigroup.com/ftp/ pub/software/Source/MacOSX/Frameworks
http://www.lorax.com/FreeStuff/MOKit.html

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Bundles

A bundle is a collection of executable code and resources such as images, sounds, strings, and user
interface elements. The code and resources are stored together within a directory structure. Each
resource is stored in its own file. In fact, bundles store multiple versions of resources to enable
localization. Localization refers to the ability to use one set of executable code with different resources
based on the language or culture preferences of the user. The different user interface elements, strings,
images, and so on, appropriate for different languages and cultures are stored separately within a bundle.

Within the code that programmers write, bundles are commonly loaded into running applications to
implement plug-ins. An application programmatically loads any number of bundles that contain
Objective-C objects and resources. Bundles containing Objective-C categories are even used to extend
existing classes within an application.

Bundles are implemented in several different forms within Mac OS X. Many bundles are loaded
automatically without any programmer intervention. For example, each application is itself
implemented as a bundle. The application bundle contains the application executable and the resources
needed to launch the application. The application bundle is called the main bundle. Frameworks are
bundles, which contain executable code that is automatically loaded into applications when they start.
Frameworks can also contain resources such as user interface elements and strings. The Foundation
framework itself is a bundle.

All types of bundles contain a file that stores a property list identifying important information about the
bundle. The property list can be read and interpreted as an NSDictionary containing keys and values.

NSBundle

Every Cocoa application has at least one bundle for the application itself, and that bundle contains the
application's main() function. Bundles are encapsulated by the NSBundle class. The application's
bundle is called the main bundle. It is accessed from within any application by using the NSBundle
class method, +mainBundle.

The bundle that contains the implementation of an Objective-C class is obtained using NSBundle's
+bundleForClass: method. The +bundleForClass method is usually used to access
framework bundles. For example, [NSBundle bundleForClass:[NSString class]] returns
the bundle for the Foundation framework itself because the NSString class is implemented in the
Foundation framework.

Bundles in the file system are loaded using NSBundle's -initWithPath: or
+bundleWithPath: methods. There is never more than one instance of NSBundle for each bundle
loaded. If an attempt is made to load the same bundle more than once, the -initWithPath: and
+bundleWithPath: methods return the existing instance. Loaded bundles cannot be unloaded, but
future support for unloading could be provided by Apple.

When a bundle is first loaded, code contained within the bundle is not yet linked into the loading
application. The NSBundle class waits until a request to use code within the bundle is made. One way
to force that code to be linked into a running application is to call NSBundle's -load method. The -
principalClass method also forces the linkage of loaded code. The -principalClass method
returns a class object for the "principal class" within the bundle. The principal class can be specified
when building a bundle with Apple's developer tools. If the principal class is not specified, the first
class found within the executable code for the bundle is returned.

If the principal class for a bundle is specified when the bundle is built, the name of the principal class is
stored in the bundle's info property list. All bundles contain an info property list containing information
about the bundle. A NSDictionary initialized with the contents of the info property list can be
obtained by calling NSBundle's -infoDictionary method. The NSPrincipalClass key
within the info dictionary is used to obtain the name of the bundle's principal class.

When a bundle has been loaded, any class defined within the bundle can be accessed using
NSBundle's -classNamed: method. For example, the class object for a hypothetical class named
MYApplicationPlugin can be loaded by calling [someBundle classNamed:
@"MYApplicationPlugin"].

It is not necessary to explicitly load the application's main bundle or any framework bundles. Those are
loaded automatically when the application starts. However, it is often necessary to use the main bundle
and framework bundles to access their resources. The -pathForResource:ofType: method
returns the path to a resource within the directory that stores a bundle. The following example initializes
a string with the contents of a text file resource named localizedText.txt within the main bundle:

NSString *resourcePath;
NSString *result = nil;

resourcePath = [[NSBundle mainBundle] pathForResource:
@"localizedText"
 ofType:@"txt"];
if(nil != resourcePath)
{
 result = [NSString stringWithContentsOfFile:resourcePath];
}

The -pathForResource:ofType: method automatically selects the resource with the specified
name using the user's preferred localization. If the user's preferred language is German and a German
language version of localizedText.txt exists within the bundle, the path to that version is
returned. If no German language version is present, the user's preferences for other languages are used
to determine which version's path is returned. The automatic support for localized resources applies to
all resources regardless of their type. Different user interface components, images, sounds, and so on
can be stored for each localization.

A bundle's resources can be loaded without loading any code from the bundle by using NSBundle's
+pathForResource:ofType:inDirectory: class method and specifying a directory that
contains an unloaded bundle. Localized resources are searched according to the user's language
preferences until the specified resource is found. If the specified resource does not exist, -
pathForResource:ofType: and +pathForResource:ofType:inDirectory: both

return nil.

When a bundle is loaded, the NSBundleDidLoadNotification is automatically sent to the
application's default notification center.

The NSBundle class is declared in the Foundation framework, but the Application Kit framework
extends NSBundle in several ways using categories. The Application Kit adds methods for loading
user interfaces, images, and other resources directly. The capability to extend classes that are declared
in one framework with methods that depend on features of another framework is very powerful.
Categories enable elegant designs. Methods are declared and implemented where they make the most
sense. Unfortunately, spreading the commonly used methods of one class across multiple frameworks
makes documenting the class very difficult. It does not make sense to describe how user interface
objects are loaded from bundles before introducing user interface objects in a chapter about the
Application Kit. Nevertheless, NSBundle is part of the Foundation framework. When reading Apple's
documentation, always be sensitive to the fact that important methods might be documented separately
from the main class documentation.

Localization

Resource files that are specific to a particular language or culture are grouped together. Each set of
localized resources is stored within a different directory inside the bundle directory. The bundle's
executable code works with any of the resources in the bundle. All versions of the same resource have
the same name so that they can be found regardless of the directory that contains them.

NSBundle automatically selects the most appropriate resources when methods such as -
pathForResource:ofType: are used. Each user's language preferences determine which
resources are used in a running application. User preferences are stored in property lists and are edited
using Mac OS X's System Preferences application. User language preferences are ordered. The user's
most preferred language is stored first in an array, followed by the second most preferred, and so on.
NSBundle's -localizations method returns an array of all available localizations within a
bundle. The +preferredLocalizationsFromArray: class method returns an ordered array of
localizations based on the user's preferences.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

File System Access

File system access is one of the most common aspects of application development. Mac OS X includes
file systems and APIs from Unix as well as the traditional Mac OS. The Foundation framework
provides classes that encapsulate file system differences. An application written using the Foundation
framework seamlessly accesses all of the available file systems on Mac OS X and can even access
Windows file systems via Mac OS X's built in network file system support. All file system differences
are hidden within the implementation of the Foundation framework.

In Mac OS X, the classes of the Foundation framework partially support features unique to Apple's HFS
+ file system. The integration of the long-standing Unix file system support and the traditional Mac file
system conventions is not yet complete in OS X version 10.1.3. As a result, many operations specific to
the HFS+ file system must be accomplished using Apple's procedural Carbon APIs. However, most
common file system operations, and all operations that are similar between traditional Unix file systems
and HFS+, are supported by classes in the Foundation framework.

NSFileHandle

The NSFileHandle class encapsulates files and communications channels regardless of their
underlying implementation. NSFileHandle is the public interface of a class cluster. Private
subclasses of NSFileHandle are optimized for different operations.

Instances of NSFileHandle are initialized to use an existing file descriptor using the -
initWithFileDescriptor: method. File descriptors are a Unix convention. Standard POSIX
APIs exist to open files and communications channels for reading, writing, or both. When opened, the
file descriptor for the file or communications channel is used with NSFileHandle. NSFileHandle
takes care of closing the file descriptor when appropriate.

On Mac OS X, NSFileHandle's convenience allocators +fileHandleForReadingAtPath:,
+fileHandleForWritingAtPath:, +fileHandleForUpdatingAtPath:,
+fileHandleWithStandardError, +fileHandleWithStandardInput,
+fileHandleWithStandardOutput:, and +fileHandleWithNullDevice: avoid the
need to use POSIX procedural APIs directly. These methods completely hide differences between file
systems. The paths passed as arguments to these methods are usually obtained from a NSBundle
instance's -pathForResource:ofType: method. Paths are also constructed using NSString's
path related methods such as -stringByAppendingPathComponent: and functions within the
Foundation framework such as NSHomeDirectory() or NSTemporaryDirectory().

After an NSFileHandle instance is created, data is read or written using the associated file or
communications channel. In some cases, NSFileHandle enables random access to the contents of a
file. Files can be truncated, and it is possible to read or write to specific locations within a file.
NSFileHandle also works with communications channels such as pipes and sockets. Pipes are a
Unix mechanism for using the output of one program as the input for another. Sockets provide cross-
platform support for bidirectional network communications. The set of operations that work with a
NSFileHandle instance depends on the type of file or communications channel being used.

The Foundation framework provides many different ways to access file systems. For example, some
Foundation classes provide methods to directly write or read files. The -writeToFile:
atomically: method is implemented by NSArray, NSData, NSDictionary, and NSString
among others. NSFileHandle is a lower-level class that provides more flexible, but less convenient
access to files and their contents.

Data is read from a file that is handled by a NSFileHandle instance using the -
readDataOfLength: method. When -readDataOfLength: is called, data from the current
position within the file is read up to the specified length or the end of the file (whichever comes first).
To determine if all data has been read from a file, call NSFileHandle's -availableData method.
It returns YES if data is available and NO otherwise. However, if the NSFileHandle represents a
communications channel, the -availableData method will block until data becomes available.
That means an application cannot perform any more computations until data becomes available.

Blocking while waiting for data to become available is not usually acceptable in a Cocoa application.
When users see the "spinning beach ball" cursor indicating that an application is not responding to user
input, the usual cause is that the application is blocked waiting for data.

One solution for avoiding the "spinning beach ball" cursor is to perform file operations in a different
thread from the one that controls the user interface. The separate thread for I/O blocks without harm to
other threads. Multiple threads are sometimes the best solution, but they unavoidably make applications
more complex.

NSFileHandle is optionally used to implement asynchronous background communication without
the need to explicitly create multiple threads in an application. NSFileHandle's -
readInBackgroundAndNotify returns immediately. When data becomes available,
NSFileHandle sends the NSFileHandleReadCompletionNotification to the default
notification center. The notification includes the data read as an argument.

After receiving the NSFileHandleReadCompletionNotification, the object that received
the notification must call -readInBackgroundAndNotify again to receive more data. Data is
written to a file using NSFileHandle's -writeData: method. The current position in an open file
is changed with the -seekToFileOffset: method. Files are truncated with the -
truncateFileAtOffset: method. Finally, an open file is closed with the -closeFile method.

NSFileManager

The NSFileHandle class encapsulates operations on a specific open file or communications channel.
The NSFileManager class is used to manipulate file systems. NSFileManager encapsulates file
system management operations and abstracts many file system differences. By using
NSFileManager, an application manipulates the file system regardless of whether the file system is
based on Windows, Unix, or traditional Mac HFS+.

NSFileManager provides methods to create directories and change the current working directory.
NSFileManager is used to copy, move, delete, or link files and directories. The attributes of files and
directories are obtained and changed. The contents of files and directories can be read or compared.
Finally, file system links and aliases can be evaluated.

One key to the implementation of NSFileManager is that it manages conversions between
application string and file system string encodings. For example, if an attempt is made to create a file
with a Unicode name in a file system that does not support Unicode, the name is automatically
converted to an encoding suitable for the file system.

There is at least one instance of NSFileManager called the default manager in every Cocoa
application. The default manager instance is obtained with NSFileManager's +defaultManager
class method. The following example fills an existing mutable array with strings that each contain the
name of a file or directory in the current working directory:

void getNamesInCurrentDirectory(NSMutableArray *resultArray)
{
 NSString *fileName;
 NSFileManager *fileManager = [NSFileManager
defaultManager];
 NSDirectoryEnumerator *enumerator = [fileManager enumeratorAtPath:
 [fileManager currentDirectoryPath]];

 while (nil != (fileName = [enumerator nextObject]))
 {
 [resultArray addObject:fileName];
 }
}

NSFileWrapper

The NSFileWrapper class is part of the Application Kit framework and cannot be used by
Foundation framework applications that do not also use the Application Kit framework. Nevertheless, it
is worth mentioning here because it is closely related to the NSFileManager and NSFileHandle
classes. NSFileWrapper provides a higher level and more abstract representation of files than
NSFileHandle. NSFileWrapper is used with whole directories of files and provides high-level
capabilities that would otherwise be implemented using lower-level NSFileManager methods.

NSFileWrapper is described in Chapter 8. NSFileWrapper helps an application treat files and
whole directories of files as if they were all simultaneously present in the application's memory.
NSFileWrapper encapsulates operations on the files and information such as the icon associated
with a file. NSFileWrapper also synchronizes changes made to the portions of files stored in
memory and changes files on disk.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Defaults System

Mac OS X provides rich support for storage of user preferences and application defaults.
Traditional user preferences and defaults are both called defaults in Cocoa. Every user has
a defaults database which is created automatically. Defaults are stored in several different
domains. For example, a user can have defaults that apply to only one application or
defaults that apply to all applications run by the user. Defaults domains are accessed by
name. Mac OS X defines the following domains: argument, global, registration,
application, and languages. The first three are referenced in code using the
NSArgumentDomain, NSGlobalDomain, and NSRegistrationDomain constants
respectively. The application domain uses the application's bundle identifier as its name.
The languages domain uses the name of the user's preferred language as set in Preferences.
It is seldom necessary to access defaults domains explicitly by name because the
NSUserDefaults class uses domains automatically.

Values in each domain are stored in property lists that define dictionaries of key value
pairs. Because defaults are stored in property lists, only object types supported for use in
property lists can be stored. Types not directly supported are usually converted into
NSString or NSData instances for storage.

Standard keys are used in each domain. The domain used to store a default value depends
on the value's use. For example, the argument domain contains default values specified on
the command line when an application is started. Applications can add new keys and
values to any domain, but changes to the argument domain are not saved. When an
application looks up a default value, the domains are searched in the following order:
argument, application, global, languages, and registration. As a result, defaults stored in the
application domain supercede defaults stored in the global domain. Default values
specified on the command line supercede all other defaults. Default values are specified on
the command line and added to the argument by preceding a default name with a hyphen
and following it with a value. For example, adding the following argument to the command
line when launching a Cocoa application will change the default units of measurement used
by the application during that session:

-NSMeasurementUnit Inches

Even if the user's default value set with Apple's System Preferences application is
"Centimeters," running an application from the command line and specifying "Inches" will
supercede the default value for one execution session.

Apple's System Preferences application is used to graphically set many default values. In
addition, each application can contain its own user interface for setting default values in
any domain. Many default values such as default window positions are stored

automatically by the relevant classes. Finally, a command-line tool called defaults is
used to read or write default values. The following command typed into a terminal will set
the user's default measurement unit for all applications:

defaults write -globalDomain NSMeasurementUnit Centimeters

The dictionary for the argument domain is constructed from command-line arguments. In
contrast, the dictionary for the application domain is read from a property list of default
values stored for each user. Application defaults apply to just one application. Each
application can have different user specific default keys and values. Changes that an
application makes to application defaults are automatically stored in a user's defaults
property list when the application is quit.

The dictionary for the global domain is read from each user's defaults database. Default
values in this domain apply to all applications that a user runs. Values such as the default
units of measurement are usually set for all applications. The languages domain is also
stored in a persistent property list. The languages domain stores preferences that depend on
the user's preferred language. For example, the Foundation framework class,
NSCalendarDate, uses values stored in the languages domain to determine how dates
should be presented. Finally, the registration domain is used by applications to make sure
that every expected default value exists. Defaults in the registration domain are not saved.
When an application starts, it can initialize the values of all defaults that it requires to
factory settings in the registration domain. If a user has set the same default in any other
domain, the user's value is used. By setting all factory defaults in the registration domain
when an application starts, the code that uses default values in the rest of the application is
simplified. Using the registration domain eliminates the need to verify that a default value
exists before each time it is used.

NSUserDefaults

The NSUserDefaults class encapsulates all operations involving Mac OS X's defaults
domains. A single shared instance of the NSUserDefaults class is obtained by calling
the +standardUserDefaults class method. The standard user defaults instance is
created and initialized with all the user's default values from all the standard domains. The
default values are cached to minimize the number of times the defaults database is accessed
on disk.

To obtain the default value associated with a particular key, send the -objectForKey:
message to the standard user defaults instance. The following function returns a string
containing the user's preferred currency symbol:

NSString *GetPreferredCurrencySymbol()
{
 return [[NSUserDefaults standardUserDefaults]
 objectForKey:@"NSCurrencySymbol"];

}

A dictionary of all default values in effect is obtained by calling the standard user defaults
object's -dictionaryRepresentation method. The returned dictionary contains
key value pairs from all the domains. Values set in domains that are searched first
supercede values set in lower priority domains.

Apple's online documentation for the NSUserDefaults class provides a partial list of
default keys such as the NSCurrencySymbol key. Many others are used by Cocoa
applications but aren't documented anywhere. For example, the NSWindowResizeTime
key changes the number of seconds used to animate window resizing in Cocoa
applications. Valid values are greater than 1.0. One reason that Apple has not documented
many default keys might be that they are considered part of private APIs or deprecated
APIs. There is no guarantee that undocumented keys will continue to work in new versions
of Mac OS X.

Set default values by calling the -setObject:forKey: method of
NSUserDefaults. When a default value is changed programmatically in a running
application, the NSUserDefaultsDidChangeNotification is posted to the
default notification center. Observers of this notification can check the defaults dictionaries
to determine what changed. Apple's online documentation provides an example of an
application domain default for setting whether backup files should be automatically deleted.

Use the -synchronize method of NSUserDefaults to copy any values set
programmatically into to defaults database on disk. The -synchronize method is called
automatically when an application quits. There is no reason to call -synchronize
explicitly in application code unless changed values need to be saved prior to the automatic
save that occurs when the application quits. The +resetStandardUserDefaults
class method invalidates previously cached default values. The next time
+standardUserDefaults is called, the returned instance contains only the default
values actually stored in the user's defaults database on disk. Code for an application-
specific preferences panel can call +resetStandardUserDefaults to reset all
default values to the ones stored on disk.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Notifications

Notifications are a flexible mechanism that enables multiple objects to communicate with
each other without tightly coupling the objects together. An object called a notification
center is used to register objects that need to be notified under certain circumstances. The
objects registered to receive notifications are called observers. When objects post
notifications with the notification center, the notification center distributes the posted
notifications to interested observers by sending Objective-C messages to them. The
notifications design pattern is described in Chapter 6.

The observers know about the notification center, but don't need to know anything about
the objects that post notifications. The objects that post notifications don't need to know
which objects, if any, observe the notification. The objects that post notifications and the
observing objects are decoupled.

NOTE

As a general design goal, coupling between classes should be avoided.
Another term for coupling is dependency. Coupling reduces the reusability of
objects. Coupling makes designs inflexible and difficult to maintain.

Any number of objects can be observers for any notification. Any number of objects can
post notifications. Notifications enable extremely flexible application designs. For
example, when objects and resources are dynamically loaded into an application, the
NSBundleDidLoadNotification is sent to registered observers. The observers
might use the notification to gain access to the loaded resources or send messages to the
loaded objects. The key is that the NSBundle class used to dynamically load objects and
resources is not modified in each application that uses it. Instead, application specific logic
is implemented in the objects that observe the notification. NSBundle is reusable and
does not have dependencies on objects in particular applications, and applications can still
perform specific processing when a bundle is loaded.

Many Foundation framework classes post notifications. Notifications posted by
NSBundle, NSFileHandle, and NSUserDefaults classes have already been
mentioned in this chapter. Notifications are also used extensively in the Application Kit
framework. Notifications are posted in many situations including when a window is closed
or an application has finished launching.

NSNotificationCenter

Instances of the NSNotificationCenter class enable communication between
objects that don't know about each other. NSNotificationCenter instances receive
posted NSNotification instances and distribute them to appropriate observer objects.

Every Cocoa application contains at least one instance of NSNotificationCenter
called the default notification center. The default notification center is obtained using the
NSNotificationCenter's +defaultCenter class method. Most notifications
posted by Foundation framework and Application Kit framework objects are posted to the
default notification center.

An application can contain any number of NSNotificationCenter instances.
Specialized communication between custom objects in an application might use
notification centers created just for that purpose, but most application needs are met by the
default notification center.

Notifications are posted by calling the -postNotification: method of an
NSNotificationCenter instance such as the default notification center. The
argument to -postNotification: is a NSNotification instance. The
NSNotification class is described in this chapter. The -
postNotificationName:object:userInfo: method is used to indirectly create
and post an NSNotification instance. The first argument is the notification name. The
second argument is the object posting the notification. The third argument is a dictionary
that is passed as an argument when observers are notified.

Objects register as observers for particular notifications based on several criteria. The
standard way to register for a notification is to call NSNotificationCenter's -
addObserver:selector:name:object: method. The first argument is the object
that will observe notifications. The second argument is a selector that identifies the
Objective-C message that is sent to the observer when an appropriate notification is posted.
The selector must specify a method that takes one argument. The third argument is the
name of the notification that is being observed. If the third argument is nil, the observer is
registered to receive all notifications posted by the object specified in the fourth argument.
The fourth argument is an object that posts notifications and can be used to restrict the
notifications received by the observer to only those notifications posted by the specified
object. If the fourth argument is nil, all notifications with the specified name are observed.

The method called to notify an observer must have exactly one argument. The argument is
the userInfo dictionary that is provided when a notification is posted. The userInfo
dictionary can contain any objects and must be interpreted based on the notification being
received.

Notification centers do not retain the observer objects. When an object registered to
observe notifications is deallocated, it must remove itself from all notification centers.
NSNotificationCenter's -removeObserver: method removes a specified

observer completely, no matter how many notifications are being observed. The -
removeObserver:name:object: method is used to selectively remove a registered
observer for a particular notification or notification posting object.

NOTE

The Foundation framework provides the
NSDistributedNotificationCenter class to enable notifications
between objects in different applications. Notifications can be delayed or
queued with the NSNotificationQueue class so that multiple redundant
notifications are coalesced and sent to observers only once.

NSNotification

NSNotification instances store a name that identifies the notification, a reference to
the object that posted the notification, and a dictionary that is passed as an argument to the
methods registered by observers of the notification.

NSNotification instances are created with the +notificationWithName:
object:userInfo: convenience allocator and posted with a notification center.
Notifications are also indirectly created by NSNotificationCenter's -
postNotificationName:object:userInfo: method. The only reason to create
instances with +notificationWithName:object:userInfo: is to keep an
instance around so that it can be posted multiple times with exactly the same name,
object, and userInfo dictionary.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Related Core Foundation

With the release of Mac OS X, Apple has extended and documented much of the low-level code used to
implement the Foundation framework. The code is included in a standard C library that Apple calls Core
Foundation. The Core Foundation library consists of a set of procedural APIs and data structures that can be used
from Cocoa or Carbon applications. In some cases, Foundation framework classes are internally implemented
using Core Foundation functions. In other cases, there is effectively no difference between Core Foundation data
structures and corresponding Foundation framework objects. Such objects are said to be "toll free bridged,"
meaning that Core Foundation just provides a procedural API for accessing objects.

One toll free bridged object is NSString. Core Foundation defines a data structure called CFStringRef and a
set of C functions for manipulating CFStringRefs. In fact, CFStringRef and a pointer to NSString are the
same and can be safely cast from one to the other. In the following example, a CFStringRef is created and
initialized. Then it is further manipulated using Objective-C messages. Finally, the NSString pointer is cast
back to CFStringRef.

CFStringRef authorNames = CFSTR("Scott Anguish, Erik Buck, Don
Yacktman");
CFStringRef credits;

credits = (CFStringRef)[@"Authors: " stringByAppendingString:
 (NSString *)authorNames];

Not all Core Foundation data types that seem to be toll free bridged to a Foundation object actually are.
CFArray, CFCharacterSet, CFData, CFDate, CFDictionary, CFRunLoopTimer, CFSet,
CFString, and CFURL are toll free bridged to NSArray, NSCharacterSet, NSData, NSDate,
NSDictionary, NSTimer, NSSet, NSString and NSURL, respectively. Other Core Foundation types might
be used in the implementation of Foundation objects or might be completely unrelated. In either case, they cannot
be used interchangeably with the Foundation framework objects that have similar names.

Parts of the implementation of Core Foundation are available in source code as part of Apple's open source
Darwin project. Several data structures that are supported by Core Foundation have no equivalent in the
Foundation framework. The CFBinaryHeap type stores values sorted using a binary search algorithm and
implements priority queues. The CFBitVector data type can be used to efficiently store large numbers of
Boolean values. The CFTree data type implements a tree data structure. CFStorage uses a balanced tree to
provide O(log n) or faster access to arrays of arbitrary but uniformly sized data structures.

The open source CFSocket functions can be used instead of standard Unix socket functions to abstract potential
differences between operating systems. Unix sockets might not be available on all platforms that support Core
Foundation in the future. CFSocket can be implemented using the native interprocess communication API on
each target platform.

CFBundle and CFPlugIn provide similar features to the NSBundle class, but neither is toll free bridged to
NSBundle. CFURL and CFURLAccess provide platform independent ways to read and write files and other
resources from remote machines. CFPreferences provides a procedural API for accessing the keys and values
stored in a user's defaults database. CFPreferences is not bridged to NSUserDefaults. CFUUID is used to
produce universally unique 16-byte identifiers. The same identifier will not be produced twice regardless of the
platform or machine. CFUUID provides features similar to the NSProcessInfo class's -
globallyUniqueString method defined in the Foundation framework. CFUserNotification provides
procedural access to notifications and enables the registration of call back functions that are called when a

notification is posted. CFPropertyList provides procedural access to property lists. CFMessagePort and
CFMachPort wrap low-level Mach messaging and interprocess communication.

Core Foundation contains data types and functions for reading and extracting data from XML documents.
CFXMLParser and CFXMLNode are used together to procedurally manage nonverified XML structured
documents. CFXMLParser is used to read XML property lists including the user defaults database.

Book: Cocoa® Programming
Section: Chapter 7. Foundation Framework Overview

Summary

This overview could hardly cover every topic of interest regarding the Foundation
framework. The information provided in this chapter conveys the breadth of classes
available and indicates where to look for more information. It identifies the practical
implications of some Cocoa conventions including the ideas of mutability, immutability,
and class clusters. Many of the public Foundation classes are abstract interfaces to class
clusters, and that fact can have huge impacts on their use. Additional classes such as
NSHost and NSProcessInfo, exist but are not described in this overview. Such classes
are indispensable in certain circumstances, but are seldom used in practice. Before writing
code, be sure that there is no existing Foundation class or function to solve the problem.

The next chapter provides an overview of the Application Kit framework that is built on
top of the Foundation framework. Just as the Foundation framework provides a foundation
for all Cocoa applications, the Application Kit contains the classes needed for graphical
applications and graphical user interfaces. Neither this chapter nor the next contains the
kind of in-depth information needed to really unleash the power of the frameworks. These
chapters are truly overviews. The information introduced is expanded throughout the rest
of this book in examples and explanations, but the conceptual grounding provided in this
chapter and the next provide an essential foundation.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 8. The Application Kit Framework Overview

IN THIS CHAPTER

● Events and the Run Loop
● Responders
● NSApplication Overview
● NSWindow Overview
● NSView Overview
● Delegates
● Target-Action Paradigm
● Archived Objects and Nibs
● NSWindowController Overview
● Multidocument Applications
● Undo and Redo
● Menu Validation
● Spell Checking

The Application Kit contains most of the classes that provide user interfaces and graphics
for Cocoa applications. The Application Kit uses the Foundation framework extensively,
and is very large. Much of the rest of this book is dedicated to unleashing its power. This
chapter focuses on the key concepts and techniques employed to provide Cocoa user
interfaces. These key concepts might be unfamiliar even to experienced developers
accustomed to other user-interface toolkits. The Application Kit takes advantage of the
dynamic nature of Objective-C and the Foundation framework to implement an extremely
flexible and powerful framework of cooperating classes.

The information presented in this chapter is essential for understanding how to use the
Application Kit and how the pieces fit together. It is often necessary to recognize the
interaction of multiple classes to use the kit effectively. This chapter presents the big
picture architecture of the Application Kit, the key classes, and details of a few key
concepts used to implement the Application Kit. This chapter covers broad concepts and
does not provide enough information to make effective use of most Application Kit
features. It can be difficult to understand a complex framework when too many details are
provided up front. There is always the danger of not seeing the forest because of all the
trees. The Application Kit provides many classes to implement core concepts, and the
classes interoperate in ways that are difficult to see without a big-picture overview. This
chapter provides the big picture at the expense of details.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Events and the Run Loop

Most graphical user interface toolkits, including the Application Kit, use an event-driven
model. That simply means applications react to events that are sent to the application by
the operating system. The events can result from the user typing on a keyboard, or moving
a mouse. Timer events can be sent at periodic intervals. The arrival or availability of any
new data from a monitored input source is also conceptually an event.

Cocoa applications receive events from the operating system with the help of the
NSRunLoop class. Every Cocoa application contains at least one instance of the
NSRunLoop class. A run loop is created automatically for each thread in the application.
In most cases, the programmer does not need to access the run loop directly. The run loop
for each thread monitors input sources that are part of the operating system. If no
monitored input sources have available data, the run loop does not consume CPU
resources. In other words, the run loop blocks on pending I/O.

When data becomes available, the run loop recognizes the new data as an event and sends
Objective-C messages to various objects notifying them of the event. The receivers of the
messages and the messages that are sent depend on the type of data that becomes available.

The purpose of the run loop is to enable efficient communication between the operating
system and an application. The implementation of the NSRunLoop class is platform
specific. The implementation for Mac OS X uses Mach ports and the Unix select()
function to detect and manage I/O. NSRunLoop abstracts the differences between various
operating systems. If Apple ever renews cross-platform support for Cocoa technology, the
NSRunLoop class will certainly be reimplemented for each platform.

Application code seldom interacts with the run loop directly. Many user interface toolkits
make the run loop a key focus for developers, but in Cocoa, the run loop plays a minor role
in an application. Graphical Cocoa applications wrap the functionality of the NSRunLoop
class within the NSApplication class. One of the purposes of the NSApplication
class is to manage the run loop on behalf of the entire application. The NSApplication
class is a key component of the Application Kit's architecture, and is described in this
chapter.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Responders

When keyboard events, mouse events, timer events, or other events are detected by the run
loop and the NSApplication instance that manages the run loop, those events are
converted into instances of the NSEvent class and dispatched to other objects using
Objective-C messages. The use of messaging is an important difference from other user
interface toolkits and results in much of the power and flexibility of Cocoa. The
Application Kit does not use C-language switch statements or explicit tables of function
pointers. The messaging capabilities built into the Objective-C runtime are ideally suited to
event dispatching.

An object that can receive event messages is called a responder. Figure 8.1 illustrates the
relationships and communications between the operating system, the run loop, an instance
of the NSApplication class, and a responder.

Figure 8.1. The operating system, the run loop, an instance of the NSApplication
class, and a responder interact.

What Is a Responder?

Cocoa encapsulates the role of responders within the NSResponder class.
NSResponder is an abstract class. Abstract classes are not intended for direct use by
application programmers. Instead, abstract classes provide functionality that is used by
subclasses. NSResponder provides the foundation on which some of the most prominent
Cocoa classes are built. Subclasses of NSResponder include NSView, NSWindow, and
NSApplication. These subclasses collaborate to manage the flow of events within an
application.

The collaboration between the various subclasses of NSResponder within a Cocoa
application is so powerful that many applications can be written without any custom event
handling code at all. The event processing within the Application Kit framework takes care
of almost all events automatically.

When application-specific, custom-event handling is needed, one or more of
NSResponder's event-processing methods can be overridden in a subclass. For example,
to perform processing in response to a mouse button-press event, override
NSResponder's -mouseDown: method.

Each of NSResponder's event-processing methods accepts a single argument, which is
an instance of the NSEvent class. Within the event processing methods, the NSEvent
instance can be interrogated to obtain more information about the event such as the
location of the mouse or which modifier keys were pressed. The NSEvent class
documentation describes all the information obtainable.

The following event-processing methods are declared in the NSResponder class:

- (BOOL)performKeyEquivalent:(NSEvent *)theEvent;
- (void)mouseDown:(NSEvent *)theEvent;
- (void)rightMouseDown:(NSEvent *)theEvent;
- (void)otherMouseDown:(NSEvent *)theEvent;
- (void)mouseUp:(NSEvent *)theEvent;
- (void)rightMouseUp:(NSEvent *)theEvent;
- (void)otherMouseUp:(NSEvent *)theEvent;
- (void)mouseMoved:(NSEvent *)theEvent;
- (void)mouseDragged:(NSEvent *)theEvent;
- (void)scrollWheel:(NSEvent *)theEvent;
- (void)rightMouseDragged:(NSEvent *)theEvent;
- (void)otherMouseDragged:(NSEvent *)theEvent;
- (void)mouseEntered:(NSEvent *)theEvent;
- (void)mouseExited:(NSEvent *)theEvent;
- (void)keyDown:(NSEvent *)theEvent;
- (void)keyUp:(NSEvent *)theEvent;
- (void)flagsChanged:(NSEvent *)theEvent;

These methods are presented here to provide a sense of the range of methods available. The
uses for each of NSResponder's event processing messages are described in the class
documentation for NSResponder. Many of the methods are used and described in
examples within this chapter and the rest of this book.

The NSEvent passed to each event-processing method is only valid within that method's
implementation. The Cocoa frameworks reserve the right to reuse existing NSEvent
instances or otherwise tamper with their contents. To preserve the information in an
NSEvent instance, copy it or store the information in a separate data structure. Simply
retaining the NSEvent instance for later use is not sufficient.

The Responder Chain

Each instance of the NSResponder class stores a pointer to another instance of

NSResponder called the next responder. NSResponder provides methods for setting
and getting the next responder. Responders are chained together from next responder to
next responder, and form a data structure called the responder chain. If an instance of
NSResponder does not process a message that it receives, the message can be passed on
to the next responder. The message travels along the chain until the message is processed
or there is no next responder. Figure 8.2 shows event message processing including the
responder chain.

Figure 8.2. Event message processing includes the responder chain.

The responder chain plays a crucial role in applications that use the Application Kit. Many
powerful features such as automatic menu validation, context sensitive menus, text entry,
and automatic spell checking depend on the responder chain. The responder chain also
provides opportunities for programmers to insert context-sensitive custom logic and event
handling into applications. The responder chain is Cocoa's implementation of the "Chain of
Responsibility" design pattern described in Chapter 6, "Cocoa Design Patterns."

The First Responder

The responder that gets the first chance to respond to an event message is called the first
responder. The first responder is the first link in the responder chain. One of the keys to
using the responder chain is the understanding of which responder will be the first
responder in any circumstance. The first responder determines the chain that a message
follows.

The responder chain and the first responder are managed by three NSResponder
subclasses: NSApplication, NSWindow, and NSView. Applications contain exactly
one instance of the NSApplication class, and that instance receives events from the
operating system. The events are either sent on to a window represented by an NSWindow

instance or consumed by the application object itself. Every window in an application
stores a pointer to a first responder. The first responder for a window can change based on
user actions or program code. The initial first responder in each window can be set in
Interface Builder or through a NSWindow instance method. Sometimes the first responder
for a window is the window itself. When a window receives an event from the application
object, the event is either forwarded to a responder within the window or consumed by the
window itself. The responders within a window are typically instances of NSView
subclasses.

The first responder to receive an event message depends on the application object, the
window that is most appropriate for the event, and a responder (view) within the window.
Figure 8.3 expands the diagram of event-message processing to include windows and the
responders within the windows.

Figure 8.3. The first responder to receive an event message depends on the application
object, a window, and the responders within the window.

The programmatic way to change a window's first responder is to call NSWindow's -
makeFirstResponder: method passing the responder that should become the new
first responder as the argument. A sequence of messages are automatically sent when the
first responder is changed via -makeFirstResponder:. First, the -
resignFirstResponder message is sent to the current first responder asking it to
accept the change in its status. If the current first responder returns NO, the first responder
is not changed. If the current first responder returns YES from -
resignFirstResponder, the argument to -makeFirstResponder: is sent a -
becomeFirstResponder message. If the object that receives the -
becomeFirstResponder message returns NO, the window that received the -
makeFirstResponder: becomes the first responder.

Different types of events are dispatched to different first responders. For example, the first
responder to receive an event message might be different for keyboard events and mouse-
click events. The full implications of the first responder and the responder chain cannot be
described without more information about the NSApplication, NSWindow, and

NSView classes. In this chapter there is an overview of each of these classes which
includes information about their roles in the responder chain.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

NSApplication Overview

Each Application Kit-based application contains a single instance of the
NSApplication class that extends the event handling capabilities of NSResponder to
communicate with the operating system. NSApplication is a subclass of
NSResponder and is implemented as a shared object or Singleton as described in
Chapter 6, "Cocoa Design Patterns." The shared instance can be accessed with
NSApplication's +sharedApplication method or through the NSApp global
variable provided by the Application Kit framework.

NSApplication provides the interface between an application and the operating system.
The NSApplication instance manages a run loop that receives events from the
operating system. NSApplication converts events into instances of the NSEvent class
and sends the events to responders. The NSApplication object also maintains the
application's connection to the operating system for drawing, scripting, and notification of
system-wide events such as the launch of other applications or the pending shutdown of the
computer.

NSApplication stores the application's icon, manages all the application's windows,
and provides access to the application's menus. NSApplication implements the
standard behaviors of Mac OS X applications automatically. As a result, Cocoa
applications behave consistently. Applications obtain many powerful features for free by
using the NSApplication class.

The NSApplication class is seldom subclassed. Instead, the behavior of an application
can be modified through the use of an application delegate and notifications. Delegation is
a powerful technique that is described in the Delegation Versus Notifications section later
in this chapter and also in Chapter 6.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

NSWindow Overview

The NSWindow class is a subclass of NSResponder and extends the capabilities of
responders to provide an area of the display for drawing as well as aid event dispatching. In
Cocoa applications, every window onscreen is an instance of the NSWindow class or one
of its subclasses such as NSPanel. A window is needed to display the output from an
application on the display.

Windows are composed of three major parts: an optional title bar, the content view, and an
optional resize control. Figure 8.4 indicates the parts of a window. The title bar might
contain a title and controls to minimize, maximize, or close the window. The window
automatically manages these controls. The application can be notified when one of the
controls is activated, but the controls are not directly accessible from within a Cocoa
application. The resize control is also managed automatically by the window itself. Every
window has a content view. The content view is the portion of a window that is controlled
by code unique to each application.

Figure 8.4. Windows are composed of an optional title bar, an optional resize control,
and a content view.

Windows have a position and size onscreen. The position that is stored is the lower-left
corner of the window, and it is stored as integer coordinates corresponding to pixels on the
display. The size is stored as the integer width and height of the window in pixels.

Windows uses the NSApplication object's connection to the operating system to draw

onscreen. The pixels drawn by a window are stored in memory that can be shared by the
operating system and the window. Because the operating system has direct access to the
memory, the operating system can move and uncover windows without intervention by the
application that owns the window. For example, a window can be dragged while the
application that owns it is busy performing other computations. The shared memory is also
used by the operating system to implement transparency effects.

Backing Store

The shared memory is called the backing store for the window. The Application Kit
supports three different configurations for backing store: buffered, retained, and
nonretained.

Buffered backing store is the default. With buffered backing store, all pixels of the window
are stored once in a buffer drawn by the window and again in a separate buffer used by the
operating system. The pixels drawn by the window are copied or "flushed" into the buffer
used by the operating system automatically. This style of buffering is often called double
buffering because two separate buffers are used. Buffered windows provide the best
presentation to users. Users do not see any partial drawing or delayed updates because the
pixels of a window are not displayed until the window has been completely redrawn. The
disadvantage of buffered windows is that they require memory to store two buffers.

Retained backing store uses one buffer to store the visible pixels of a window and a
separate buffer to store pixels that are offscreen or obscured by other windows. Retained
backing store uses less memory than buffered backing store because each pixel is only
stored in one buffer. When a window is moved to reveal pixels that were formerly
obscured, the operating system can transfer the pixel data from one buffer to the other
without intervention by the application that owns the window. However, partial drawing of
the portions of a window that are visible onscreen may be seen by users. Retained backing
store is a compromise between memory usage and the quality of presentation to users.

Nonretained backing store uses only one buffer. Pixels that are not visible are just
discarded. Nonretained backing store uses the least memory and provides the worst
presentation to users. Each time the window is redrawn, users see partial drawing. If an
area of the window that was obscured becomes visible, the application that owns the
window must be alerted to redraw the newly visible pixels. If the application is busy with
other computations and is not multithreaded, the user might see delays between when the
window is uncovered and when it is redrawn. Use of nonretained backing store is
discouraged.

NOTE

In many versions of Mac OS X, including version 10.1, only buffered
backing store is supported. Apple might restore support for other backing
store types in future releases.

The backing-store type for each window can be set in Interface Builder or
programmatically. The backing store type is set when a window is initialized and via
NSWindow's -setBackingType: method.

Key Window and Main Window

The NSApplication class manages all the windows in an application. In addition to a
list of all the application's windows, NSApplication also keeps track of which window,
if any, is the key window and which is the main window. The key window and the main
window are the windows in which the user is currently working. The key window receives
keyboard events. The main window is the window that is effected by actions in the key
window. The key window and the main window are usually the same, but in some cases
they might be different. Figure 8.5 shows a typical situation in which the key window and
the main window are different. In Figure 8.5, the Find panel is the key window because
keyboard events are only sent to the key window and the user must be able to type the
string to find into the Find panel's text field. The README.rtf window is the main window
and contains the text that is searched. The user's actions in the Find panel are applied to the
contents of the main window. The Untitled window is neither key nor main.

Figure 8.5. An application with separate key and main windows as well as a window
that is neither key nor main.

The key window and main window have opaque window title bars. All other windows have
translucent title bars. The key window is the only window to which keyboard events are
sent.

Windows become the key window and main window automatically as the result of the user
actions. If the main window and key window are different, the main window becomes key
if the current key window is closed or minimized. In most cases, the user can make a
window become the key by clicking the mouse within the window. Application developers
can prevent a window from becoming the key window by subclassing NSWindow and
overriding NSWindow's -canBecomeKeyWindow method to always return NO.
However, NSWindow is seldom subclassed for this purpose because the NSPanel class
already provides the desired behavior when configured as a utility window in Interface
Builder. A window can also be made the key or main window by calling NSWindow's -
makeKeyWindow or -makeMainWindow methods, respectively. The -
makeKeyAndOrderFront: method is available to make a window the front-most or
topmost window, and also the key window in one operation.

Windows in the Responder Chain

NSWindow is a subclass of NSResponder and can be part of a responder chain. The role
that a window plays in the responder chain depends on the state of the application that
owns the window. Windows are also integral to event distribution. Most events received by
the application are sent on to a window. NSApplication selects the window to receive
an event based on the type of the event.

Events outside the window's content view are handled automatically by the window. No
programmer intervention is required to resize windows or manage the controls in the
window's title bar. The NSWindow class handles all those details automatically and
notifies the application of any changes so that the application can perform operations such
as constraining the window's size or saving the contents of the window before it closes.

Mouse-down and mouse-move events are sent from the application object to the top-most
window under the mouse pointer. The NSWindow class then distributes received mouse
events to a responder within the window, or consumes the events itself. Mouse-up and
mouse-drag events are sent to the window that received the corresponding mouse-down
event. The window sends the mouse-up and mouse-drag events on to the same responder
that received the mouse-down event. Keyboard events are sent to the first responder in the
key window

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

NSView Overview

The NSView class extends the event-handling capabilities of NSResponder to enable
drawing and printing. NSView is an abstract class meaning that instances of NSView are
seldom used directly. Instead, many subclasses of NSView exist to implement particular
combinations of event handling and drawing behavior. Almost everything drawn in a
Cocoa application is drawn by a subclass of NSView. For example, buttons, text fields,
sliders, and even the backgrounds of windows are directly or indirectly subclasses of
NSView. The most prominent subclasses of NSView include NSControl, NSText,
NSTabView, NSSplitView, NSScrollView, and NSBox.

The NSView class cannot draw without the help of a window. When a view is drawn, it
writes the data for pixels into memory. A window is needed to provide the memory that
stores the pixel data. NSWindow and NSView cooperate to implement user interfaces.
Every NSWindow instance has at least one associated NSView instance called the content
view. The content view is used to draw the content of the window.

View Hierarchy

Views exist in a hierarchy. A view can contain any number of subviews. Views are
normally added to the content of a window by making them subviews of the window's
content view. Each view has a reference to the view that contains it. The reference to the
containing view is called the superview. Complex user interfaces are composed of many
views arranged in a hierarchy of superviews and subviews. Figure 8.6 shows a
representative user interface composed of a window, the window's content view, and
subviews within the content view. The hierarchy of nested views in the window on the
right is shown on the left.

Figure 8.6. Views exist in a hierarchy in which views contain subviews.

Subviews are always drawn after their superview resulting in subviews always appearing
on top of their superview graphically. Views clip their subviews so that no part of a
subview can be drawn outside its superview. The order in which views with the same
superview are drawn is not defined. As a result, sibling views should not be overlapped. If
they are overlapped, changes in drawing order could result in incorrect display.

Each view can have its own coordinate system. By default, a window's content view has its
origin in the lower-left corner, and has a width and height equal to the width and height of
the window's content area in pixels. The positive-X axis is to the right, and the positive-Y
axis is up. Views store two rectangles to define both the area of the view in its superview's
coordinate system, and the area of the view in its own coordinate system. The area of a
view in its superview coordinate system is called its frame. The same area stored in the
view's coordinate system is called the bounds. Figure 8.7 depicts the relationship between a
view's frame and its bounds.

Figure 8.7. A view's frame is stored in its superview's coordinate system, and its
bounds are stored in its coordinate system.

The view's frame, its bounds, and a transformation matrix define the coordinate system
used by a view. The coordinate systems used by views are described in detail in Chapter
13, "Custom Views and Graphics Part II."

Views in the Responder Chain

As a subclass of NSResponder, NSView instances participate in the responder chain.
Most responders in an application are actually subclasses of NSView. The next responder
of a view is usually the view's superview. Arbitrary responders can be added to the
responder chain by calling NSResponder's -setNextResponder: method, and that
technique can be used to insert responders in the responder chain between a view and its
superview. If an event-processing message is sent to a view that does not handle the
message, the message is sent to the view's next responder and its next and so on until the
window's content view, the ultimate superview of all views in a window, receives the
message. Figure 8.8 shows a view hierarchy in which a text field is the first responder. The
responder chain, up to the window object, is depicted with arrows.

Figure 8.8. A responder chain consisting of views within a window is depicted.

The first view to receive an event-processing message depends on the type of the event.
The first mouse-down event within a window that is not the key window is usually
consumed by the window itself to make the window into the key window and bring it to the
front. This behavior can be modified in several ways. For example, a subclass of NSView
can override the -acceptsFirstMouse: method to return YES, meaning that it uses
the first mouse click in an inactive window.

NSWindow sends mouse-down and mouse-move event messages to the top-most view
under the mouse. Subviews are drawn after their superview. The top-most view under the
mouse is, therefore, usually the most deeply nested view under the mouse. Mouse-move
events occur frequently and are seldom used. NSWindow does not send mouse move event
messages to views by default. If a subclass of NSView needs to receive mouse-move
events, it must tell NSWindow to send them. NSWindow's -
setAcceptsMouseMovedEvents: method is used to tell the window to send mouse-
move event messages to views. Mouse-drag and mouse-up event messages are sent to the
view that received the corresponding mouse-down event. Keyboard event messages are
sent to the first responder within the window.

The NSView class implements the -acceptsFirstResponder method to always
return NO. As a result, most views never become the first responder within a window.
Subclasses of NSView that implement text processing or allow the user to make selections
usually override the -acceptsFirstResponder method to return YES. If a view
accepts becoming the first responder, the first mouse-down event within the view
automatically makes that view the first responder, unless the current first responder refuses
to resign its status.

Details of handling events in subclasses of NSView are provided in Chapter 15, "Events
and Cursors." The information presented here is just an overview to describe the roles of
views in the Application Kit. Applications often include one or more custom subclasses of

NSView. The NSApplication, NSWindow, and NSView classes cooperate and form
the core of the Application Kit architecture. A detailed understanding of NSView and its
relationships with other classes is needed to unleash the power of Cocoa.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Delegates

Delegates and delegate methods are used throughout the Application Kit. Delegates
provide an alternative to subclassing when the behavior of classes must be refined to meet
an application's needs. Application Kit classes such as NSApplication, NSWindow,
NSBrowser, and NSMatrix are seldom subclassed. Delegation enables all the
customization that most applications need.

A delegate is an object that is able to influence the behavior of another object by
responding to delegate messages. A class that uses a delegate has a delegate instance
variable and defines a number of delegate methods. An instance of that class sends delegate
messages to its delegate for help deciding how to behave. For example, the NSWindow
class has a delegate and declares the -windowShouldClose: delegate method. Before
a window closes, the window sends the -windowShouldClose: message to its
delegate. If the delegate returns NO, the window does not close.

The object that acts as a window's delegate might implement -windowShouldClose:
to determine if a document represented by the closing window has been edited, and if so
give the user a chance to save the changes or cancel the close. If the user cancels the close
then -windowShouldClose: returns NO, and the window does not close.

Delegates are not compulsory, nor do they have to implement all delegate methods that
might be called. If a delegate has not been set for an instance of NSWindow, the window
simply closes when the user clicks the Close button. If a delegate has been set, the window
checks to see if the delegate implements the -windowShouldClose: method. If the
delegate does not implement -windowShouldClose:, the message is not sent and the
window closes. The default behavior of the window is changed only if the window has a
delegate and the delegate implements the -windowShouldClose: method to return NO.

Delegates can be part of an extended version of the responder chain. The NSWindow and
NSApplication classes give their delegates a chance to handle messages that are sent
up the responder chain. This important use of delegates is described in this chapter as part
of the Target-Action paradigm.

Delegates can often be set within Interface Builder. Most classes that can have a delegate
also provide a -setDelegate: method. Delegate messages are documented at the end
of the online class documentation for each class that can have a delegate. Before attempting
to subclass an Application Kit object, make sure that the desired behavior cannot be
achieved with a delegate. Using a delegate is almost always preferred over subclassing.

Delegation Versus Notifications

Delegation is a powerful and dynamic feature of Cocoa. Delegation and notifications as
described in Chapter 7, "The Foundation Framework Overview," are closely related. In
fact, many delegate methods accept a notification as an argument. Delegate messages and
notifications share many of the same benefits. Both decouple the sender of a message from
the receiver. Objects know very little about their delegates. The determination of the
messages that a delegate understands is made at runtime, just before the messages are sent.

The principal difference between a delegate and the receiver of notifications is that the
delegate can affect behavior that the receiver of notifications can only observe. Delegate
messages are sent directly to one object. Notifications are sent to a notification center that
forwards the messages to any number of observers. The return value, if any, from a method
that handles a notification is ignored. The returned values from methods that handle
delegate messages can often modify the sender's behavior.

Methods that handle notifications accept exactly one argument, and that argument is a
notification object. Delegate methods can have any number and type of arguments.
Notifications are inherently slower than delegate messages. Delegate messages take direct
advantage of the Objective-C runtime for fast dispatch. Notifications are processed through
a hash table to determine which objects should be notified in any given situation.

Specialization of Behavior and Coupling

One of the lauded virtues of object-oriented software design is the potential for code reuse
through specialization. The idea is that when a programmer tries to solve a new problem
she can start from an existing solution to a similar problem and "specialize" that solution to
solve the new one. Reusing all or part of someone else's work is better than starting from
scratch each time, and the capability to "specialize" facilitates code reuse.

The most-common technique for specializing and achieving code reuse is subclassing of
existing classes. Subclassing is arguably the most powerful and flexible way to specialize
behavior. Subclassing enables a programmer to directly modify practically any detail of the
behavior of the superclass. The code that is written in the subclass can be tightly integrated
with the superclass implementation. Often that tight integration is necessary or desirable.
Sometimes, however, loose integration and a loose coupling are better. Although
subclassing is a powerful reuse tool, it is ironic that subclassing can also increase one of the
most common obstacles to reuse, namely the unnecessarily tight coupling of code.

Delegation enables the specialization of a class without subclassing. The primary
advantages of delegation over subclassing are loose coupling and code partitioning
(modularization). The primary disadvantage of delegation is the sacrifice of some
flexibility and power. The following illustrates loose coupling.

In a multidocument application that displays Web pages, each page is represented onscreen
as a NSWindow instance that contains objects for displaying Web content. If the last open

window is closed, the user should be asked if the current Internet connection should be
closed. This can be handled by creating a class that implements the -
windowWillClose: delegate method, and using an instance of that class as the delegate
for each document window. NSWindow sends the -windowWillClose: message to its
delegate just before closing. The delegate can determine if the last window is being closed,
ask the user if the Internet connection should be closed, and close the connection if the user
agrees.

The use of delegation in the example provides loose coupling in the following ways.
Knowing if the window that is closing is the last window requires knowledge of (coupling
with) all other open document windows. Knowing how to close an Internet connection
requires coupling with that subsystem. If the behavior is implemented by subclassing
NSWindow rather than using a delegate, the subclass is coupled to all other document
windows and the Internet-connection subsystem. With delegation, a class that already
knows about Internet connections can be used as the delegate of the windows. With
delegation, the NSWindow class does not need to be extended to know about the Internet
connection closing, and the class for managing Internet connections does not have to know
anything about the NSWindow class. It just has to respond to the -windowWillClose:
method.

The example also illustrates code partitioning. In the typical Model-View-Controller
partitioning, the NSWindow that represents Web documents is clearly part of the View
subsystem. The class that manages Internet connections is probably part of either the
Model or the Controller partitions. Extending the NSWindow class via subclassing creates
a class that is part of the View subsystem by virtue of being a window and simultaneously
part of the Model subsystem because it manages Internet connections. In most cases, an
object that acts as a delegate is part of the controller layer, acting as intermediary between
the model and the view. The Model-View-Controller system is described in Chapter 6, and
in Chapter 26, "Application Requirements, Design, and Documentation."

Delegation Versus Multiple Inheritance

Multiple implementation inheritance is not supported by Objective-C. Delegation can
eliminate one of the common arguments in favor of multiple inheritance. Consider a
subclass of NSTextView called MYSquiggleTextView for drawing squiggles under
words, and a class called MYSpeller that can check the spelling of a word. Using
multiple inheritance, a text view that draws squiggles under misspelled words can be
created by inheriting from both MYSquiggleTextView and MYSpeller.
Alternatively, an instance of MYSpeller can be attached to an instance of
MYSquiggleTextView as a delegate.

Using a delegate is a more powerful and flexible technique than the proposed multiple
inheritance. Subclassing requires a high degree of coupling. The delegate is loosely
coupled enabling the optional use of a MYEmphasiseTechnicalWords instance as a
delegate without any change to the MYSquiggleTextView class. There is no need to

create one subclass of MYSquiggleTextView just for technical-word emphasis and
another just for spelling emphasis. A user interface can even be provided so users can
dynamically change the reason for drawing squiggles.

Delegation results in sufficiently loose coupling that many instances of
MYSquiggleTextView can be specialized in different ways simply by having a
different delegate. If MYSquiggleTextView is subclassed in the future, the changes
need not affect either the MYSpeller or the MYEmphasiseTechnicalWords classes.
The classes can all change independently.

Delegation avoids a tendency toward combinatorial classes. Consider
MYSquiggleTextView mixed with MYScientificSpeller and
MYSquiggleTextView mixed with TheOtherGuysLegalSpeller. Similarly, mix
MYSpeller with an ordinary NSTextView, MYStraightUnderlineTextView, or
some other class. If the only technique available is subclassing, there will be an awful lot of
classes after a while.

Limitations of Delegation

The biggest limitation of delegation is that it is only possible if the need for specialization
has been anticipated. The developers at NeXT and Apple were able to anticipate that
programmers would want to do something special when a window is closed. They provided
the -windowWillClose: delegate method and many others. Had they not anticipated
the need, there would probably be no alternative but to subclass NSWindow. There are
limits to the extent a delegate method can change the behavior of a class. A subclass is free
to change anything.

Delegation and notification are two techniques pervasive in the Cocoa frameworks. Both
offer alternatives to subclassing, but operate at the level of instances rather than of classes.
Delegation typically allows one object to effect the behavior of another. Notification serves
as a mechanism for informing an arbitrary number of observers of the actions of another.
Delegation provides a means of specializing behavior without subclassing, and therefore
allows loose coupling between objects. This facilitates object reuse, and sidesteps one of
the common reasons for multiple inheritance.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Target-Action Paradigm

One of the most powerful features of the Application Kit is its use of the target-action
paradigm. Objective-C messages that have one object argument are called actions. The one
argument is usually the sender of the action message. A target is an object that can receive
action messages. Targets and actions can be defined programmatically or in Interface
Builder. The target-action paradigm is a key mechanism with which user interface elements
respond to user actions. The target-action paradigm is implemented with four parts, the
NSControl class, the NSActionCell class, the NSApplication class, and the
responder chain. User interface elements such as menu items, buttons, and text fields are
implemented as subclasses of either NSControl or NSActionCell.

For example, buttons in a user interface are represented by instances of the NSButton
class, which is a subclass of NSControl. NSControl is a subclass of NSView so that it
inherits the capability to handle events as well as draw. When a user presses a button, the
button sends its action message to its target object. Because both the target and action are
variables, button instances can be very flexibly configured. A button can be configured to
send the -selectAll: action message to a target object that displays editable text.
Another button might be configured to send the -deleteSelectedText: action
message to the same text object target.

One of the strengths of the target-action implementation in the Application Kit is that
actions are sent as Objective-C messages using the standard Objective-C messaging
system. Other user interface toolkits use integer event IDs along with large switch
statements or tables of function pointers. Another approach used by other toolkits is to use
specialized command classes that must be subclassed for each different command and
receiver combination. The Objective-C runtime eliminates the need for extra code and
tables. Even more importantly, the target-action system used by the Application Kit takes
advantage of the responder chain to enable a tremendous amount of flexibility.

When a user interacts with a user interface element that is derived from the NSControl
class or the NSActionCell class, the user interface element asks the shared
NSApplication object to send an action to a target by calling NSApplication's -
sendAction:to:from: method. When an action is sent using -sendAction:to:
from:, the to: argument is the target of the action and the from: argument is the object
that is sending the action. The -sendAction:to:from: method sends the action
message to the target passing the sender as the argument. The target of an action message
can use the sender argument to obtain additional information. For example, when the user
moves a slider, the slider sends an action message to its target with the slider itself as the
argument. The receiver of the action message can ask for more information such as the
current value of the slider.

The role of the shared NSApplication object in the target-action implementation is
important. If the target of a user interface element is specified, the shared application object
just sends the action message to the target directly. However, if no target is specified (the
to: argument is nil), -sendAction:to:from: uses an expanded version of the
responder chain to select the object that receives the action message. Setting the target of a
user interface element to nil makes the target context sensitive.

If the to: argument to -sendAction:to:from: is nil, the method searches the
responder chain for an object that can respond to the action message. The search begins
with the first responder in the key window. If the first responder cannot respond to the
action message, the next responder is checked and so on until the key window itself is
reached. After the key window gets a chance, the key window's delegate is checked. If the
key window's delegate cannot respond to the action message, and the main window is
different from the key window, the first responder in the main window is checked. The
search for an object that responds to the action continues up the main window's responder
chain to the main window itself, and then the main window's delegate. If no target has been
found, the application object is tried. Finally, if the application object cannot respond to the
action, the application object's delegate is given a chance. Figure 8.9 enumerates the order
of the search for the target of an action message sent to nil.

Figure 8.9. The extended responder chain is searched in the indicated order for the
target of actions sent to nil.

NOTE

When the target of a user interface element is set to the First Responder in
Interface Builder, the target is actually set to nil, so that the expanded
responder chain is used to select the target at runtime.

The responder chain enables flexible, dynamic message processing that is context sensitive
in conjunction with the target-action paradigm. For example, the target of a -copy: action
sent from a menu item depends on the current first responder. If the first responder in the
key window is an editable text object with selected text, pressing the Copy menu item
places the selected text on the application's pasteboard. If the first responder has selected
graphics, the graphics are placed on the pasteboard. The result of pressing the Copy menu
item depends on the user's current selection identified by the first responder.

The EventMonitor.app application described in Chapter 15, "Events and Cursors," and
provided at www.cocoaprogramming.net demonstrates the responder chain.

http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Archived Objects and Nibs

The encoding and decoding of objects is briefly described in Chapter 5, as one of the
conventions used by the Cocoa frameworks. Most objects defined in Apple's frameworks
can be encoded and decoded whether they are nongraphical objects from the Foundation
framework, or graphical objects like windows and buttons from the Application Kit.
Encoding and decoding are frequently used to implement copy-and-paste operations, drag-
and-drop operations, and distributed-object messaging. When interconnected objects are
encoded as data into a block of memory or a file, the data is called an archive. One key to
using the Application Kit effectively is the knowledge that user interface elements and their
interconnections can be stored in just such an archive.

The objects stored in an archive are conceptually freeze dried. A freeze-dried object is an
actual software object including data and code. It was running in memory at one time, but
is now in cold storage. It can be decoded from an archive and revived, so that it begins
running from right where it left off at the time it was frozen. In fact, when a user interface
is designed in Interface Builder, the file that is saved is an archive of freeze-dried objects.
Interface Builder names files that contain such archives with the extension .nib. Nib
originally stood for Next Interface Builder, but the term has become generic and now just
refers to an archive of user interface objects. When an application loads a .nib file, the
objects are decoded to the same state they where in when encoded.

Most object-oriented environments include a visual tool for laying out user interfaces. Such
tools usually generate code and resources, which much be edited and compiled. Cocoa's
Interface Builder generates freeze-dried objects instead of code. This is an important
distinction. Generating code is a static approach, whereas the freeze-dried objects present a
dynamic solution. The static solution mimics the dynamic solution, but lacks much of its
underlying power. Freeze dried objects retain all their interconnections including delegates,
targets, actions, superviews, current displayed values, and so on. It is possible to create
nontrivial applications entirely with Interface Builder, and run them in Interface Builder's
Test Interface mode without ever compiling.

Interface Builder could have been called Object Connector because in addition to
positioning and sizing graphical objects, Interface Builder enables the interconnection of
objects. Interface Builder is not limited to editing the objects that Apple provides with
Cocoa. New objects can be edited and connected within Interface Builder with varying
degrees of sophistication. Any object can be instantiated and have outlets and actions that
are set within Interface Builder. New Interface Builder palettes can be created to enable
more complex editing and configuration as well.

It is possible to write Cocoa applications without using Interface Builder or any .nib files,
but loading .nib files is so convenient and powerful that almost every application uses

them. Unless the programmer intervenes, Cocoa applications automatically load a main nib
file when launched. The main nib file contains the objects that define the application's
menu bar. The main nib file for an application can be set in Project Builder's Application
Settings tab.

Nib Awaking

A problem can arise when objects that have been encoded into a .nib file are decoded. As
an object is decoded, it might need to access a reference to an object that has not yet been
decoded. How does an object know when during decoding it is safe to access the objects to
which it is connected? The answer is the -awakeFromNib method.

When objects are decoded from a .nib file, the Application Kit automatically sends the -
awakeFromNib message to every decoded object that can respond to it. The -
awakeFromNib message is only called after all the objects in the archive have been
loaded and initialized. When an object receives an -awakeFromNib message, it's
guaranteed to have all its outlet instance variables set. The -awakeFromNib message is
also sent to objects when Interface Builder enters Test Interface mode because Interface
Builder actually copies the interface before it is run. Interface Builder encodes objects into
a nib archive in memory, and then immediately decodes them to create a fully functional
copy, ready to test.

Implement -awakeFromNib to perform any initialization that needs to occur after all an
object's outlets have been reconnected after decoding from a .nib.

.nib files can be loaded into an application multiple times to create multiple copies of the
objects within the .nib. The multidocument architecture described in this chapter loads
the .nibs that define document windows as many times as needed to create as many
documents as needed.

The File's Owner

When direct communication between objects within a .nib and objects outside the .nib
is required, the .nib file's owner provides that communication. The file's owner represents
an object that is not in the .nib file. Figure 8.10 shows the Interface Builder icon that
represents the file's owner of the nib being edited. Connections to the outlets and actions of
the file's owner can be set in Interface Builder, but the actual object that is used as the file's
owner is only specified when the .nib is loaded.

Figure 8.10. Interface Builder uses an icon labeled File's Owner as a placeholder for
an object that is not in the .nib.

In many cases, direct connections between objects can be avoided by using notifications
and the responder chain. For example, an object decoded from a .nib can register to
receive notifications from within its -awakeFromNib implementation. Objects can also
send notifications to anonymous receivers or to the current first responder. Objects within
a .nib can use the shared NSApplication instance in every application by referring to the
NSApp global variable or calling [NSApplication sharedApplication].

.nibs are explicitly loaded into an application by calling the -loadNibNamed:
owner: method declared in a category of the NSBundle class. The category is part of
the Application Kit. As a result, .nibs cannot be loaded by programs that do not link to
the Application Kit, even if the .nib that is loaded does not contain any objects that
depend on the Application Kit.

The owner argument to -loadNibNamed:owner: is the object that is used as the file's
owner for the nib. Any connections made to the file's owner within the .nib are made to
the owner, specified when the .nib is loaded. Connections that cannot be made because
of inconsistencies between the owner used when the .nib is loaded and the outlets and
actions specified for the file's owner when the .nib was created are discarded. The -
awakeFromNib method is also sent to the file's owner specified with -
loadNibNamed:owner:. The file's owner is not technically part of the .nib, but a .
nib's owner can implement -awakeFromNib to perform any logic needed after a nib
has been loaded. If several .nibs are loaded using the same owner, that owner's -
awakeFromNib method is called multiple times.

The application's main .nib is loaded automatically by the NSApplication object
when the application is launched. The NSApplication object itself is the file's owner of
the main .nib.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

NSWindowController Overview

The NSWindowController class is often used as the file's owner when loading a .nib
containing the definition of a window. The NSWindowController class can be used to
customize a window's title, preserve the window's position and size in the user's defaults
database, cascade windows onscreen, and manage the window's memory when the window
is closed. Unlike NSApplication, NSWindow, and NSView, the
NSWindowController class is not a core part of the Application Kit architecture.
NSWindowController is provided as a convenience to help implement a common
feature of applications, the dynamic loading of windows from nibs and their subsequent
management.

NSWindowController can be used to manage windows that are created
programmatically as well as windows loaded from .nibs. The NSWindowController
class can be used along with other classes to implement flexible multidocument support in
applications. NSWindowController is not used in every Application Kit-based
application, but it is available for use when appropriate and can eliminate lines of code that
would otherwise be repeated in many applications.

NSWindowController can be subclassed to manage complex documents in an
application. Custom subclasses of NSWindowController are a handy place to
implement logic that ties the documents of an application to the application itself,
particularly if other dedicated multidocument support classes are not used. The
NSWindowController class is usually part of the Controller in the common Model-
View-Controller application architecture as described in Chapter 6.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Multidocument Applications

Applications that enable users to open and manipulate multiple documents simultaneously are very
common. Examples of multidocument applications include word processors, spreadsheets, and drawing
programs. Because multidocument applications are so common, the Application Kit contains classes that
automate most of the work needed to manage multiple documents simultaneously.

The following five classes interoperate to aid in the implementation of multidocument applications:
NSApplication, NSDocumentController, NSDocument, NSWindowController, and
NSFileWrapper. Every application contains an instance of NSApplication, but the other classes
are strictly optional. NSDocumentController, NSDocument, NSWindowController, and
NSFileWrapper are powerful classes that implement code that would otherwise be duplicated in many
applications. Figure 8.11 shows the relationships between these classes used in a complex multidocument
application.

Figure 8.11. The NSApplication, NSDocumentController, NSDocument,
NSWindowController, and NSFileWrapper classes interoperate to implement multidocument

applications.

Apple's documentation on the Application Kit's multidocument support is excellent and comprehensive.
An overview of multidocument application design using the provided classes is provided in online
documentation at http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/
ProgrammingTopics/AppArchitecture/. The TextEdit.app sample application that is distributed with
Apple's Cocoa developer tools is an example of a multidocument application that does not use the

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/AppArchitecture/
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/AppArchitecture/

multidocument-support classes. The Sketch.app sample does use the built-in multidocument support.
Examining TextEdit.app's source code and comparing it to Sketch.app is a good way to contrast the
different approaches to multidocument support.

As a general rule, the built-in classes save a lot of work and ensure a high degree of compatibility and
consistency with other applications. Using the NSDocument and NSDocumentController classes
can also simplify the implementation of scripting and undo features in applications.

NSApplication Support

A certain amount of support for multidocument applications is built into the NSApplication class.
NSApplication provides delegate methods that enable customization of standard application
behaviors regarding multiple documents. For example, Mac OS X applications that support multiple
documents are expected to open a new untitled document under some circumstances. The -
applicationShouldOpenUntitledFile: delegate method can be implemented in an
application object's delegate to control that behavior. The following delegate methods are provided to
enable the application object's delegate to control multidocument behavior without using the built-in
multidocument support classes:

-(BOOL)application:(NSApplication *)anApp
 openFile:(NSString *)filename

-(BOOL)application:(NSApplication *)anApp
 openFileWithoutUI:(NSString *)filename
-(BOOL)application:(NSApplication *)anApp
 openTempFile:(NSString *)filename

-(BOOL)application:(NSApplication *)anApp
 printFile:(NSString *)filename

-(BOOL)applicationOpenUntitledFile:(NSApplication *)anApp

-(BOOL)applicationShouldHandleReopen:(NSApplication *)anApp
 hasVisibleWindows:(BOOL)flag

-(BOOL)applicationShouldOpenUntitledFile:(NSApplication *)anApp

-(NSApplicationTerminateReply)applicationShouldTerminate:
(NSApplication
*)anApp

-(BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication
*)anApp

The NSApplication class implements most of the standard behaviors expected of multidocument
classes without intervention by its delegate. The delegate methods should only be used when there is a
need to deviate from the standard behaviors. If the Application Kit's classes for supporting
multidocument applications are used, the delegate methods are almost certainly unnecessary

NSDocumentController Overview

NSDocumentController class assists with the creation of new documents and opening existing
documents. It also plays a role in saving, printing, and closing documents. There should be at most an
instance of NSDocumentController in any application. The use of NSDocumentController is
optional, but it provides many of the features of multidocument applications that must be tediously hand
coded if it is not used.

When the multidocument application is created with Project Builder and Interface Builder, an instance of
NSDocumentController is automatically created and added to the application's responder chain.
Standard menu items such as New and Open in the File menu send actions to the first responder. The
actions travel up the responder chain until handled. NSDocumentController handles many standard
document-related actions including the actions sent by default from the New and Open menu items. If no
object preceding the document controller in the responder chain handles such actions then the document
controller will.

NSDocumentController handles the actions sent from the New menu item by creating a new
instance of a NSDocument subclass and initializing it with the -init method. The subclass that is
instantiated can be set within Project Builder by selecting the Edit Active Target menu item in the Project
menu. Project Builder displays various properties of the current target including its Application Settings.
Within the Application Settings tab, type the name of a NSDocument subclass into the Document Class
field.

When NSDocumentController receives the action to open an existing document, it displays the
Open panel, gets the user's selection, creates a new instance of a subclass of NSDocument as
appropriate, and initializes the new document object by calling -initWithContentsOfFile:
ofType:. The subclass of NSDocument that is instantiated might depend on the type of file being
opened. The associations between file types and NSDocument subclasses are made in Project Builder's
Application Settings tab.

Values entered via Project Builder's Application Settings interface are stored in a human-readable text
file named project.pbxproj within the *.pbproj directory created by Project Builder for each project.
When an application is built by Project Builder, a file named Info.plist is created based on the project's
application settings and stored in the *.app directory which contains the resulting application executable.
Both can be edited in any text editor if some care is taken to preserve the formatting.

NOTE

*.pbproj and *.app directories as well as many others are depicted as individual files in
Apple's Finder. The contents of these folders can be revealed by selecting the Show
Package Contents option of Finder's contextual menu. The contextual menu is shown if the
Control key is held down when clicking on the folder.

NSDocumentController is rarely subclassed. It is included in the responder chain for action
messages automatically if it is included in an application. NSDocumentController also registers for
and receives notifications that are sent when documents might be affected by system events. For
example, NSDocumentController responds when an application is notified that the system is

shutting down so that unsaved documents can be saved. NSDocumentController does not do
anything that cannot be done by other classes. In particular, the application's delegate can fill most of the
roles of the document controller. If custom behavior not provided by NSDocumentController is
needed, it is usually easier to create a custom class and use it as the application's delegate than it is to
subclass NSDocumentController. A custom application delegate and NSDocumentController
can both be used in the same application. NSDocumentController defers to the application delegate
whenever both respond to the same delegate message or notification.

NSDocument Overview

NSDocument is an abstract class. Subclasses of NSDocument are used to encapsulate the data
associated with documents. Subclasses of NSDocument can be used in multidocument applications and
in other types of applications. A subclass of NSDocument is appropriate any time an application
manipulates persistent data that is stored in the file system.

The NSDocument class provides methods that implement the standard actions sent by the Save, Save
As, Print, Revert, and Close menu items and others. NSDocument handles most of the logic needed by
all applications, such as showing the Save panel when the action message associated with the Save As
menu item is received. The NSDocument class even provides partial support for undo, redo, and
scripting features that can be expanded to meet the needs of particular applications. Subclasses inherit the
standard behaviors and only have to override a handful of methods to enable application-specific data
manipulation. Like with the NSDocumentController class and the NSWindowController class,
using NSDocument is optional, but it provides standard behaviors that must be hand coded if it is not
used.

A subclass of NSDocument is typically used in conjunction with one or more instances of
NSWindowController to implement a user interface for documents. The NSDocument subclass
stores the data that is represented by the document and has references to any window controllers
associated with windows that display the data. The typical relationships between document controllers,
documents, and window controllers are shown in Figure 8.11. Although the relationships might seem
complex, each class has a narrowly defined role. They cooperate to provide a complete solution for
document management and presentation.

Unlike NSApplication, NSDocumentController, and NSWindowController,
NSDocument must be subclassed to be used in an application. The details of subclassing NSDocument
and using the Application Kit's multidocument support classes are provide in Apple's documentation that
comes with the developer tools. Several examples in this book use the multidocument classes, but the
emphasis is unleashing the power of advanced features. The multidocument classes are presented as part
of the infrastructure used to delve into more advanced topics. Detailed introductory tutorials for creating
document-based applications with Apple's developer tools are available on the Internet. One good tutorial
is at www.stepwise.com/Articles/VermontRecipes/index.html. The interoperation of the multidocument
classes might seem complex or mysterious at first, but in reality they provide straightforward
implementations that can be readily replicated as shown by the TextEdit.app sample application that
comes with the developer tools. Working with the multidocument classes might be the first task when
coding a new Cocoa application, but the task is highly automated by the tools and consumes a tiny
fraction of the time invested in coding.

NSFileWrapper Overview

http://www.stepwise.com/Articles/VermontRecipes/index.html

One additional class that aids the implementation of multidocument applications is NSFileWrapper.
The NSDocument class is used to encapsulate the data stored by a document and the relationship
between that data and its graphical presentation in one or more windows. The NSFileWrapper class is
often used within the implementation of a NSDocument subclass. NSFileWrapper encapsulates the
relationship between the data stored by a document and that data's representation in a file system. For
example, many applications store the data for one document within many related files in a directory
called a package. The package and all contained files appear to be a single file to users.

The use of packages provides a way for developers to store document data in the number of files and
formats that is most convenient without inadvertently increasing the user's perception of complexity.
Packages provide multiple-streams of data for one document and are conceptually similar to HFS
resource forks. Packages can contain any number of different files and even other packages. One reason
to use a package to store document data is so that document settings for page size and margins might be
stored in one file, and document content in another. For example, in an application that displays standard
image data formats, the standard format image data can be stored separately from application-specific
data. To the user, the whole package appears to be a single file that can be copied and moved as a unit.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Undo and Redo

The Application Kit includes a powerful and flexible system to implement undo and redo
operations by taking advantage of the Objective-C runtime to record the messages sent to
objects and play them back later. Many Application Kit classes including the text
management views already implement undo and redo.

Each instance of the NSDocument class optionally includes an instance of
NSUndoManager. The NSUndoManager class stores recorded messages and works
with the standard Undo and Redo menu items. NSUndoManager is actually part of the
Foundation framework because nongraphical applications might include undoable
operations. The NSUndoManager class can be used without the NSDocument class and
visa versa, but using them together automatically provides several benefits. Each document
can have its own list of undoable and redoable operations. The NSDocument class can use
the undo manager to provide information about the state of the document, such as whether
there have been any unsaved changes made before a document is closed.

NSUndoManager uses instances of the NSInvocation class to store Objective-C
messages and their arguments. By default, all the messages that are stored in an undo
manager, within one iteration of the run loop, are grouped into a single undoable operation.
This is a sensible policy because all the messages that result from a single user action
should be undoable by a single user action. Redo is automatically supported whenever an
operation is undone. Just as messages for undo are recorded when an operation is originally
performed, undoing the operation records messages that enable redo. Redo is essentially
implemented as undoing undo.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Menu Validation

The Application Kit implements menus with the NSMenu class. After each user event,
visible menu items are automatically validated. By default, a menu item is valid, and
therefore enabled, if its target can respond to its action. If no object that responds to the
menu item's action is found, the menu item is invalid and disabled.

When the target for a menu item is a specific object, default validation is simple. The target
either responds to the action or it does not. When the target of a menu item is nil the
expanded responder chain is searched to validate the menu item. If any object in the
expanded responder chain responds to the action the menu item is valid. Otherwise, it is
invalid.

The default validation can be enhanced by implementing the -validateMenuItem:
method in object within the responder chain. When NSMenu has found an object that
responds to a menu item's action, an additional check is made to determine if that object
also implements -validateMenuItem:. If so, NSMenu calls -
validateMenuItem: with the menu item being validated as the argument. If -
validateMenuItem: returns YES, the menu item is the validated.

The -validateMenuItem: method enables fine control of a menu item's status. For
example, a view in the responder chain might respond to the -copy: action message, but
the Copy menu item should still be disabled if the view that contains no selection to be
copied is the menu item's target. The view can implement -validateMenuItem: to
return YES only if the user's selection within the view can be copied.

Automatic menu validation is disabled by calling NSMenu's -
setAutoenamblesItems: method. Menu items must be validated manually using the
-setEnabled: method implemented by NSMenuItem if automatic validation is
disabled. The -setEnabled: method should not be used in conjunction with automatic
validation because the automatic validation might unpredictably reset any status set with -
setEnabled:.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Spell Checking

The Application Kit contains support for spell checking of any selectable text. A single instance
of the NSSpellChecker class provides access to system-wide, spellchecking services that can
be used with the Application Kit's text objects. A standard panel for spell checking is also
provided to let users select alternate spellings or add words to the system-wide dictionaries.
Spelling in multiple languages is supported, but Mac OS X only ships with an American English
dictionary. When additional dictionaries are added to a system, NSSpellChecker uses them
automatically, based on user language preferences.

The text classes provided by the Application Kit already support spell checking, and a Spelling
submenu is provided by default in every Application Kit based application. The menu items in the
Spelling submenu send actions using the responder chain. The text classes already respond to the
appropriate actions. The programmer must implement methods for the relevant action messages
to enable spell checking in custom classes.

Enabling Spell Checking

The details of enabling spell checking in custom classes are provided here primarily to highlight
another example of the way applications use dynamic features. Spell checking is implemented
using the responder chain. Any class that responds to the necessary messages can benefit from
built-in Application Kit features.

The Check Spelling menu item of the standard Spelling submenu is configured to send the -
checkSpelling: action message using the responder chain. Enable spell checking in a
custom class by implementing the -checkSpelling: method to implement the following
code:

[[NSSpellChecker sharedSpellChecker] checkSpellingOfString:
aString
 startingAt:0];

The -sharedSpellChecker method returns the shared instance of NSSpellChecker. The
aString argument contains the string to be checked. An optional index into the string can be
supplied to start checking at some position other than the start of the string. The -
checkSpellingOfString:startingAt: method returns the range of the first word that
is misspelled. The more complex -checkSpellingOfString:startingAt:language:
wrap:inSpellDocumentWithTag:wor dCount: method can be used to fine tune the
spell checking by specifying a language and a set of words to ignore.

When the range of the first misspelled word is found, the spelling can be corrected via the -
changeSpelling: action. Implement -(void)changeSpelling:(id)sender to

replace the misspelled word with the string provided by the sender argument. If -
changeSpelling: is not implemented, NSSpellChecker can identify spelling errors but
cannot fix them.

If a custom object conforms to the NSIgnoreMisspelledWords protocol then
NSSpellChecker enables the Ignore button in the standard-spelling panel.

Book: Cocoa® Programming
Section: Chapter 8. The Application Kit Framework Overview

Summary

This chapter provides an overview of the most prominent features built into the Application
Kit, and the architecture used to provide those features. The Application Kit contains a core
set of classes that all Application Kit-based applications must use. Those classes are the
NSResponder and three of its subclasses, NSApplication, NSWindow, and
NSView. Features that are common to most applications are implemented by classes that
are optionally included to avoid work that would otherwise be repeated in many
applications. Optional classes such as NSDocumentManager, NSDocument, and
NSWindowController cooperate to enable many powerful features and save many
lines of code. Each of the optional classes are integrated into the responder chain
constructed by the core classes. Spell checking, undo, redo, and automatic menu validation
all take advantage of the responder chain to simplify their implementation and enhance
their value.

Concepts, overviews, language options, conventions, architecture, and design patterns have
been covered so far. Starting with Chapter 9, "Applications, Windows, and Screens," the
details of Cocoa programming with Objective-C are the primary focus. The conceptual
information presented in the first eight chapters provides the information needed to
understand where the upcoming details fit into the over all system. Pay attention to the
recurring patterns and conventions. Programmers familiar with the idioms and conventions
of other development environments should take note of the areas where Cocoa differs from
other frameworks. In particular, the dynamic features of Objective-C are used extensively.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 9. Applications, Windows, and Screens

IN THIS CHAPTER

● The New Image Viewer
● Working with NSWindow
● Working with NSApplication
● Modal Loops
● Working with Sheets
● Working with Drawers
● Working with Screens
● Working with Panels

This chapter builds on information about the principal Application Kit framework classes
introduced in Chapter 8, "The Application Kit Framework Overview." To show how
classes such as NSWindow and NSApplication are used in applications, this chapter
extends the Image Viewer application started in Chapter 3, "Using Apple's Developer
Tools." The Image Viewer application in Chapter 3 has many compelling features even
though it does not contain a single line of custom code. In this chapter, custom classes are
written to make Image Viewer into a multidocument application similar to Apple's Preview
application. The complete implementation of Image Viewer is available at www.
cocoaprogramming.net.

In addition to showing typical uses of the NSWindow and NSApplication classes, the
new Image Viewer application uses Cocoa standard Open, Save, and Alert panels, and a
technique for using panels as Aqua sheets is shown.

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Chapter 9. Applications, Windows, and Screens

The New Image Viewer

Two custom classes are used to convert the Image Viewer application created in Chapter 3
into a multidocument application with the features that users expect: MYDocument and
MYDocumentManager.

Cocoa includes the NSDocument and NSDocumentController classes that have
many features in common with MYDocument and MYDocumentManager. Most
multidocument Cocoa applications should use the existing NSDocument and
NSDocumentController classes because they save work. In fact, they save so much
work that they completely hide their interaction with other classes such as NSWindow and
NSApplication. Because one of the purposes of this example is to show how
NSWindow and NSApplication are used, this example does more work than is usually
necessary.

The NSDocument and NSDocumentController classes are used in an example in
Chapter 18, "Advanced Views and Controls." A side benefit of implementing
MYDocument and MYDocumentManager in this chapter is that they dispel much of the
mystery about how NSDocument and NSDocumentController work. Project
Builder and Interface Builder simplify the creation of multidocument applications by
hiding most of the configuration and communication that takes place between the
document-related classes. This example makes the communication explicit.

In addition to requiring more work than necessary, the MYDocument and
MYDocumentManager classes lack many features of NSDocument and
NSDocumentController. For example, NSDocument handles undo, redo, and
AppleScript support, whereas NSDocumentController maintains a persistent Recent
Documents menu and supports the HFS file system's unique features. These features can be
added to MYDocument and MYDocumentManager, but that is beyond the scope of this
chapter.

NOTE

Apple's TextEdit sample shows another way to implement multidocument
applications without using NSDocumentController. TextEdit supports
undo, redo, AppleScript, the Recent Documents menu, and HFS file system
features.

The Role of the MYDocument Class

The Image Viewer application built in Chapter 3 has one window for displaying images. It
is necessary to modify Image Viewer so that it can have any number of open documents
each represented visually by a window that contains an NSImageView.

The MYDocument class is created to encapsulate documents. Each MYDocument
instance has an outlet connected to an NSImageView instance and stores information
about the document such as its path in the file system. The MYDocument class is
responsible for saving documents and giving users a chance to save unsaved documents
when their associated windows are closed.

The Role of the MYDocumentManager Class

A single instance of the MYDocumentManager class creates new MYDocument
instances and manages open documents. MYDocumentManager also cascades document
windows and allows review and saving of unsaved documents when the application quits.

By convention, the use of the word "manager" in a class name implies that the class is
responsible for allocating, storing, and releasing instances of some other class. For
example, the NSFontManager class stores information about existing NSFont instances.

Book: Cocoa® Programming
Section: Chapter 9. Applications, Windows, and Screens

Working with NSWindow

The NSWindow class encapsulates windows in Cocoa. Each instance of MYDocument has an associated window
that represents the document on the screen. Instances of MYDocument need to be informed when the user uses the
standard File, Save and File, Save As menu items. MYDocument also needs to know when its associated window is
closed so that it can prompt the user to save unsaved documents.

It is not necessary to subclass NSWindow to get it to interoperate with MYDocument. Classes such as NSWindow
are seldom subclassed because they provide delegate methods that enable customization of behavior without the need
to subclass.

The NSWindow class provides delegate methods to inform a delegate object when attributes of the window change.
Delegate methods are able to influence the behavior of a window. For example, NSWindow calls its delegate's -
windowShouldClose: method to ask permission to close. If the delegate's -windowShouldClose: returns
NO, the window does not close.

Each instance of MYDocument is the delegate of its associated window.

NSWindow's Delegate

Each Cocoa class that sends delegate messages includes a section titled "Methods Implemented By the Delegate" in
its class documentation. The NSWindow class documentation lists the following delegate methods:

- (void)windowDidResize:(NSNotification *)notification;
- (void)windowDidExpose:(NSNotification *)notification;
- (void)windowWillMove:(NSNotification *)notification;
- (void)windowDidMove:(NSNotification *)notification;
- (void)windowDidBecomeKey:(NSNotification *)notification;
- (void)windowDidResignKey:(NSNotification *)notification;
- (void)windowDidBecomeMain:(NSNotification *)notification;
- (void)windowDidResignMain:(NSNotification *)notification;
- (void)windowWillClose:(NSNotification *)notification;
- (void)windowWillMiniaturize:(NSNotification *)notification;
- (void)windowDidMiniaturize:(NSNotification *)notification;
- (void)windowDidDeminiaturize:(NSNotification *)notification;
- (void)windowDidUpdate:(NSNotification *)notification;
- (void)windowDidChangeScreen:(NSNotification *)notification;
- (void)windowWillBeginSheet:(NSNotification *)notification;
- (void)windowDidEndSheet:(NSNotification *)notification;
- (BOOL)windowShouldClose:(id)sender;
- (id)windowWillReturnFieldEditor:(NSWindow *)sender toObject:(id)client;
- (NSSize)windowWillResize:(NSWindow *)sender toSize:(NSSize)frameSize;
- (NSRect)windowWillUseStandardFrame:(NSWindow *)window defaultFrame:
 (NSRect)newFrame;
- (BOOL)windowShouldZoom:(NSWindow *)window toFrame:(NSRect)newFrame;
- (NSUndoManager *)windowWillReturnUndoManager:(NSWindow *)window;

The delegate methods that do not require any return value have a single argument that is an NSNotification
instance. In each case, the NSWindow instance that sent the delegate message is obtained by sending the -object
message to the notification argument. The delegate methods that return a value all include the NSWindow instance
that sent the delegate message as an argument. Apple's class documentation describes how each delegate method is

used and when it is called.

The MYDocument class implements only the following three NSWindow delegate methods:

/*" Window delegate methods "*/
- (BOOL)windowShouldClose:(id)sender;
- (void)windowWillClose:(NSNotification *)notification;
- (void)windowDidBecomeKey:(NSNotification *)notification;

Cocoa classes check to see if their delegate responds to each delegate message before sending it. As a result, it is
common for delegates to implement only the methods they need. In the case of the MYDocument class, only three of
the available delegate methods are needed.

Because each MYDocument instance is a window's delegate, each instance becomes part of the responder chain and
can receive action messages. As explained in the "Target-Action Paradigm" section of Chapter 8, NSWindow
instances include their delegates in the responder chain for actions. MYDocument handles the -saveDocument:,
-saveDocumentAs:, and -noteImageWasDropped: action messages. Each MYDocument instance receives
these action messages when user interface objects, such as menu items, send the actions up a responder chain that
starts with the document's associated window.

The responder chain is also used to validate menu items. The -validateMenuItem: method is called
automatically before menu items become visible. When a menu item is about to be displayed, the menu item searches
the responder chain for an object that responds to its action. When a suitable object is found, the menu item sends the
-validateMenuItem: message to that object passing the menu item to be validated as an argument.
MYDocument implements -validateMenuItem: to enable or disable menu items that send the -
saveDocument: or -saveDocumentAs: actions. For example, if a document has not been modified, the menu
item that sends -saveDocument: can be disabled because there are no changes to save.

Configuring the Document's Window

Each MYDocument instance needs its own associated window and other objects used to represent the document.
MYDocument gets its window by loading a .nib file that defines the interface for documents. Each time the .nib
file that defines documents is loaded, new instances of the objects inside the .nib are unarchived. By loading the .
nib file, each MYDocument instance gets its own instances of the user interface objects.

To make the Image Viewer interface ready to support multiple documents, the following changes must be made:
Start Project Builder and open the project for the Image Viewer application developed in Chapter 3. Open Image
Viewer's MainMenu.nib file by double-clicking it within the Resources folder in the Files tab of Project Builder's
Project pane. Figure 9.1 shows the MainMenu.nib file selected in Project Builder.

Figure 9.1. The MainMenu.nib file for Image Viewer is selected in the Files tab of Project Builder's Project
pane.

The MainMenu.nib file contains only one window for displaying images. To provide the capability of having any
number of open document windows, the interface for document windows needs to be stored separately from the other
objects in MainMenu.nib. By putting the definition of the document window in a separate .nib file, it becomes
possible to load the document .nib file over and over to create as many windows as needed without also creating
new copies of the main menu and other objects in MainMenu.nib.

In Interface Builder, create a new empty interface by using the File, New menu item. When Interface Builder
displays the panel titled Starting Point, select an Empty Cocoa interface as shown in Figure 9.2 and click the New
button. Interface Builder displays a window titled Untitled that represents the new empty .nib file. The new
interface is used to define the interface for documents in the new Image Viewer application.

Figure 9.2. The Starting Point panel enables selection of the type of interface to create.

Two .nib files are now open at once: the MainMenu.nib file and the new empty .nib file represented by an
Interface Builder window titled Untitled. In the Instances tab of the window titled MainMenu.nib, select the icon
for the window that contains the NSImageView instance. Cut the window with Interface Builder's Edit, Cut menu
item. Make the window titled Untitled key by clicking in its title bar, and then paste the cut window using Interface
Builder's Edit, Paste menu item. Figure 9.3 shows the window containing the NSImageView cut from the

MainMenu.nib and pasted into the Untitled .nib.

Figure 9.3. The window titled Dropped Image has been cut from the MainMenu.nib and pasted into Untitled.

Save MainMenu.nib and close it for now. It will be edited more in the later example.

The next step is to create the MYDocument class. Select the Classes tab in the window titled Untitled and select the
NSObject class as shown in Figure 9.4. Create a new subclass of NSObject using Interface Builder's Classes,
Subclass NSObject menu item and name the new class MYDocument.

Figure 9.4. The NSObject class is selected in MainMenu.nib's Classes tab.

With the MYDocument class selected in the Classes tab of the window titled Untitled, use Interface Builder's
Classes, Add Outlet to the MYDocument menu item. If it is not already visible, Interface Builder displays the Show

Info window titled MYDocument Class Info. In the window titled MYDocument Class Info, set the name of the
new outlet to imageView and set its type to NSImageView as shown in Figure 9.5.

Figure 9.5. MYDocument's new outlet is named imageView and has the type NSImageView.

Select the tab labeled 0 Actions in the Show Info window titled MYDocument Class Info. Use the Add button in the
lower-right corner to add an action method to the MYDocument class. Name the new action saveDocument:.
Next, add two more actions. Name one saveDocumentAs: and the other noteImageWasDropped:.

Make sure the MYDocument class is still selected in the Classes tab of the window titled Untitled and use Interface
Builder's Classes, Create Files for the MYDocument menu item to create the files that will contain the interface and
implementation of the MYDocument class. Interface Builder displays a sheet asking where to store the new files.
Select the folder that contains the Image Viewer project and click the Choose button at the bottom of the sheet.

Switch to the Instances tab in the window titled Untitled and select the Icon labeled File's Owner. The Show Info
window's title changes to File's Owner Info. The File's Owner Info window shows a list of classes. Select the
MYDocument class in the list. Interface Builder now knows that an instance of MYDocument will be the File's
Owner of the .nib when the .nib is loaded.

Draw a connection line from the File's Owner icon to the area inside the scroll view in the Dropped Images window.
Connection lines are drawn by pressing Ctrl and dragging the mouse. Connect the imageView outlet of the File's
Owner to the NSImageView instance that is already inside the scroll view. Figure 9.6 shows the connection line
from the File's Owner icon to the NSImageView instance inside the scroll view.

Figure 9.6. Click the Connect button to connect the imageView outlet of the File's Owner to the
NSImageView instance inside the scroll view.

Draw a connection line from the icon for the window titled Dropped Image to the File's Owner icon. Make the File's
Owner the window's delegate, as shown in Figure 9.7.

Figure 9.7. Make File's Owner the window's delegate.

Select the icon for the window titled Dropped Image. If the Show Info window titled NSWindow Info is not already
visible, use Interface Builder's Tools, Show Info menu item to make it visible. In the Options section of the
NSWindow Info window, make sure that the option Visible at launch time is off. For .nib files other than
MainMenu.nib, the Visible at launch time options specifies whether the window should be visible when the .nib
file that contains the window is loaded. In Image Viewer, it is better to have the windows that represent documents
invisible at first so that the MYDocument class can make them visible at the right time.

Save the Untitled .nib as ImageViewerDocument.nib inside the English.lproj directory of the Image
Viewer project. If Interface Builder displays a sheet asking if it should add the .nib file to the Image Viewer
project, click the Add button on the sheet. Now close ImageViewerDocument.nib, hide Interface Builder, and
return to working in Project Builder.

Implementing MYDocument

If the Image Viewer project does not already contain the MYDocument.h and MYDocument.m files created in
Interface Builder, select the Classes folder in the Files tab of Project Builder's Project pane. Use Project Builder's

Project, Add Files menu item to add MYDocument.h and MYDocument.m to the project. Project Builder displays
a sheet asking how to reference the files added to the project. Click the Add button to accept the default reference
style.

Edit the MYDocument.h file so that it defines the interface to MYDocument class as follows:

File MYDocument.h:

#import <Cocoa/Cocoa.h>

@interface MYDocument : NSObject
{
 IBOutlet NSImageView *imageView;

 NSString *_myDocumentPath; /*" Document's path "*/
 BOOL _myHasEverBeenSaved; /*" YES iff document has ever been saved "*/
}

/*" Supported document extensions "*/
+ (NSArray *)documentExtensions;

/*" Designated Initializer "*/
- (id)initWithPath:(NSString *)aPath;

/*" Alternate Initializer "*/
- (id)init;

/*" Document management methods "*/
- (NSString *)documentPath;
- (BOOL)safeClose;

/*" Access document's Window "*/
- (id)documentWindow;

/*" Document status "*/
- (BOOL)hasEverBeenSaved;
- (BOOL)isDocumentEdited;

/*" Actions "*/
- (IBAction)saveDocument:(id)sender;
- (IBAction)saveDocumentAs:(id)sender;
- (IBAction)noteImageWasDropped:(id)sender;

/*" Window delegate methods "*/
- (BOOL)windowShouldClose:(id)sender;
- (void)windowWillClose:(NSNotification *)notification;
- (void)windowDidBecomeKey:(NSNotification *)notification;

@end

The implementation of the MYDocument class begins here and is developed in the next few sections of this chapter
as the Cocoa features used by the implementation are described. The first lines in MYDocument.m import the class
interface and start the implementation of MYDocument.

#import "MYDocument.h"

@implementation MYDocument
/*" This class encapsulates documents in a multi-document application. "*/

The next part of the implementation defines some localizable strings that are presented to users and used to report
errors that are detected when Image Viewer is run.

Localizable Strings

Localization is described in the Localization section of Chapter 7, "Foundation Framework Overview." When an
application is localized for a particular language or culture, every string that is ever presented to users needs to be
translated to the appropriate language. Even error messages need to be translated, so users can read them when they
are displayed.

Many of the strings that users see are defined in .nib files. Cocoa applications are able to use different .nib files
for every localization. When Cocoa applications load .nib files, they automatically load the available .nib files
that best match the user's language preferences.

Any number of .nib files can be created to support localization without the need to edit or compile code for each
one, but strings are also commonly defined in code. There needs to be a way to localize strings in code without
having to edit and recompile the code for every localization. Cocoa provides the NSLocalizedString() macro
that aids the localization of strings in code.

NSLocalizedString() accepts two arguments. The first is constant NSString containing words that need to
be translated for each localization. The second argument is a short phrase that explains the meaning of the first
argument. The second argument is intended to help translators make accurate translations. The
NSLocalizedString() macro is explained in more detail at http://developer.apple.com/techpubs/macosx/Cocoa/
Reference/Foundation/ObjC_classic/Functions/FoundationFunctions.html. Apple provides a program called
genstrings in /usr/bin that is capable of reading source code and generating a file named Localizable.
strings containing strings that need to be translated.

NOTE

Finder hides the /usr/bin folder and other traditional Unix folders by default. The /usr/bin
folder can be accessed from the Terminal application or by using Finder's Go, Go to Folder menu and
typing /usr/bin in text field presented.

Different versions of the Localizable.strings file are stored for each language along with the different .nib
files. When a Cocoa application that uses NSLocalizedString() is run, it automatically uses the translated
strings based on the user's language preferences. The same source code can be used with every localization without
the need to edit or recompile the source code for each one. More information about genstrings is available at
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Internationalization/
Tasks/GeneratingStringsFiles.html.

The following localizable strings are used in MYDocument.m:

/*" Constant local strings "*/
#define MYDEFAULT_DOC_PATH NSLocalizedString(@"~/Untitled", @"")
#define MYCANCEL NSLocalizedString(@"Cancel", @"")
#define MYSAVE_CHANGES NSLocalizedString(\

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/Functions/FoundationFunctions.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/Functions/FoundationFunctions.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Internationalization/Tasks/GeneratingStringsFiles.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Internationalization/Tasks/GeneratingStringsFiles.html

 @"%@ has been edited. Do you want to save changes?", @"")
#define MYDEFAULT_CLOSE_ACTION NSLocalizedString(@"Close", @"")
#define MYSAVE NSLocalizedString(@"Save", @"")
#define MYDONT_SAVE NSLocalizedString(@"Don't Save", @"")
#define MYFILE_SAVE_ERROR NSLocalizedString(@"Document Save Error", @"")
#define MYFILE_SAVE_ERROR_MSG NSLocalizedString(@"Unable to save <%@>.", @"")
#define MYFILE_OPEN_ERROR NSLocalizedString(@"Document Open Error", @"")
#define MYFILE_OPEN_ERROR_MSG NSLocalizedString(@"Unable to open <%@>.", @"")

Document File Types

The MYDocument class adds the +documentExtensions class method to the class methods inherited from
NSObject. The +documentExtensions method returns an array of file extensions for file types that can be
used by an instance of MYDocument. The Image Viewer application can display any image file type supported by
the NSImage class. The NSImage class is described in Chapter 14, "Custom Views and Graphics Part III."
NSImage's +imageFileTypes method returns an array containing all the file types understood by NSImage.

+ (NSArray *)documentExtensions
/*" Returns the extensions supported by NSImage "*/
{
 return [NSImage imageFileTypes];
}

The Document's Path

Each instance of MYDocument stores the path to the file that it represents. A standardized version of the path is
stored so that comparisons between paths provide accurate results. It is possible for any number of paths to refer to
the same file due to file system links in the paths. Standardized paths expand all links. Two standardized paths can be
compared with a simple string comparison to determine if they refer to the same file.

MYDocument's -_mySetDocumentPath: method is not declared in any class interface and is, therefore,
considered private to the implementation of MYDocument.

- (void)_mySetDocumentPath:(NSString *)aPath
/*" Set the document's path by expanding tilde characters in aPath and
standardizing aPath. Also sets the title of the document window. "*/
{
 NSString *standardPath = [aPath stringByExpandingTildeInPath];

 standardPath = [standardPath stringByStandardizingPath];
 [standardPath retain];
 [_myDocumentPath release];
 _myDocumentPath = aPath;
 [[self documentWindow] setTitleWithRepresentedFilename:_myDocumentPath];
}

In addition to storing the path to the file represented by the document, the -_mySetDocumentPath: method sets
the title of the document's window. The expression [self documentWindow] is explained in Document
Management Methods section of this chapter. It returns the window associated with the document. NSWindow's -
setTitleWithRepresentedFilename: sets the window's title to an easily readable variant of the document's
path.

Loading Images and Using NSRunAlertPanel()

The private _myLoadDocumentWithPath: method loads the image data, if any, at a specified path and tells the
document's image view to display the image.

This method uses the NSAssert() macro to perform error checking in the debug build of Image Viewer. The
NSAssert() macro has two arguments. The first is a Boolean expression, and the other argument is an error
message that is passed along with an exception that is raised if the first argument does not evaluate to YES. The
NSAssert() macro is used to raise an NSInternalInconsistencyException exception and output an
error message if some condition that should always be true turns out to be false.

In the -_myLoadDocumentWithPath: method, NSAssert() is used to assert that no attempt is made to load
an image into a document that already has an image. The NSAssert() macro is automatically disabled in release
builds. The NSAssert() macro helps programmers find errors when debugging and does not have any
performance impact on released applications.

- (void)_myLoadDocumentWithPath:(NSString *)aPath
 /*" Sets documents image to the image stored aPath. "*/
{
 NSImage *imageData;

 NSAssert(![self hasEverBeenSaved],
 @"Attempt to load document that is already loaded.");

 if([[NSFileManager defaultManager] fileExistsAtPath:aPath])
 {
 imageData = [[NSImage alloc] initWithContentsOfFile:aPath];

 if(nil == imageData)
 {
 // Unable to load image data
 NSRunAlertPanel(MYFILE_OPEN_ERROR, MYFILE_OPEN_ERROR_MSG,
 nil, nil, nil, aPath);
 }
 else
 {
 [imageView setImage:imageData];
 [imageData release]; // imageData retained by imageView

 // Make the image view a reasonambe size for the image displayed
 [imageView setFrameSize:[[imageView image] size]];

 // Set the path and remeber that documnet has been saved
 _myHasEverBeenSaved = YES;
 [self _mySetDocumentPath:aPath];
 }
 }
 else
 {
 // The specified path does not exist.
 // Set the document window's title but don't set its path
 [[self documentWindow] setTitleWithRepresentedFilename:aPath];
 }
}

The expression [self hasEverBeenSaved] is explained in the "Document Status Methods" section of this
chapter. It returns YES if the document has ever been saved and, therefore, has a valid path to the image data

displayed. For now it is enough to know that NSImage's -initWithContentsOfFile: method initializes a
new NSImage instance with the image data in a specified file. The -initWithContentsOfFile: method
releases the new image and returns nil if it is unable to load the image data.

If -_myLoadDocumentWithPath: is unable to initialize an NSImage with the image data at aPath, and alert
panel is displayed with NSRunAlertPanel() to tell the user that the document could not be opened with the
image at aPath.

NSRunAlertPanel()creates an alert panel, displays it onscreen, and runs it in a modal loop that requires the user
to acknowledge the panel by clicking a button. The use of a modal loop means that all events received by the
application are directed to Alert panel until the panel is closed. Modal loops are described in more detail in the
"Modal Loops" section of this chapter. Each alert panel has a short title, some explanatory text, and up to three
buttons. NSRunAlertPanel() is declared as follows:

int NSRunAlertPanel(NSString *title, NSString *msg, NSString *defaultButton,
 NSString *alternateButton, NSString *otherButton, ...);

NSRunAlertPanel() accepts a variable number of arguments. The msg argument that provides explanatory text
can include printf-style formatting characters that are supported by NSString's -stringWithFormat:...
method. The arguments used to replace the formatting characters are specified after the titles of the buttons at the end
of NSRunAlertPanel() arguments list. NSRunAlertPanel() is documented at http://developer.apple.com/
techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Functions/AppKitFunctions.html.

NSRunAlertPanel() does not return until the user acknowledges the panel by clicking a button or closing the
panel. It returns one of the following constants: NSAlertDefaultReturn, NSAlertAlternateReturn, or
NSAlertOtherReturn. If the user clicked the button labeled with the defaultButton argument to
NSRunAlertPanel(), NSAlertDefaultReturn is returned. If the user clicked the button titled by the
alternateButton argument, NSAlertAlternateReturn is returned. Otherwise NSAlertOtherReturn
is returned. If the defaultButton title is nil, the default button is titled OK. If any of the other button titles are
nil, the corresponding button is not shown.

If -_myLoadDocumentWithPath: is able to load the image data at the specified path, the document's image
view is told to display the image with [imageView setImage:imageData]. The allocated image is released
because every method that allocates an object is responsible for releasing or autoreleasing the object. In this case, the
document's image view already retains the image, so releasing it in -_myLoadDocumentWithPath: does not
cause it to be deallocated immediately. The image view is responsible for releasing the image it retains. The fact that
the document has a valid path is noted by setting the _myHasEverBeenSaved instance variable to YES. Finally,
the document's path is set to the path of the image.

Initializing MYDocument Instances

The instances of the MYDocument class are initialized with the designated initializer, -initWithPath:. All
other initializers must call the designated initializer. In the case of MYDocument, the only other initializer is -init
inherited from NSObject. The -initWithPath: and -init methods are implemented as follows:

- (id)initWithPath:(NSString *)aPath
/*" Designated Initializer: Loads the objects that represent the document from
a nib file, configures the objects, and then loads the data at aPath. Sets
the document's path to a standardized version of aPath. If aPath is nil, an
untitled document is created. "*/
{
 self = [super init];
 if(self)
 {

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Functions/AppKitFunctions.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Functions/AppKitFunctions.html

 // Load the user interface objects defined in a nib file using self as the
 // File's owner of the nib
 [NSBundle loadNibNamed:@"ImageViewerDocument.nib" owner:self];

 // Configure the loaded objects
 [imageView setTarget:self];
 [imageView setAction:@selector(noteImageWasDropped:)];
 [imageView setAutoresizingMask:NSViewNotSizable];
 [[imageView window] setReleasedWhenClosed:YES];

 if(nil != aPath)
 {
 [self _myLoadDocumentWithPath:aPath];
 }
 else
 {
 [self _mySetDocumentPath:MYDEFAULT_DOC_PATH];
 }
 }

 return self;
}

- (id)init
/*" Alternate Initilaizer: calls [self initWithPath:nil]. "*/
{
 return [self initWithPath:nil];
}

The key to the implementation of -initWithPath: is the [NSBundle loadNibNamed:
@"ImageViewerDocument.nib" owner:self] expression. Each MYDocument instance gets its associated
user interface objects by loading the .nib file that defines the objects and specifying the MYDocument instance as
the File's Owner of the .nib. Connections that were made to the File's Owner in Interface Builder are automatically
made to the MYDocument instance when the .nib file is loaded. As a result, the MYDocument instance becomes
the delegate of its associated window, and MYDocument's imageView instance variable is connected to the
NSImageView instance inside the document's window.

The -initWithPath: method makes the document instance the target of the associated NSImageView and sets
the action to -noteImageWasDropped:. As a result, the image view calls the document's -
noteImageWasDropped: method whenever the user drags and drops an image onto the image view. This target/
action connection could have been made in Interface Builder, but it is made here to show an alternative technique.
The target of the image view could also have been set to nil. In that case, the image view would use the responder
chain to find a target for its action. Unless another object earlier in the responder chain responds to the
noteImageWasDropped: message, the document object would still receive the message when the user drags and
drops an image onto the image view.

Another crucial part of the configuration of the document's user interface objects is the [[imageView window]
setReleasedWhenClosed:YES] expression. The NSView class provides the -window method that returns
the window containing the view. As a subclass of NSView, NSImageView inherits the -window method. In this
case, the window that contains the image view is the window that represents the document. By telling the document's
window to release itself when it is closed, the MYDocument class takes care of memory management for the user
interface objects loaded from the .nib. When the window is closed, it releases itself. When the window is
deallocated, it releases all the objects inside the window. The - setReleasedWhenClosed: property of the
window can also be set in Interface Builder.

The -init method calls the designated initializer specifying a nil path. When -initWithPath: is called with
a nil path, it initializes the document as an untitled document that has never been saved.

Document Management Methods

The MYDocument class provides several methods that are used by MYDocumentManager to manage open
documents. The first document management method is -documentPath.

/*" Document management methods "*/
- (NSString *)documentPath
/*" Returns the document's path or nil. "*/
{
 return _myDocumentPath;
}

MYDocumentManager can use this method to identify documents. For example, if a user double-clicks an image
file that is already represented by an open document, NSDocumentManager can make the existing document key
instead of creating a second document instance that represents the same file. It is critical that the document's path is
stored as a standardized path so that MYDocumentManager can simply determine if an open document represents a
particular image file.

The document manager needs to be capable of closing open documents, and MYDocument provides the -
safeClose method for that purpose. The -safeClose method calls [self _myShouldClose] to confirm
that the user wants to close the document. If the document being closed has unsaved changes, an alert panel is
displayed giving the user a chance to save the document, close the document anyway, or cancel the close. If the user
cancels the close, -_myShouldClose returns NO and the document is not closed.

- (bool)_myShouldClose
/*" Gives users a chance to save edited documents before closing the document.
Returns NO if the user cancels the close. Returns YES otherwise. "*/
{
 BOOL result = YES;

 if([self isDocumentEdited])
 {
 int userChoice;
 NSString *documentName = [self documentPath];

 if(nil == documentName)
 {
 // document has no path so use its window's title instead
 documentName = [[self documentWindow] title];
 }

 // the document has been edited
 userChoice = NSRunAlertPanel(MYDEFAULT_CLOSE_ACTION,
 MYSAVE_CHANGES, MYSAVE, MYDONT_SAVE, MYCANCEL, documentName);

 switch(userChoice)
 {
 case NSAlertDefaultReturn:
 {
 // User chooses to save changes
 [self saveDocument:nil];
 result = YES;

 break;
 }
 case NSAlertAlternateReturn:
 {
 // User chooses NOT to save changes
 result = YES;
 break;
 }
 case NSAlertOtherReturn:
 {
 // User chooses to CANCEL close
 result = NO;
 break;
 }
 }
 }

 return result;
}

- (BOOL)safeClose
/*" Gives users a chance to save edited documents before closing the document.
Returns NO if the user cancels the close. Returns YES otherwise. "*/
{
 BOOL result = [self _myShouldClose];

 if(result)
 {
 // the user agrees to close the window
 // close the document window immediately without
 // letting the window call its -windowShouldClose: delegate
 // method.
 [[self documentWindow] close];
 }

 return result;
}

The window that represents each document is returned by the -documentWindow method. The MYDocument
class could be implemented with an outlet that is directly connected to the associated window, but that is
unnecessary. MYDocument already has an outlet for an image view, and the image view's window is the window
that represents the document.

- (id)documentWindow
/*" Returns document's window "*/
{
 return [imageView window];
}

Document Status Methods

The MYDocument class uses the _myHasEverBeenSaved instance variable to store YES if the document has
ever been saved. Knowing if the document has ever been saved is important because the results of opening and
saving documents differ for documents that have been previously saved and documents that have never been saved.
For example, documents that have been previously saved or opened from a file in the file system have a valid path,

but unsaved untitled documents don't. MYDocument's -hasEverBeenSaved method returns the value of the
_myHasEverBeenSaved instance variable.

- (BOOL)hasEverBeenSaved
/*" Returns YES iff document has ever been saved and has a valid path. "*/
{
 return _myHasEverBeenSaved;
}

MYDocument does not define a _myHasBeenEdited instance variable because each document already has
access to an associated window, and NSWindow provides the -setDocumentEdited: and -
isDocumentEdited methods to store information about whether the document has been edited since it was last
saved. The value returned from NSWindow's -isDocumentEdited method is used to determine if the user
should be given a chance to save changes before a document window is closed.

- (BOOL)isDocumentEdited
/*" Returns YES iff document has been edited since it was last saved. "*/
{
 return [[self documentWindow] isDocumentEdited];
}

Document Actions and the Save Panel

Because each MYDocument instance is the delegate of its associated window, document instances receive action
messages that are sent up the responder chain. Two of the action messages handled by MYDocument are
saveDocument: and saveDocumentAs:, which are sent up the responder chain by the File, Save and File,
Save As menu items, respectively.

The private -_mySaveDocumentData method is called by both -saveDocument: and -saveDocumentAs:
to actually save the document's image in a file specified by the document's path. If writing the file to the document's
path fails for any reason, an alert panel is displayed with NSRunAlertPanel(). If the document's image is
successfully saved, [[self documentWindow] setDocumentEdited:NO] is called to tell the window that
the document has not been edited since it was saved. The _myHasEverBeenSaved instance variable is set to YES.

- (void)_mySaveDocumentData
/*" Save the document's image to the document's path. Displays an alert panel
if the image is not saved correctly. "*/
{
 NSData *imageData = [[imageView image] TIFFRepresentation];

 if(![imageData writeToFile:[self documentPath] atomically:YES])
 {
 // The image was not saved correctly
 NSRunAlertPanel(MYFILE_SAVE_ERROR, MYFILE_SAVE_ERROR_MSG,
 nil, nil, nil, [self documentPath]);
 }
 else
 {
 // The image was saved correctly
 [[self documentWindow] setDocumentEdited:NO];
 _myHasEverBeenSaved = YES;
 }
}

The primary difference between -saveDocument: and -saveDocumentAs: is that -saveDocumentAs:

displays a standard Cocoa Save panel that gives the user a chance to specify the path at which the document is saved
or the save is cancelled.

The -saveDocument: method checks to make sure the document's path specifies an existing file and not a
directory. If the document's path does not exist or is a directory or the document has never been saved, -
saveDocument: calls -saveDocumentAs: so that the user has a chance to specify a path. If there is no
problem with the document's path, -saveDocument: calls -_mySaveDocumentData to save the document's
image.

- (IBAction)saveDocument:(id)sender
/*" Save the image data displayed by the document "*/
{
 BOOL pathExists;
 BOOL pathIsDirectory;

 // check to see if a directory exists at document path
 pathExists = [[NSFileManager defaultManager] fileExistsAtPath:
 [self documentPath] isDirectory:&pathIsDirectory];
 if(![self hasEverBeenSaved] || pathIsDirectory || nil == [self
documentPath])
 {
 // The image has never been saved or it has no path or there is a
directory
 // at its path. Use -saveDocumentAs: because is shows a Save panel to find
 // out where the user wants to save the image.
 [self saveDocumentAs:sender];
 }
 else
 {
 // Save the image data
 [self _mySaveDocumentData];
 }
}

The -saveDocumentAs: method displays the standard Cocoa Save panel encapsulated by the NSSavePanel
class. The Save panel enables users to specify a file system path by browsing in the file system. The Save panel can
be configured with a custom accessory view. The accessory view is used to extend the Save panel without the need to
subclass NSSavePanel or edit the .nib file that defines the Save panel. There is normally only one instance of
NSSavePanel in each application, and that instance is accessed by calling [NSSavePanel savePanel].

NSSavePanel supports many configuration options documented at http://developer.apple.com/techpubs/macosx/
Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSSavePanel.html#//apple_ref/occ/instm/NSSavePanel/
setAccessoryView. NSSavePanel's -filename and -URL methods return the full path to the file that the user
selected. The -directory method returns the path to the directory that contains the file that the user selected.

MYDocument's -saveDocumentAs: method uses NSSavePanel's -setRequiredFileType: method to
set the file type to tiff. It also uses NSSavePanel's -setTreatsFilePackagesAsDirectories: to
configure the panel so that users are not able to select paths inside file packages that do not look like directories in
Finder.

The Save panel is displayed and run in a modal loop using NSSavePanel's -runModalForDirectory:
file: method. Modal loops are described in more detail in the "Modal Loops" section of this chapter.

If the user selects a path and clicks the Save panel's default button, the document's path is set to the selected path, and

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSSavePanel.html#//apple_ref/occ/instm/NSSavePanel/setAccessoryView
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSSavePanel.html#//apple_ref/occ/instm/NSSavePanel/setAccessoryView
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSSavePanel.html#//apple_ref/occ/instm/NSSavePanel/setAccessoryView

the document is saved using -_mySaveDocumentData.

- (IBAction)saveDocumentAs:(id)sender
/*" Displays a Save panel to find out where the user wants to save the
document's image data. If the user does not cancel the save, this method saves
the image data at the specified location. "*/
{
 NSSavePanel *savePanel;
 NSString *documentDirectory = [[self documentPath]
 stringByDeletingLastPathComponent];
 NSString *documentName = [[self documentPath] lastPathComponent];

 savePanel = [NSSavePanel savePanel];
 [savePanel setRequiredFileType:@"tiff"];
 [savePanel setTreatsFilePackagesAsDirectories:NO];

 if (NSOKButton == [savePanel runModalForDirectory:documentDirectory
 file:documentName])
 {
 [self _mySetDocumentPath:[savePanel filename]];
 [self _mySaveDocumentData];
 }
}

The last action method implemented by MYDocument is - noteImageWasDropped:. MYDocument's -
initWithPath: method makes each document instance the target of the corresponding image view. The image
view calls the document's -noteImageWasDropped: method when an image is dragged and dropped on the
image view. The - noteImageWasDropped: is implemented to tell the document's window that the document
has been edited.

- (IBAction)noteImageWasDropped:(id)sender
/*" Called by document's image view when the image changes. "*/
{
 // The image has changed so note that the document has been edited.
 [[self documentWindow] setDocumentEdited:YES];

 // Make the image view a reasonable size for the image displayed
 [imageView setFrameSize:[[imageView image] size]];
}

Menu Validation

MYDocument implements the -validateMenuItem: method to validate the menu items that send the
saveDocument: and saveDocumentAs: actions. Menu validation is explained in Chapter 8.

- (BOOL)validateMenuItem:(NSMenuItem *)aMenuItem
/*" Validate menu items that send the saveDocument: and
saveDocumentAs: actions. "*/
{
 SEL action = [aMenuItem action];
 BOOL enableMenuItem = NO;

 if (action == @selector(saveDocument:))
 {
 // If the document has never been saved or has been edited since it was

 // saved then enable the menu item that sends saveDocument:
 enableMenuItem = [self isDocumentEdited] || ![self hasEverBeenSaved];
 }
 else if (action == @selector(saveDocumentAs:))
 {
 // Always enable the menu item that sends saveDocumentAs:.
 enableMenuItem = YES;
 }

 return enableMenuItem;
}

Using NSWindow Delegate Methods

MYDocument implements three window delegate methods: - windowShouldClose:, -
windowWillClose:, and -windowDidBecomeKey:.

The -windowShouldClose: method is called by NSWindow when the window is about to close because the
user clicked the Close button on the window's title bar. It is implemented to give users a chance to save unsaved
documents before closing and returns the result of calling -_myShouldClose.

The -windowWillClose: method is called by NSWindow just before a window is closed. By the time -
windowWillClose: is called, it is too late to cancel the close. MYDocument implements -
windowWillClose: to set the document's imageView instance variable to nil and send the
documentWillClose: action message using the responder chain. The argument to the
documentWillClose: method is the document that is closing. Objects in the responder chain can implement -
documentWillClose: to update references they might have to the document being closed. For example, when a
MYDocumentManager instance receives the documentWillClose: message, it removes the document from
an array of open documents.

The -windowDidBecomeKey: method sends the makeDocumentActive: action message up the responder
chain with the document as the argument. When a MYDocumentManager instance receives the
makeDocumentActive: message, it makes the document the active document.

- (BOOL)windowShouldClose:(id)sender
/*" Give users a chance to save edited documents before they close and/or
cancel the close. "*/
{
 return [self _myShouldClose];
}

- (void)windowWillClose:(NSNotification *)notification
/*" Tell document manager that document is closing. "*/
{
 imageView = nil; // don't keep reference to closed window
 [NSApp sendAction:@selector(documentWillClose:) to:nil from:self];
}

- (void)windowDidBecomeKey:(NSNotification *)notification
/*" Tell document manager to make the receiver the active document "*/
{
 [NSApp sendAction:@selector(makeDocumentActive:) to:nil from:self];
}

The -windowWillClose: and -windowDidBecomeKey: methods use the responder chain to keep the
document manager informed of changes in managed documents. These methods could have been implemented to
send notifications that are observed by the document manager instead of using the responder chain. Messages could
also have been sent directly to the application's delegate by calling [[NSApp delegate]
documentWillClose:self] and [[NSApp delegate] makeDocumentActive:self] after first
checking to make sure that the application's delegate responds to the messages. The choice to use the responder chain
was arbitrary in this case. The responder chain, notifications, and delegates are all techniques for loosely coupling the
sender of a message to the receiver. The "Delegation Versus Notifications" section of Chapter 8 describes some of
the tradeoffs of using different techniques. The responder chain offers yet another option.

Concluding MYDocument's Implementation

Most classes that store object instance variables need to implement the -dealloc method to release the instance
variables. MYDocument has the imageView and _myDocumentPath object instance variables.

There is no need to release imageView because it is set when the document's .nib file is loaded and
MYDocument never explicitly retains it. When the window that contains the image view closes, it releases all the
objects it contains. If no other object retains the image view, it is deallocated. MYDocument implements -
windowWillClose to set imageView to nil when the window closes so that MYDocument does not have a
reference to a possibly deallocated object.

MYDocument does retain its _myDocumentPath instance variable and, therefore, must release it in -dealloc.

- (void)dealloc
/*" Clean-up "*/
{
 [_myDocumentPath release];
 [super dealloc];
}

The MYDocument implementation is concluded with the @end compiler directive.

@end

Saving Window Frames in User Defaults

The Image Viewer application does not explicitly save the frames of any windows in the user's defaults database, but
it is described here because NSWindow supports that feature. When a window's frame is saved in the defaults
database, the window's position and size become persistent. The user can quit the application and when it is launched
again, the windows are restored with the same position and size they had when the application was last quit. Because
each user has a different defaults database, each user can store different window frames for the same windows.

NSWindow's -(void)saveFrameUsingName:(NSString *)name method saves the window's frame
rectangle in the user's defaults database. The defaults database is described in Chapter 7. The name argument to -
saveFrameUsingName: is the key used to retrieve the saved default value.

NSWindow's -(BOOL)setFrameUsingName:(NSString *)name method retrieves the window frame
previously stored in the default database with the key name and sets the window's frame to the stored value. The -
setFrameUsingName: method returns YES if the stored frame was successfully read and NO otherwise.

Windows can be configured to automatically save its frame in the user's defaults database by calling NSWindow's -
(BOOL)setFrameAutosaveName:(NSString *)name method. After a window is given an autosave name,

it automatically updates its frame stored in the defaults database when the window is moved or resized. The -
setFrameAutosaveName: returns YES if the frame is successfully saved by using name as the key and NO
otherwise.

Document windows shouldn't save their frames in the user's defaults database. If every window saves its frame, the
defaults database will become very large, and users have no easy way to remove window frames from their defaults
database. Reserve the use of saved frames for windows that benefit most from the feature. For example, Interface
Builder stores the frames of its Palette window and Show Info window. Utility windows such as palettes and tool
windows are good candidates for the frame saving feature because there are usually not very many of them and each
user probably has a preferred arrangement and size for them.

Transparent Windows

Cocoa windows can be transparent, and Cocoa can simulate nonrectangular windows. Apple provides the
RoundTransparentWindow sample at http://developer.apple.com/samplecode/Sample_Code/Cocoa/
RoundTransparentWindow.htm. The key features of the sample show how to change the shape of a window and how
to recalculate the window's drop shadow.

NSWindow's -setOpaque: method is used to make the background behind a window show through the window's
transparent portions. The -setAlphaValue: method sets the overall transparency of the window. Calling -
setAlphaValue: with 1.0 as the argument makes the parts of the window that are not drawn in a transparent
color fully opaque. Setting the window's alpha value to zero makes the entire window invisible. The -
setBackgroundColor: method is used to set the background to a transparent color. Finally, -
setHasShadow: enables or disables the drawing of the window's drop shadow.

http://developer.apple.com/samplecode/Sample_Code/Cocoa/RoundTransparentWindow.htm
http://developer.apple.com/samplecode/Sample_Code/Cocoa/RoundTransparentWindow.htm

Book: Cocoa® Programming
Section: Chapter 9. Applications, Windows, and Screens

Working with NSApplication

The NSApplication class is the primary interface between Cocoa applications and the operating system. Each
Cocoa application has exactly one instance of the NSApplication class. NSApplication is seldom subclassed.
It provides delegate methods and notifications that enable customization of application behavior without the need to
subclass.

To show how NSApplication's delegate methods are used, the MYDocumentManager class is created. An
instance of MYDocumentManager is the application's delegate in the new Image Viewer application and manages
open documents. MYDocumentManager also allows review and saving of unsaved documents when the
application quits.

NSApplication's Delegate

The MYDocumentManager class needs to know when an application is terminating so that it can prompt the user
to save unsaved documents. It also needs to know when users have double-clicked a document in Finder or dragged a
document onto its application's icon.

An instance of the NSApplication class sends messages to its delegate informing the delegate when the
application is terminating. Delegate methods are called when the application has finished launching, when files need
to be opened or printed, and when AppleScript events are received.

The "Methods Implemented By the Delegate" section of NSApplication's class documentation lists the following
delegate methods:

- (void)applicationWillFinishLaunching:(NSNotification *)notification;
- (void)applicationDidFinishLaunching:(NSNotification *)notification;
- (void)applicationWillHide:(NSNotification *)notification;
- (void)applicationDidHide:(NSNotification *)notification;
- (void)applicationWillUnhide:(NSNotification *)notification;
- (void)applicationDidUnhide:(NSNotification *)notification;
- (void)applicationWillBecomeActive:(NSNotification *)notification;
- (void)applicationDidBecomeActive:(NSNotification *)notification;
- (void)applicationWillResignActive:(NSNotification *)notification;
- (void)applicationDidResignActive:(NSNotification *)notification;
- (void)applicationWillUpdate:(NSNotification *)notification;
- (void)applicationDidUpdate:(NSNotification *)notification;
- (void)applicationWillTerminate:(NSNotification *)notification;
- (void)applicationDidChangeScreenParameters:(NSNotification *)notification;
- (NSApplicationTerminateReply)applicationShouldTerminate:
 (NSApplication *)sender;
- (BOOL)application:(NSApplication *)sender openFile:(NSString *)filename;
- (BOOL)application:(NSApplication *)sender openTempFile:(NSString *)filename;
- (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender;
- (BOOL)applicationOpenUntitledFile:(NSApplication *)sender;
- (BOOL)application:(id)sender openFileWithoutUI:(NSString *)filename;
- (BOOL)application:(NSApplication *)sender printFile:(NSString *)filename;
- (BOOL)applicationShouldTerminateAfterLastWindowClosed:
 (NSApplication *)sender;
- (BOOL)applicationShouldHandleReopen:(NSApplication *)sender
 hasVisibleWindows:(BOOL)flag;

- (NSMenu *)applicationDockMenu:(NSApplication *)sender;
- (BOOL)application:(NSApplication *)sender delegateHandlesKey:(NSString *)
key;

The delegate methods that do not require any return value have a single argument that is an NSNotification
instance. In each case, the NSApplication instance that sent the delegate message is obtained by sending the -
object message to the notification argument. The delegate methods that return a value all include the
NSApplication instance that sent the delegate message as an argument. Apple's class documentation describes
how each delegate method is used and when it is called.

The MYDocumentManager class implements the following application delegate methods:

- (NSApplicationTerminateReply)applicationShouldTerminate:
 (NSApplication *)sender;
- (BOOL)application:(NSApplication *)sender openFile:(NSString *)filename;
- (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender;
- (BOOL)applicationOpenUntitledFile:(NSApplication *)sender;

The -applicationShouldTerminate: method is implemented to check for any unsaved documents and give
users a chance to save them. The -application:openFile: method is implemented to open documents when
they are double-clicked in Finder or dropped on an application icon. Finally, the -
applicationShouldOpenUntitledFile: and -applicationOpenUntitledFile: methods control
how the application handles untitled documents.

The MYDocumentManager class works closely with the NSApplication class to implement features that users
expect from multidocument applications. Because an instance of the MYDocumentManager class is the delegate of
the NSApplication instance, the document manager is automatically added to the responder chain and can
receive action messages sent up the responder chain. MYDocumentManager implements three actions that are sent
by user interface objects such as menu items: -newDocument:, -openDocument:, and -
saveAllDocuments:. The MYDocumentManager instance receives these action messages when user interface
objects send them up the responder chain and no other object handles them. MYDocumentManager also
implements the -documentWillClose: and -makeDocumentActive: actions that are sent up the responder
chain by NSDocument instances.

The -validateMenuItem: method implemented by MYDocumentManager is called automatically before
menu items become visible. When a menu item is about to be displayed, it searches the responder chain for an object
that responds to its action. When a suitable object is found, the menu item sends the -validateMenuItem:
message to that object passing the menu item to be validated as an argument. MYDocumentManager implements -
validateMenuItem: to enable or disable menu items that send the -newDocument:, -openDocument:, or
-saveAllDocuments: actions.

Creating and Configuring MYDocumentManager

To add the MYDocumentManager class to the Image Viewer project and make an instance of
MYDocumentManager the application's delegate, Open Image Viewer's MainMenu.nib file in Interface Builder
by double-clicking it within the Resources folder in the Files tab of Project Builder's Project pane. Figure 9.1 shows
the MainMenu.nib file selected in Project Builder.

After Interface Builder has loaded Image Viewer's MainMenu.nib file, select the Classes tab in Interface Builder's
window titled MainMenu.nib and select the NSObject class. Create a new subclass of NSObject using
Interface Builder's Classes, Subclass NSObject menu item.

Name the new subclass MYDocumentManager. Make sure the MYDocumentManager class is selected and uses
the Classes, Instantiate MYDocumentManager menu to create an instance of the MYDocumentManager class.

When the new instance is created, Interface Builder automatically displays the Instances tab shown in Figure 9.8.
Make sure the MYDocumentManager instance is selected as shown.

Figure 9.8. A new MYDocumentManager instance is selected in MainMenu.nib's Instances tab.

Drag a connection line from the icon labeled File's Owner to the new instance of MYDocumentManager as shown
in Figure 9.9. Hold the Ctrl key while dragging with the mouse to draw connection lines. When the mouse button is
released after drawing a connection line, Interface Builder automatically displays a Show Info window in
Connections mode. Figure 9.9 shows the Show Info window titled File's Owner Info.

Figure 9.9. A connection line is drawn from File's Owner to the MYDocumentManager instance, and the
File's Owner Info window is displayed ready to make a connection.

Select the delegate outlet displayed in the Outlets column of the window titled File's Owner Info and click the
Connect button. The File's Owner of the MainMenu.nib file is the application object. The instance of
MYDocumentManager is now the application's delegate.

Switch to the Classes tab of the MainMenu.nib window and select the MYDocumentManager class. Use
Interface Builder's Classes, Create Files for MYDocumentManager menu item to create the files that will contain
the interface and implementation of the MYDocumentManager class. Interface Builder displays a sheet asking
where to store the new files within the Image Viewer project. Select the folder that contains the Image Viewer project
and click the Choose button at the bottom of the sheet.

The next step is to make connections between the Image Viewer's menu items and the First Responder.

NOTE

The First Responder icon in Interface Builder is just a placeholder for whichever object is actually the
first responder at any given moment while an application is running.

The user interface-related actions that MYDocumentManager implements are standard. Interface Builder already
knows that newDocument:, openDocument:, and saveAllDocuments: are messages that can be sent to the
First Responder. It is possible to add actions to First Responder so that custom actions can be used with the responder
chain, but that is not necessary yet in this example.

Select Image Viewer's File, New menu item in the window titled MainMenu.nib - Main menu, which is shown
in Figure 9.10. Draw a connection line from the File, New menu item to the First Responder Icon.

Figure 9.10. A connection line from the File, New menu item to the First Responder icon is shown with the
target outlet and the newDocument: action selected.

Connect the target outlet to the newDocument: action, as shown in Figure 9.10. When Image Viewer is running
and the File, New menu item is clicked, the newDocument: action will be sent up the responder chain. If no other
object in the responder chain responds to newDocument:, MYDocumentManager's -newDocument: method
will be called.

NOTE

If Project Builder's Multi-Document Cocoa application project template is used when a project is
created, Project Builder automatically makes the connections from standard File menu items to the First
Responder. The connections are made manually in this example to show how the connections work.

Use the same technique to connect Image Viewer's File, Open menu item to the First Responder's openDocument:

action. Connect the File, Save menu item to the First Responder's saveDocument: action. Connect the File, Save
As menu item to the First Responder's saveDocumentAs: action. Next, add a new menu item to Image Viewer's
File menu by dragging a menu item from Interface Builder's Cocoa-Menus palette, as shown in Figure 9.11.

Figure 9.11. A new menu item is added to Image Viewer's File menu.

Name the new menu item Save All. Connect the File, Save All menu item to the First Responder's
saveAllDocuments: action.

NOTE

The -saveDocument: and -saveDocumentAs: methods are implemented by MYDocument not
MYDocumentManager. The connections made to the First Responder work for documents as well as
the document manager because instances of both classes are in the responder chain when Image Viewer
is run.

Save Image Viewer's MainMenu.nib and hide Interface Builder, and then return to Project Builder.

Implementing MYDocumentManager

The project for Viewer needs to contain the MYDocumentManager.h and MYDocumentManager.m files that
were created with Interface Builder's Classes, Create Files for MYDocumentManager menu item. If they are not in
the project, add them now using Project Builder's Project, Add Files menu item. Edit the MYDocumentManager.h
file in Project Builder so that it contains the following code for the MYDocumentManager class interface.

File MYDocumentManager:

#import <Cocoa/Cocoa.h>

@interface MYDocumentManager : NSObject
{
 NSMutableArray *_myOpenDocuments; /*" Array of open documents "*/
 NSPoint _myWindowCascadePoint; /*" Used to cascade windows "*/
}

/*" Designated initializer "*/
- (id)init;

/*" Document class "*/
- (Class)documentClass;

/*" Document loading "*/
- (NSArray *)documentExtensions;

/*" Accessing open documents "*/
- (NSArray *)existingOpenDocuments;
- (id)existingOpenDocumentWithPath:(NSString *)aPath;
- (id)activeDocument;

/*" Document actions "*/
- (IBAction)openDocument:(id)sender;
- (IBAction)newDocument:(id)sender;
- (IBAction)saveAllDocuments:(id)sender;

/*" Document communication actions "*/
- (void)documentWillClose:(id)sender;
- (void)makeDocumentActive:(id)sender;
/*" Application delegate methods "*/
- (NSApplicationTerminateReply)applicationShouldTerminate:
 (NSApplication *)sender;
- (BOOL)application:(NSApplication *)sender openFile:(NSString *)filename;
- (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender;
- (BOOL)applicationOpenUntitledFile:(NSApplication *)sender;

@end

The implementation of MYDocumentManager begins by importing the class interfaces in
MYDocumentManager and MYDocument.

#import "MYDocumentManager.h"
#import "MYDocument.h"

@implementation MYDocumentManager
/*" A single instance of this class is used as the application's delegate and
manages documents in a multi-document application.

There is a single "active" document at any time. The "active" document is
usually the document that controls that last key window, but the active
document can be set programmatically.
"*/

The following localizable strings are used in MYDocumentManager.m:

/*" Constant local strings "*/
#define MYQUIT NSLocalizedString(@"Quit", @"")
#define MYOPEN NSLocalizedString(@"Open Error", @"")
#define MYOPEN_DOCUMENT_ERROR_MSG NSLocalizedString(\
 @"Unable to open document.", @"")
#define MYNEW_DOCUMENT_ERROR_MSG NSLocalizedString(\
 @"Unable to create new document.", @"")
#define MYUNSAVED_DOCS_MSG NSLocalizedString(\
 @"There are unsaved documents.\nReview them?", @"")
#define MYCANCEL NSLocalizedString(@"Cancel", @"")
#define MYQUIT_ANYWAY NSLocalizedString(@"Quit Anyway", @"")
#define MYREVIEW_UNSAVED NSLocalizedString(@"Review", @"")
#define MYUNTITLED NSLocalizedString(@"Untitled", \
 @"The name of untitled documents")

Initializing the MYDocumentManager Instance

The one and only instance of MYDocumentManager in the Image Viewer application is instantiated inside the
MainMenu.nib file. Because the MYDocumentManager instance is never initialized programmatically, its
designated initializer is never called. Instead, its -awakeFromNib method is called after it is loaded from
MainMenu.nib. Objects that are instantiated in Interface Builder often need similar initialization logic in both -
awakeFromNib and the designated initializer.

Instead of duplicating initialization code in both -init and -awakeFromNib, MYDocumentManager
implements the private -_myInitInstanceVariables method that is called from -init and -
awakeFromNib.

The -_myInitInstanceVariables method allocates and initializes a mutable array to store the open
documents. It also initializes the _myWindowCascadePoint instance variable to the upper-left corner of the
visible area of the main screen obtained by using the NSScreen class. NSScreen is described in the "Working
with Screens" section of this chapter.

- (void)_myInitInstanceVariables
/*" Initialize instance variables: called by -init and -awakeFromNib. "*/
{
 NSRect screenVisibleFrame = [[NSScreen mainScreen] visibleFrame];

 // Create array of open documents
 _myOpenDocuments = [[NSMutableArray allocWithZone:[self zone]] init];

 // Set initial cascade point
 _myWindowCascadePoint = NSMakePoint(0, NSMaxY(screenVisibleFrame));
}

- (id)init
/*" Designated initializer "*/
{
 self = [super init];

 if(nil != self)
 {
 [self _myInitInstanceVariables];
 }

 return self;
}
- (void)awakeFromNib
/*" Called automatically after receiver is fully loaded from a nib file. "*/
{
 [self _myInitInstanceVariables];
}

Document Information Methods

The -documentClass and -documentExtensions methods provide information about the types of
documents managed by MYDocumentManager. The -documentClass method returns the class that is used to
create document instances. It is currently hard coded to return the MYDocument class, but it could be reimplemented
to return different document classes in different applications.

- (Class)documentClass
/*" Returns the class used to encapsulate documents "*/
{
 return [MYDocument class];
}

The -documentExtensions method returns an array of file extensions that identify files that can be opened by
Image Viewer. It is implemented to return the array of extensions supported by the document class or an empty array.
When the array returned by this method is used to limit files that can be opened with an Open panel, an empty array
means that any file type can be opened.

- (NSArray *)documentExtensions;
/*" Returns an array of NSString file extensions for documents that can be
opened. This implementation returns an array containing elements obtained
by calling [[self documentClass] documentExtensions]. Override this method
to provide more sophisticated behavior and support multiple document classes.
To allow any opening of documents with any extension or no extension,
override this method to return an empty array. "*/
{
 NSMutableArray *supportedExtensions = [NSMutableArray array];
 Class documentClass = [self documentClass];

 if([documentClass respondsToSelector:@selector(documentExtensions)])
 {
 [supportedExtensions addObjectsFromArray:
 [documentClass documentExtensions]];
 }
 return supportedExtensions;
}

Accessing Open Documents

The -existingOpenDocuments method returns an array of open document instances. The -
existingOpenDocumentWithPath: method returns the open document with the specified path or nil if no
open document has that path. The use of standardized paths means that different paths that reference the same file
through file system links are considered to be the same path. The -activeDocument method returns the current
active document or nil. The active document is the usually the document associated with the last document window
that was the key window.

- (NSArray *)existingOpenDocuments

/*" Returns an array of open documets. "*/
{
 return _myOpenDocuments;
}

- (id)existingOpenDocumentWithPath:(NSString *)aPath
/*" Returns the open document with the specified path or nil. "*/
{
 NSString *standardPath = [aPath stringByStandardizingPath];
 id result = nil;
 id currentDocument = nil;
 NSEnumerator *enumerator = [_myOpenDocuments objectEnumerator];

 while(nil == result && nil != (currentDocument = [enumerator nextObject]))
 {
 if([currentDocument respondsToSelector:@selector(documentPath)])
 {
 // the current document has a path
 if([[currentDocument documentPath] isEqualToString:standardPath])
 {
 // currentDocument has aPath
 result = currentDocument;
 }
 }
 }

 return result;
}
- (id)activeDocument
/*" Returns the active document or nil. The active document is usually the
last document who's window was key. "*/
{
 // The last object in _myOpenDocuments is assumed to be the active document
 return (0 < [_myOpenDocuments count]) ? [_myOpenDocuments lastObject] : nil;
}

Creating Document Instances

When new untitled documents are created, it is important that they do not inadvertently have the same name as an
existing file in the file system. If a new document has the same name as an existing file, the user might be misled to
think that the new document shows the contents of the existing file when in fact it is a document that has never been
saved.

The private -_myNextUntitledDocumentName method returns a variant of the path, ~/Untitled, that does
not reference an existing file in the file system.

- (NSString *)_myNextUntitledDocumentName
/*" Returns an NSString with a unique untitled document name by appending an
integer to the string "Untitled" and the first document extension in the array
returned by -documentExtensions. "*/
{
 static int lastUntitledIndex = 1;
 NSString *result = nil;
 NSString *extension = @"";
 NSArray *documentExtensions = [self documentExtensions];

 if(0 < [documentExtensions count])
 {
 // documentExtensions has at least 1 element so use last element as
 // default untitled document extension
 extension = [documentExtensions lastObject];
 }

 do
 {
 [result release]; // release string from previous iteration
 // (nil on first iteration)

 result = [[NSString alloc] initWithFormat:@"~/%@%d.%@", MYUNTITLED,
 lastUntitledIndex++, extension];
 }
 while([[NSFileManager defaultManager] fileExistsAtPath:
 [result stringByStandardizingPath]]);

 [result autorelease];

 return result;
}

The private -_myRegisterDocument: method is called by the -_myOpenDocumentWithPath: and -
newDocument: methods. This method adds a document to the array of open documents, positions the document's
window so that it cascades nicely with other document windows, and makes the document's window the key window.
A side effect of making the document's window key is that the associated document becomes the active document.

The _myWindowCascadePoint instance variable is initialized to the top-left corner of the visible area of the
main screen in -_myInitInstanceVariables. The first open document window is positioned at
_myWindowCascadePoint. Then, _myWindowCascadePoint is set to a new position down and to the right
so that the next window's position is offset enough not to obscure the title of the previous window.

- (void)_myRegisterDocument:(id)aDocument
/*" Adds aDocument to the receiver's array of open documents, makes
aDocument's window visible on screen, and makes aDocument the active
document. "*/
{
 [_myOpenDocuments addObject:aDocument];

 if([aDocument respondsToSelector:@selector(documentWindow)])
 {
 id documentWindow = [aDocument documentWindow];

 // Cascade the registered document's window
 _myWindowCascadePoint = [documentWindow cascadeTopLeftFromPoint:
 _myWindowCascadePoint];

 // make registered document's window visible and key
 [documentWindow makeKeyAndOrderFront:self];
 }
}

The private -_myOpenDocumentWithPath: method checks to see if an existing open document already
represents the specified path. If so, the window associated with the open document is made key and ordered front,

which indirectly causes the open document to become the active document. If no open document references the
specified path, a new document instance is created with the [[[self documentClass] allocWithZone:
[self zone]] initWithPath:aPath] expression. MYDocumentManager's -documentClass method
returns the MYDocument class. MYDocument implements the -initWithPath: method to load the image data
at the specified path.

- (void)_myOpenDocumentWithPath:(NSString *)aPath
{
 id newDocument = [self existingOpenDocumentWithPath:aPath];

 if(nil != newDocument)
 { // an existing open document already has currentPath
 [[newDocument documentWindow] makeKeyAndOrderFront:self];
 }
 else
 { // no open document already has currentPath
 newDocument = [[[self documentClass] allocWithZone:[self zone]]
 initWithPath:aPath];
 if(nil == newDocument)
 {
 NSLog(@"%@", MYOPEN_DOCUMENT_ERROR_MSG);
 }
 else
 {
 [self _myRegisterDocument:newDocument]; // Retains newDocument
 [newDocument release];
 }
 }
}

The - openDocument: action method displays the standard Cocoa Open panel encapsulated by the
NSOpenPanel class. The Open panel enables users to select one or more file system paths by browsing in the file
system. The Open panel can be configured with a custom accessory view. The accessory view is used to extend the
Open panel without the need to subclass NSOpenPanel or edit the .nib file that defines the Open panel. There is
normally only one instance of NSOpenPanel in each application, and that instance is accessed by calling
[NSOpenPanel openPanel].

NSOpenPanel supports many configuration options documented at http://developer.apple.com/techpubs/macosx/
Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSOpenPanel.html. NSOpenPanel's -filenames
method returns an array of the full paths selected by the user. The -directory method returns the path to the
directory that contains the files selected by the user.

- (IBAction)openDocument:(id)sender
/*" Displays an open panel that allows selections of multiple paths and opens
the selected files. In this implementation, individual files can be selected
and directories can not. The paths that are selected must have one of the
extensions in the array returned by -documentExtensions. If the array
returned from -documentExtensions is empty, any path is accepted. "*/
{
 NSArray *typesArray;
 NSOpenPanel *openPanel;
 NSString *directory;
 id activeDocument;

 typesArray = [self documentExtensions];

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSOpenPanel.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSOpenPanel.html

 if(0 == [typesArray count])
 {
 // Set fileTypesArray to nil so that any type is accepted
 typesArray = nil;
 }
 activeDocument = [self activeDocument];

 if(nil != activeDocument && [activeDocument respondsToSelector:
 @selector(documentPath)])
 {
 // Use active document's directory as initial directory
 directory = [[activeDocument documentPath]
 stringByDeletingLastPathComponent];
 } else {
 directory = @"";
 }

 // Configure the open panel
 openPanel = [NSOpenPanel openPanel];
 [openPanel setAllowsMultipleSelection:YES];
 [openPanel setTreatsFilePackagesAsDirectories:NO];
 [openPanel setDirectory:directory];
 [openPanel setCanChooseDirectories:NO];
 [openPanel setCanChooseFiles:YES];
 [openPanel setResolvesAliases:YES];

 if (NSOKButton == [openPanel runModalForTypes:typesArray])
 {
 NSArray *selectedPaths = [openPanel filenames];
 NSEnumerator *enumerator = [selectedPaths objectEnumerator];
 NSString *currentPath;

 while(nil != (currentPath = [enumerator nextObject]))
 {
 [self _myOpenDocumentWithPath:currentPath];
 }
 }
}

The -newDocument: action method creates a new document with an ~/Untitled path.

- (IBAction)newDocument:(id)sender
 /*" Creates a new instance of the class returned from the -documentClass.
The new document is given a unique title and made the active document. "*/
{
 id newDocument;
 NSString *newDocumentPath = [self _myNextUntitledDocumentName];

 newDocument = [[[self documentClass] allocWithZone:[self zone]]
 initWithPath:newDocumentPath];
 if(nil == newDocument)
 {
 NSLog(@"%@", MYNEW_DOCUMENT_ERROR_MSG);
 }
 else
 {

 [self _myRegisterDocument:newDocument]; // Retains newDocument
 [newDocument release];
 }
}

Saving All Open Documents

The -saveAllDocuments: action method could not be simpler. It just sends the saveDocument: message to
every open document.

- (IBAction)saveAllDocuments:(id)sender

/*" This method sends the saveDocument: message to all open documents. "*/

{

[[self existingOpenDocuments] makeObjectsPerformSelector:

@selector(saveDocument:) withObject:sender];

}

Messages Sent by Documents

MYDocument instances send the documentWillClose: action message up the responder chain when the
document's window is about to be closed. The -documentWillClose: method is received by the
MYDocumentManager instance because it is the application's delegate. MYDocumentManager implements -
documentWillClose: to remove the document that is closing from the array of open documents. The array of
open documents releases the document instance that is removed from the array. If the array of open documents is the
only object that retained the removed document, the document is immediately deallocated.

/*" Document communication actions "*/
- (void)documentWillClose:(id)sender
/*" Removes sender from receiver's open documents array "*/
{
 [_myOpenDocuments removeObject:sender];
}

MYDocument instances send the makeDocumentActive: action message up the responder chain when the
document's window becomes the key window. MYDocumentManager implements -makeDocumentActive:
to make the sender of makeDocumentActive: the active document.

- (void)makeDocumentActive:(id)sender
/*" Sets the receiver's active document to sender if possible. If sender is
not an open document, this method does nothing. This method does not make
sender's window key. "*/
{

 if(0 < [_myOpenDocuments count])
 {
 // There is at least 1 open document
 int index = [_myOpenDocuments indexOfObject:sender];

 if(index != NSNotFound)

 {
 // anObject is an open document
 // Swap positions in _myOpenDocuments: the last object in
 // _myOpenDocuments is assumed to be the active document
 [sender retain];
 [_myOpenDocuments replaceObjectAtIndex:index withObject:
 [_myOpenDocuments lastObject]];
 [_myOpenDocuments removeLastObject];
 [_myOpenDocuments addObject:sender];
 [sender release];
 }
 }
}

Menu Validation

MYDocumentManager implements -validateMenuItem: to validate menu items that send the
openDocument:, newDocument:, and saveAllDocuments: actions.

/*" Menu validation "*/
- (BOOL)validateMenuItem:(NSMenuItem *)aMenuItem
/*" Validate menu items that send the openDocument:, newDocument:, or
saveAllDocuments: actions. "*/
{
 SEL action;
 BOOL enableMenuItem = NO;

 action = [aMenuItem action];

 // The -open:, -new: and -saveAll: actions are provided by this calss and
 // therefore validated by this class.
 if (action == @selector(openDocument:) || action == @selector(newDocument:))
 {
 enableMenuItem = YES;
 }
 else if (action == @selector(saveAllDocuments:))
 {
 enableMenuItem = (0 < [_myOpenDocuments count]);
 }

 return enableMenuItem;
}

Using NSApplication Delegate Methods

When user quits a graphical Cocoa application, NSApplication sends the
applicationShouldTerminate: message to its delegate. The values that can be returned from -
applicationShouldTerminate: are the constants NSTerminateNow, NSTerminateCancel, and
NSTerminateLater. Returning NSTerminateNow gives the application permission to terminate immediately.
Returning NSTerminateCancel cancels the termination. Returning NSTerminateLater postpones the
decision to terminate or not until NSApplication's -replyToApplicationShouldTerminate: method is
called with a YES or NO argument.

MYDocumentManager implements -applicationShouldTerminate: to give users a chance to save
unsaved documents before the application terminates.

/*" Application delegate methods "*/
- (NSApplicationTerminateReply)applicationShouldTerminate:
 (NSApplication *)sender
/*" Implemented to Give user a chance to review and save any unsaved documents
before terminating "*/
{
 NSEnumerator *enumerator;
 id currentDocument;
 int choice;
 NSApplicationTerminateReply result = NSTerminateNow;
 BOOL foundUnsaved = NO;

 // Catch exception during review and save

 // Determine if theer are any unsaved documents
 enumerator = [_myOpenDocuments objectEnumerator];
 while(!foundUnsaved && nil != (currentDocument = [enumerator nextObject]))
 {
 if([currentDocument respondsToSelector:@selector(isDocumentEdited)])
 {
 // Found at least one unsaved document
 foundUnsaved = [currentDocument isDocumentEdited];
 }
 }

 if(foundUnsaved)
 {
 // Find out of the user wants to review and possibly save the unsaved
 // documents, cancel the termination, or terminate anyway
 choice = NSRunAlertPanel(MYQUIT, MYUNSAVED_DOCS_MSG, MYREVIEW_UNSAVED,
 MYQUIT_ANYWAY, MYCANCEL);
 if (choice == NSAlertOtherReturn)
 { // User selected Cancel
 result = NSTerminateCancel;
 }
 else if (choice != NSAlertAlternateReturn)
 { // User selected Review Unsaved
 // Give the user the chance to review the edited document(s). */
 enumerator = [_myOpenDocuments objectEnumerator];
 while(result == NSTerminateNow &&
 nil != (currentDocument = [enumerator nextObject]))
 {
 if([currentDocument respondsToSelector:@selector(safeClose)])
 {
 // Cause unsaved documents to show a save panel
 if(![currentDocument safeClose])
 { // User selected Cancel
 result = NSTerminateCancel;
 }
 }
 }
 }
 else
 { // User chooses to quit without saving
 }
 }

 return result;
}

When a user double-clicks a file in Finder, the user's default application for the file is launched, if it is not already
running, and notified that it should open the file that was double clicked. When that happens, NSApplication
sends the application:openFile: message to its delegate. The application:openFile: message is
also sent to the application's delegate when files are dragged and dropped onto the application's icon.

MYDocumentManager implements -application:openFile: to verify that the file to open is a supported
type, and then calls -_myOpenDocumentWithPath: to open the file. If the file is opened, -application:
openFile: returns YES; otherwise it returns NO. The value returned is sent back to Finder, which displays a short
animation if files are not opened after a drag and drop.

- (BOOL)application:(NSApplication *)sender openFile:(NSString *)filename
/*" Called automatically when application is requested to open a document
either by drag and drop or double clicking in finder. Returns YES if the
file is successfully opened, and NO otherwise "*/
{
 int result = NO;

 if([[self documentExtensions] containsObject:[filename pathExtension]])
 {
 // Filename has an accepted extension
 [self _myOpenDocumentWithPath:filename];
 result = YES;
 }

 return result;
}

According to Apple's user interface guidelines, when a document-based application is activated by the user, the
application must display a document window. If there are no open document windows, a new untitled document must
be created. NSApplication already implements most of that behavior. When Apple's guidelines require the
creation of an untitled document, NSApplication calls its delegate's -
applicationShouldOpenUntitledFile: method. If - applicationShouldOpenUntitledFile:
returns YES, NSApplication calls the delegate's -applicationOpenUntitledFile: method to open the
untitled file.

- (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender
/*" Called automatically: returns YES meaning that it is OK to open an
untitled document. "*/
{
 return YES;
}

- (BOOL)applicationOpenUntitledFile:(NSApplication *)sender
/*" Called automatically when application is requested to open an untitled
document. This method is implemented to call [self newDocument:nil] "*/
{
 [self newDocument:nil];

 return YES;
}

Concluding MYDocumentManager's Implementation

MYDocumentManager implements the -dealloc method to release the _myOpenDocuments instance
variable. When _myOpenDocuments is deallocated, it releases all the objects it contains.

- (void)dealloc
/*" Claen-up "*/
{
 [_myOpenDocuments release];
 _myOpenDocuments = nil;

 [super dealloc];
}

@end

Build and test the Image Viewer application. Drag image files from Finder and drop them in open Image Viewer
document windows. Test the automatic creation of untitled documents by closing all open Image Viewer documents,
making another application active, and then switching back to Image Viewer. Image Viewer now has almost all the
features of Apple's Preview application. Image Viewer could have been implemented with more features and fewer
lines of code by using Cocoa's NSDocument and NSDocumentController classes, but this implementation
shows how the NSApplication, NSWindow, NSSavePanel, and NSOpenPanel classes are used. The
NSDocument and NSDocumentController classes completely hide their interaction with NSApplication,
NSWindow, NSSavePanel, and NSOpenPanel.

Book: Cocoa® Programming
Section: Chapter 9. Applications, Windows, and Screens

Modal Loops

A modal loop is a loop that consumes all events so that it is not possible for the user to
interact normally with an application until the modal loop terminates. Modal loops are used
when the user's attention is required before the application can continue processing. For
example, modal loops are used when the user must acknowledge an error message before
continuing or when input is required.

Modal loops consume all events in an application, but users can use other applications,
move application windows, and hide applications even when modal loops are running.

Modal loops are started in two general ways: either an entire window is run in a modal loop
controlled by the NSApplication class, or an individual view implements its own
modal loop in code.

Using Modal Windows

To run an entire window in a modal loop, call NSApplication's -
runModalForWindow: method sending a window as the argument. The -
runModalForWindow: method does not return until the modal loop terminates. When -
runModalForWindow: is called, NSApplication sends all events to the modal
window until one of the NSApplication's -stopModal, -abortModal, or -
stopModalWithCode: methods is called to terminate the loop. The -stopModal
method is called to end a modal loop normally. For example, use -stopModal to end a
modal loop with the user clicking an OK button to acknowledge an error message. The -
abortModal method is called when abnormal termination is required. For example, -
abortModal should be called if the user closes a modal window by clicking the
window's close button in the title bar. Both -stopModal and -abortModal call -
stopModalWithCode:. The argument passed to -stopModalWithCode: is the
value that is ultimately returned from the call to -runModalForWindow: that started
the loop. The -stopModal method calls -stopModalWithCode: with the
NSRunStoppedResponse constant, and -abortModal calls -
stopModalWithCode: with the NSRunAbortedResponse constant.

NOTE

Modal windows normally consume all events received by the application.
However, NSWindow subclasses that override NSWindow's -
worksWhenModal method to return YES are able to receive events even
when a modal window is active. This capability should be used sparingly.

The NSRunAlertPanel() function used in Image Viewer is a convenience function
that calls NSApplication's -runModalForWindow: method. Many standard Cocoa
panels such as NSSavePanel, NSOpenPanel, and NSPrintPanel provide methods
that start modal loops using NSApplication's -runModalForWindow:. For
example, Image Viewer uses NSSavePanel's -runModalForDirectory:file:
method that starts a modal loop and does not return until the user selects a path or closes
the panel.

Apple provides a detailed explanation of modal loops controlled by the NSApplication
class at http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/
ProgrammingTopics/WinPanel/Concepts/UsingModalWindows.html. Apple's class
documentation for the NSApplication class includes sample code for starting and
ending modal loops. Apple's guidelines for when to use modal loops are provided at http://
developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHIGDialogs/
Types_of_Di_to_Use_Them.html.

Using Modal Views

Individual views can create their own modal loops that consume all events until the loop
terminates. This technique is described in Chapter 15, "Events and Cursors," with an
example. Apple also provides an example at http://developer.apple.com/techpubs/macosx/
Cocoa/TasksAndConcepts/ProgrammingTopics/BasicEventHandling/Tasks/
HandlingMouseEvents.html.

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/WinPanel/Concepts/UsingModalWindows.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/WinPanel/Concepts/UsingModalWindows.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHIGDialogs/Types_of_Di_to_Use_Them.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHIGDialogs/Types_of_Di_to_Use_Them.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHIGDialogs/Types_of_Di_to_Use_Them.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/BasicEventHandling/Tasks/HandlingMouseEvents.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/BasicEventHandling/Tasks/HandlingMouseEvents.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/BasicEventHandling/Tasks/HandlingMouseEvents.html

Book: Cocoa® Programming
Section: Chapter 9. Applications, Windows, and Screens

Working with Sheets

Modal windows normally consume all events received by the application and prevent users for working in other
windows within the same application. Modal windows require the user's undivided attention before the user can
continue working with the application. However, users can switch to other applications even when another
application is displaying a modal window. Modal windows are, therefore, called application modal windows
because each window can only affect one application.

A sheet is a document modal window. Each sheet is attached to another window. When a sheet is visible, it
consumes all events received by its associated window, but users can continue to use other windows in the same
application. Using sheets instead of application modal windows gives users more flexibility. In addition, when a
sheet displays an error or requires input for a particular document window, the association between the sheet and
the effected window is clear. Application modal windows that display errors or required input related to a particular
document can confuse users who lose track of which document is effected.

Only one sheet can be attached to a window at a time. Sheets emerge from another window's title bar with an
animation to catch the user's eye. Sheets should not be used with windows that do not have a title bar.

Sheets work best when there is a clear association between the information presented by the sheet and the
associated window. For example, a sheet for saving a document makes sense. The association between the sheet and
the document window makes it clear to the user which document is being saved.

Apple provides guidelines for when to use sheets at http://developer.apple.com/techpubs/macosx/Essentials/
AquaHIGuidelines/AHIGDialogs/Document_Mo_ogs_Sheets_.html.

To show how sheets are used with Cocoa, the Image Viewer application is modified to use sheets instead of
application modal windows when appropriate.

Changes to MYDocument to Support Sheets

The first change is made to the MYDocument class interface. An addition instance variable is needed to keep track
of whether the document's window should close when the user is finished with a Save sheet. Edit the
MYDocument.h file so that it has the following instance variable section:

@interface MYDocument : NSObject
{
 IBOutlet NSImageView *imageView;

 NSString *_myDocumentPath; /*" Document's path "*/
 BOOL _myHasEverBeenSaved; /*" YES iff document has ever been saved
"*/
 BOOL _myShouldCloseAfterSave; /*" YES iff document is being closed "*/
}

Several changes must be made to MYDocument's implementation. The -_myShouldClose method currently
displays a modal alert panel that asks users if they want to save changes made to a document before closing the
document. The following implementation of -_myShouldClose uses the NSBeginAlertSheet() function
instead of NSRunAlertPanel() to ask users if they want to save changes.

http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHIGDialogs/Document_Mo_ogs_Sheets_.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHIGDialogs/Document_Mo_ogs_Sheets_.html

- (bool)_myShouldClose
/*" Gives users a chance to save edited documents before closing the
document.
Returns NO if the document has unsaved changes. Returns YES otherwise. "*/
{
 BOOL result = YES;

 _myShouldCloseAfterSave = NO; // set to deafult value

 if([self isDocumentEdited])
 {
 NSString *documentName = [self documentPath];

 if(nil == documentName)
 {
 // document has no path so use its window's title instead
 documentName = [[self documentWindow] title];
 }

 // the document has been edited
 NSBeginAlertSheet(MYDEFAULT_CLOSE_ACTION, MYSAVE,MYDONT_SAVE, MYCANCEL,
 [self documentWindow], self,
 nil, @selector(_mySaveChangesSheetDidEnd:returnCode:contextInfo:),
 NULL, MYSAVE_CHANGES, documentName);

 result = NO;
 }
 return result;
}

NSBeginAlertSheet() is similar to NSRunAlertPanel(). NSBeginAlertSheet() is declared in
Apple's header files as follows:

void NSBeginAlertSheet(NSString *title, NSString *defaultButton,
 NSString *alternateButton, NSString *otherButton, NSWindow *docWindow,
 id modalDelegate, SEL didEndSelector, SEL didDismissSelector,
 void *contextInfo, NSString *msg, ...)

The title, msg, defaultButton, alternateButton, and otherButton arguments all have the same
meaning as the corresponding arguments to NSRunAlertPanel(). The docWindow argument specifies the
window that the sheet references. The additional arguments, modalDelegate, didEndSelector,
didDismissSelector, and contextInfo, exist because of the most important difference between
NSRunAlertPanel() and NSBeginAlertSheet(): NSRunAlertPanel() does not return until the user
acknowledges the panel, but NSBeginAlertSheet() returns immediately.

Because NSBeginAlertSheet() returns before getting input from the user, the alert sheet needs a way to tell
the application what user input is received at some later time. The didEndSelector and
didDismissSelector arguments to NSBeginAlertSheet() specify the messages that are sent when the
user clicks a button on the alert sheet and when the alert sheet is closed, respectively. The modalDelegate
argument specifies the object that will receive the messages identified by the didEndSelector and
didDismissSelector selectors. The contextInfo argument is used to specify arbitrary data that is passed
along as an argument to the didEndSelector and didDismissSelector messages.

When NSBeginAlertSheet() is called in the implementation of -_myShouldClose, the
modalDelegate argument is self. The didEndSelector argument is nil, which means don't send any

message to modalDelegate when the user clicks a button. The contextInfo argument is NULL, and the
didDismissSelector is -_mySaveChangesSheetDidEnd:returnCode:contextInfo:.

Both didEndSelector and didDismissSelector must specify selectors that take three arguments. The
first and last arguments are pointers. The second argument is an integer return code, which will be one of the
NSAlertDefaultReturn, NSAlertAlternateReturn, or NSAlertOtherReturn constants when the
message is sent to modalDelegate.

MYDocument implements -_mySaveChangesSheetDidEnd:returnCode:contextInfo: as follows:

- (void)_mySaveChangesSheetDidEnd:(id)sheet returnCode:(int)returnCode
 contextInfo:(id)contextInfo
{
 switch(returnCode)
 {
 case NSAlertDefaultReturn:
 {
 // User chooses to save changes
 [self saveDocument:nil];
 _myShouldCloseAfterSave = YES; // note fact that close is pending
 break;
 }
 case NSAlertAlternateReturn:
 {
 // User chooses NOT to save changes
 [[self documentWindow] close];
 break;
 }
 case NSAlertOtherReturn:
 {
 // User chooses to CANCEL close
 break;
 }
 }
}

The private -_mySaveChangesSheetDidEnd:returnCode:contextInfo: method is added to the
MYDocument class implementation right above the implementation of -_myShouldClose in MYDocument.m
so that the compiler does not warn that -_mySaveChangesSheetDidEnd:returnCode:contextInfo:
has not been declared when it is used in -_myShouldClose. If the returnCode argument that the alert sheet
sends when it calls -_mySaveChangesSheetDidEnd:returnCode:contextInfo: is
NSAlertDefaultReturn, the _myShouldCloseAfterSave instance variable is set to YES, which means
that the document should be closed after the user has finished saving it. The instance variable is needed because the
document cannot be closed until some time in the future. If returnCode is NSAlertAlternateReturn, the
document can be closed immediately because the user does not want to save changes. Finally, if returnCode is
NSAlertOtherReturn, the method does not do anything because the user has canceled the close.

The -_myShouldCloseAfterSave method is added to MYDocument to return the value of the
_myShouldCloseAfterSave instance variable. If _myShouldCloseAfterSave is YES, the document is
going to be closed after it is saved.

- (BOOL)_myShouldCloseAfterSave
/*" Returns YES if the document should be closed after it is saved.
NO otherwise. "*/

{
 return _myShouldCloseAfterSave;
}

MYDocument now uses an alert sheet instead of an alert panel when asking users to save changes to documents.
The next step is to make the Save panel, which is used to select paths to save unsaved documents, is run as a sheet.
NSSavePanel already provides the -beginSheetForDirectory:file:modalForWindow:
modalDelegate: didEndSelector:contextInfo: method to run it as a sheet.

The first two arguments are the same directory and file paths used with -runModalForDirectory:file:.
The modalForWindow argument is the associated document window. The didEndSelector argument
specifies the message to send to the modalDelegate, and the contextInfo argument is passed to the modal
delegate as an argument to the didEndSelector message.

The -_mySavePanelDidEnd:returnCode:contextInfo: method is called when the user clicks a button
on the Save sheet. The returnCode argument is NSOKButton if the user saved the document and
NSCancelButton if the user clicked the Cancel button on the Save sheet.

If the user canceled the save, the _myShouldCloseAfterSave variable is set to NO. The document should not
be closed if it was not saved. An action message is sent up the responder chain to inform the document manager that
the close was canceled. The need for the action message is explained in the "Changes to MYDocumentManager to
Support Sheets" section of this chapter.

If returnCode is NSOKButton, the document is saved at the path selected by the user. After the save, if -
_myShouldCloseAfterSave returns YES, the document is closed. The document cannot be closed before -
_mySavePanelDidEnd:returnCode:contextInfo: is called because the save sheet is still active until
then.

- (void)_mySavePanelDidEnd:(id)sheet returnCode:(int)returnCode
 contextInfo:(id)contextInfo
/*" Called when Save sheet is being closed. "*/
{
 if (NSOKButton == returnCode &&
 [sheet respondsToSelector:@selector(filename)])
 {
 // Cast is safe because we just verified that sheet responds to filename.
 [self _mySetDocumentPath:[sheet filename]];
 [self _mySaveDocumentData];

 if([self _myShouldCloseAfterSave])
 {
 [[self documentWindow] close];
 }
 }
 else
 {
 // User canceled save
 [NSApp sendAction:@selector(cancelPendingTerminate:) to:nil from:self];
 _myShouldCloseAfterSave = NO;
 }
}

The -saveDocumentAs: method is modified to use NSSavePanel panel as a sheet instead of a modal panel.

- (IBAction)saveDocumentAs:(id)sender
/*" Displays a Save panel to find out where the user wants to save the
document's image data. If the user does not cancel the save, this method
saves the image data at the specified location. "*/
{
 NSSavePanel *savePanel;
 NSString *documentDirectory = [[self documentPath]
 stringByDeletingLastPathComponent];
 NSString *documentName = [[self documentPath] lastPathComponent];

 savePanel = [NSSavePanel savePanel];
 [savePanel setRequiredFileType:@"tiff"];
 [savePanel setTreatsFilePackagesAsDirectories:NO];

 [savePanel beginSheetForDirectory:documentDirectory file:documentName
 modalForWindow:[self documentWindow] modalDelegate:self
 didEndSelector:@selector(_mySavePanelDidEnd:returnCode:contextInfo:)
 contextInfo:NULL];
}

Changes to MYDocumentManager to Support Sheets

An additional instance variable must be added to the MYDocumentManager class interface to keep track of
whether the application is in the process of terminating. Edit the MYDocument.h file so that it has the following
instance variable section:

@interface MYDocumentManager : NSObject
{
 NSMutableArray *_myOpenDocuments; /*" Array of open documents "*/
 NSPoint _myWindowCascadePoint; /*" Used to cascade doc windows "*/
 BOOL _myApplicationIsTerminating; /*" YES iff application is
 terminating "*/
}

The logic for terminating the Image Viewer application needs to be changed to accommodate MYDocument's use
of Save sheets. The problem is that when -applicationShouldTerminate: is called, the user is given a
chance to save unsaved documents. The documents are saved with a sheet, which means that the application must
wait an indeterminate amount of time before terminating so that the user can interact with the sheets.

The following implementation of -applicationShouldTerminate: returns NSTerminateLater if there
are any unsaved documents and sets the _myApplicationIsTerminating instance variable to YES.
NSApplication interprets NSTerminateLater to mean that it should wait until its -
replyToApplicationShouldTerminate: is called to tell it whether the termination is canceled or should
proceed. The behavior of -applicationShouldTerminate: is provided by NSApplication specifically
to enable the use of sheets during application termination.

- (NSApplicationTerminateReply)applicationShouldTerminate:
 (NSApplication *)sender
/*" Implemented to Give user a chance to review and save any unsaved
documents
before terminating "*/
{
 NSEnumerator *enumerator;
 id currentDocument;

 int choice;
 NSApplicationTerminateReply result = NSTerminateNow;
 BOOL foundUnsaved = NO;

 // Determine if theer are any unsaved documents
 enumerator = [_myOpenDocuments objectEnumerator];
 while(!foundUnsaved && nil != (currentDocument = [enumerator nextObject]))
 {
 if([currentDocument respondsToSelector:@selector(isDocumentEdited)])
 {
 // Found at least one unsaved document
 foundUnsaved = [currentDocument isDocumentEdited];
 }
 }

 if(foundUnsaved)
 {
 // Find out of the user wants to review and possibly save the unsaved
 // documents, cancel the termination, or terminate anyway
 choice = NSRunAlertPanel(MYQUIT, MYUNSAVED_DOCS_MSG, MYREVIEW_UNSAVED,
 MYQUIT_ANYWAY, MYCANCEL);
 if (choice == NSAlertOtherReturn)
 { // User selected Cancel
 result = NSTerminateCancel;
 }
 else if (choice != NSAlertAlternateReturn)
 { // User selected Review Unsaved

 // Give the user the chance to review the edited document(s). */
 enumerator = [_myOpenDocuments objectEnumerator];
 while(result != NSTerminateCancel &&
 nil != (currentDocument = [enumerator nextObject]))
 {
 if([currentDocument respondsToSelector:@selector(safeClose)])
 {
 // Cause unsaved documents to show a save panel
 if(![currentDocument safeClose])
 { // User selected Cancel
 result = NSTerminateLater;

 // Note the fact that termination is still in progress
 _myApplicationIsTerminating = YES;
 }
 }
 }
 }
 else
 { // User chooses to quit without saving
 }
 }

 return result;
}

The -documentWillClose action method is called by MYDocument instances when their associated window
is closed. The following implementation of -documentWillClose checks to see if the last open document has

closed and the application is waiting to terminate. If so, the [NSApp
replyToApplicationShouldTerminate:YES] expression tells NSApplication to go ahead and
terminate now.

- (void)documentWillClose:(id)sender
 /*" Removes sender from receiver's open documents array "*/
{
 [_myOpenDocuments removeObject:sender];

 if(_myApplicationIsTerminating && 0 == [_myOpenDocuments count])
 {
 [NSApp replyToApplicationShouldTerminate:YES];
 }
}

The -cancelPendingTerminate: method is needed so that documents can cancel application termination if
the user clicks the Cancel button on a sheet. If MYDocumentManager receives the -
cancelPendingTerminate: action, the [NSApp replyToApplicationShouldTerminate:NO]
expression tells NSApplication to cancel termination. The _myApplicationIsTerminating instance
variable is set to NO so that the application does not terminate when the last document is closed.

- (void)cancelPendingTerminate:(id)sender
/*" Cancels the pending termination of the application. If no termination is
pending, this method does nothing. "*/
{
 if(_myApplicationIsTerminating)
 {
 [NSApp replyToApplicationShouldTerminate:NO];
 _myApplicationIsTerminating = NO;
 }
}

Book: Cocoa® Programming
Section: Chapter 9. Applications, Windows, and Screens

Working with Drawers

A drawer is similar to a sheet in some ways. A drawer is a window that is attached to, and
associated with, another window. Unlike sheets, drawers are not modal. Drawers slide out
of the sides of other windows instead of sliding down from a window's title bar.

Drawers are documented at http://developer.apple.com/techpubs/macosx/Cocoa/
TasksAndConcepts/ProgrammingTopics/Drawers/index.html and http://developer.apple.
com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSDrawer.
html.

Drawers are usually created in Interface Builder and stored in a .nib file along with their
associated window called the parent window. Interface Builder includes an NSDrawer
object already on a palette. No code is needed to manage drawers. In Interface Builder,
drag a drawer from the palette into the Instances tab of a .nib. Connect the drawer's
parentWindow outlet to the parent window. Place a button somewhere in the parent
window. Use Interface Builder to make the drawer the button's target and set the button's
action to toggle:. Each time the button is clicked, the drawer opens or closes.

The contents displayed in a drawer can also be set in Interface Builder. NSDrawer
provides a contentView outlet that can be connected to any view. Create a view in
Interface Builder including views with subviews, scroll views, tables, and so on. Connect
the drawer's contentView outlet to the view created in Interface Builder. Each time the
drawer opens, it shows its contentView. Views are described in detail in Chapter 10,
"Views and Controls."

Drawers should not be larger than their parent window. While opening and closing, the
drawer slides behind the parent window. If the drawer is too big, it will emerge from the
opposite side of its parent as it slides in or out.

Apple provides guidelines on when to use drawers at http://developer.apple.com/techpubs/
macosx/Essentials/AquaHIGuidelines/AHIGWindows/index.html.

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Drawers/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Drawers/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSDrawer.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSDrawer.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSDrawer.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHIGWindows/index.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHIGWindows/index.html

Book: Cocoa® Programming
Section: Chapter 9. Applications, Windows, and Screens

Working with Screens

The NSScreen class encapsulates the attributes of a computer display such as its size in
pixels and the number of supported colors. Each computer can have more than one attached
display, and each display can have different attributes. The NSScreen class provides the
+screens class method that returns an array of NSScreen instances that each
encapsulate a display connected to the computer. The +deepestScreen method returns
an NSScreen instance that encapsulates the display that supports the highest color
fidelity. The +mainScreen method returns an NSScreen instance for the display that is
currently showing the key window.

NSScreen's -visibleFrame method was already used in the implementation of Image
Viewer. NSScreen only has a few methods, and they are documented at http://developer.
apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/
NSScreen.html.

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSScreen.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSScreen.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSScreen.html

Book: Cocoa® Programming
Section: Chapter 9. Applications, Windows, and Screens

Working with Panels

Panels are special windows that have auxiliary purposes in applications. Example of panels
include the Save panel, Open panel, and Alert panels used in Image Viewer.

Panels have slightly different behavior than standard windows. Most panels are hidden
when their application is not the user's current active application. The panels automatically
reappear when the user switches to their application. Panels can float above other windows.
For example, alert panels are always visually on top of other application windows. Panels
can become the key window, but not the main window. The key and main windows are
described in the "Key Window and Main Window" section of Chapter 8. Panels can be
prevented from becoming the key window, and panels can be configured to receive events
even when another window is being run in a modal loop.

The NSPanel Class and Subclasses

The NSPanel class encapsulates Cocoa panels. NSPanel is a subclass of NSWindow
and, therefore, panels inherit all the attributes of windows.

NSPanel only adds the following public methods to the ones inherited from NSWindow:

- (BOOL)becomesKeyOnlyIfNeeded
- (BOOL)isFloatingPanel
- (void)setBecomesKeyOnlyIfNeeded:(BOOL)flag
- (void)setFloatingPanel:(BOOL)flag
- (void)setWorksWhenModal:(BOOL)flag
- (BOOL)worksWhenModal

NSPanel is documented at http://developer.apple.com/techpubs/macosx/Cocoa/Reference/
ApplicationKit/ObjC_classic/Classes/NSPanel.html.

Cocoa includes several subclasses of NSPanel that implement features common to most
graphical applications. Cocoa's NSPanel subclasses include the NSOpenPanel and
NSSavePanel classes used in Image Viewer and other examples in this book. The other
standard subclasses of NSPanel are NSPrintPanel, NSFontPanel,
NSColorPanel, and NSPageLayout.

The NSApplication class provides the -orderFrontColorPanel: and -
runPageLayout: methods for displaying the standard NSColorPanel, and
NSPageLayout instances, respectively.

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSPanel.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSPanel.html

The NSFontPanel class is described in Chapter 11, "Text Views." The
NSPrintPanel and NSPageLayout classes are described in Chapter 25, "Printing,"
and the NSColorPanel class is introduced in Chapter 17, "Color."

Book: Cocoa® Programming
Section: Chapter 9. Applications, Windows, and Screens

Summary

This chapter covered two of the three most prominent classes in Cocoa's Application Kit
framework: NSApplication and NSWindow. The NSApplication, NSWindow,
and NSView classes collaborate to form the basis of every graphical Cocoa application.
The Image Viewer example used most of the features provide by NSApplication and
NSWindow, but it hardly touched the surface of the capabilities of NSView subclasses
such as NSImageView.

The Application Kit framework includes subclasses of NSWindow such as NSPanel, but
neither NSWindow nor NSApplication are commonly subclassed by Cocoa
programmers. In contrast, NSView is subclassed in almost every Cocoa application.
NSView is designed to be subclassed to implement application-specific features, custom
drawing, and custom-event management. The next chapter describes many of the NSView
subclasses provided by the Application Kit framework, but views are such a large subject
that Chapters 10 through 15 all deal with aspects of views. Views are used in almost every
chapter from here on because they play such a central role in Cocoa application
development.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 10. Views and Controls

IN THIS CHAPTER

● Controls
● Simple Views and Controls
● Container Views and Controls
● Compound Controls

This chapter focuses on using the wide array of user interface objects, or widgets, found in
the Application Kit. Interactive widgets, such as sliders, buttons, and text fields, are known
as controls in Cocoa because they all descend from the NSControl class, which is a
subclass of NSView. Passive widgets, such as progress bars, are usually just known as
views because they descend from NSView. This chapter covers nearly all the simpler
Cocoa controls and views. A discussion of the remaining control and view classes, which
are all considerably more complex than those in this chapter, can be found in Chapter 18,
"Advanced Views and Controls."

Most of the Application Kit widgets are relatively simple and tend to work in a similar
fashion. Most respond to a nearly identical set of methods, with only a few unique methods
for each different kind of widget. Before diving into the details of these objects, it is
imperative to understand all the concepts explained in Chapter 8, "Application Kit
Framework Overview." This chapter assumes a basic understanding of the responder chain,
target/action, overall Cocoa application structure, and the NSResponder and NSView
classes as described in Chapter 8.

Book: Cocoa® Programming
Section: Chapter 10. Views and Controls

Controls

All Cocoa controls are subclasses of the NSControl class, which is in turn a subclass of
NSView. The NSControl class is an abstract class and should not be instantiated.
Understanding it is necessary to effectively use its subclasses, however.

The NSControl class performs three key functions. It must be able to draw the user
interface element that it represents. The machinery to support this task is inherited from
NSView. It also needs to be able to respond to user input, in particular from the mouse and
keyboard. This capability is inherited from the NSResponder class. Finally, a control
needs to be able to send arbitrary action messages to arbitrary targets. This capability is
added in the NSControl class itself.

NSControl Class

The NSControl class adds several methods to the NSView class. Because all interactive
Cocoa user interface elements inherit from NSControl, all these methods are valid for
such user interface objects. Some of these methods might not make sense for certain user
interface elements. In those cases, these methods usually do nothing.

Methods to Define a Control's Appearance

Many controls display some text. Text fields are an obvious example of this. There are
several NSControl methods to adjust how the control displays text. These methods are
rarely used in program code. In most cases, the values altered by these methods are set in
Interface Builder's inspector and stored in a .nib file.

The -setFont: method, which takes an NSFont object as its argument, sets the font
used by the control to display text. The -font method returns the font currently in use by
the control. Chapter 11, "Text Views," discusses the NSFont class. In Interface Builder,
the standard font panel is used to change the font of a control.

The text alignment can be altered with the -setAlignment: method. This method takes
one of the five constants NSLeftTextAlignment, NSRightTextAlignment,
NSCenterTextAlignment, NSJustifiedTextAlignment, and
NSNaturalTextAlignment. Many of the Interface Builder inspectors have a control
for setting the alignment. Figure 10.1 shows how the control corresponds to these constants.

Figure 10.1. The alignment control in Interface Builder.

The default alignment for all controls is NSNaturalTextAlignment. This generally
behaves like NSLeftTextAlignment, which renders the text at the left edge of the
control. Multiline text has a jagged right edge. The difference is that natural text alignment
takes localization into account. In a right to left language, natural alignment might imply a
right text alignment. When NSRightTextAlignment is used, the text is rendered at the
right edge of the control. Multiline text has a jagged left edge. Text drawn with
NSCenterTextAlignment is horizontally centered in the control. Both the left and
right edges are jagged if the text is multiline. The NSJustifiedTextAlignment
constant refers to text that is adjusted so that it is flush with both the left and right edges.
Extra space is inserted between words as necessary to justify the text. This is normally only
observable with multiline text because the last line of text will not be stretched to fit.
Figure 10.2 shows how the various text alignment modes are rendered for single line and
multiline text.

Figure 10.2. Demonstration of the five alignment modes supported by Cocoa.

There are several other methods for modifying a control's appearance, but they are
implemented by the NSCell class. Refer to the section "NSCell Class" later in this chapter
for a listing and description of these other methods.

Methods to Implement Target-Action

Several NSControl methods can be used to set up and modify a control's target-action
behavior.

Setting up target-action requires that a control's target and action be defined. The action
should be the selector of an action method (the SEL type). The target should be the id of
an object or nil. If nil, the action is sent to the first responder and down the responder
chain if necessary. The -setAction: and -setTarget: methods are used,
respectively, to set action and target. The -action and -target methods can be used to
determine a control's current action and target.

Usually, the action and target of a control are set up in Interface Builder by control
dragging a connection between two objects. This could be done programmatically with
these methods, but Interface Builder is generally the easier way to set up a target-action
connection. For example, suppose that in Interface Builder a connection is control dragged
from myButton to myControllerObject and the action is set to -
buttonClicked:. This could be done in code as follows:

[myButton setTarget: myControllerObject];
[myButton setAction:@selector(buttonClicked:)];

Using either this code or Interface Builder gives the same result. If the button is clicked,
the -buttonClicked: method of myControllerObject is invoked. Alternatively,
setting the target to nil is the same as connecting to the .nib file's first responder icon.

To programmatically simulate a user clicking a control-such as a button-send the -
performClick: message to the control. This causes the control's action message to be
sent, just as if a user had clicked the control.

Some controls need to send an action message repeatedly. To do this, the -
setContinuous: method is used. Use YES to make the control send multiple action
messages, or NO for a single action message. The -isContinuous method can be used
to obtain this setting. In Interface Builder, a control's inspector has a check box labeled
Continuous that can be turned on and off to change this setting. Because this setting isn't
useful for every type of control, not all controls have this check box.

The meaning of continuous can change from one type of control to another. For example, a
continuous button sends its action message over and over at a fixed rate as long as the
button is being pressed. A continuous slider sends action messages as the slider is moved,
whereas a noncontinuous slider sends a single action message when the slider is released.

NOTE

Control subclasses that send actions periodically, such as buttons, have

methods for changing how often the action is sent. The repeat speed can also
be controlled by a user's preferences.

There is also an advanced method, -sendActionOn:, which can be used to specifically
define which types of events should trigger sending the action. Common events for this
would be mouse-dragged, mouse-down, or mouse-up. The argument to this method is a
bitwise OR of event mask constants. See Chapter 15, "Events and Cursors," for a list of the
event constants and what they mean. This method can radically alter a control's behavior,
so it is normally best to avoid using it. Each control subclass sets up its action-sending
behavior automatically, based on the Aqua guidelines. That is good enough for most
situations.

Methods to Modify Event Response

Some of the NSControl methods determine how the control responds to mouse and
keyboard events.

The most often used methods are -setEnabled: and -isEnabled. Using the
constants YES or NO, the -setEnabled: method can be used to enable or disable the
control. A disabled control is usually grayed out and will not respond to any user input. It
will also refuse to become the first responder.

When a user double-clicks or triple-clicks a control, that action is usually interpreted as two
or three distinct clicks on the control. To ask a control to ignore all but the first click, send
it a -setIgnoresMultiClick: message with a value of YES. All clicks after the first
will be forwarded to the control's superclass. Normally, the superclass ignores the extra
clicks. The -ignoresMultiClick method can be used to determine whether the
control is ignoring multiple clicks.

Finally, a control can choose to accept or reject first responder status. Use the -
setRefusesFirstResponder: method to change this behavior, and -
refusesFirstResponder to see how it is currently set. Changing this method also
alters how the control responds to the inherited NSView method -
acceptsFirstResponder. Sending a YES to -setRefusesFirstResponder:
will cause -acceptsFirstResponder to return a NO and vice-versa.

Setting and Getting a Control's Value

Most controls have an internal value. For example, the value could be an integer or floating-
point number representing a slider's position, or a text string representing the contents of a
text field. The NSControl class implements many methods to set and get this value.
Most of the methods described in this section are also defined by other Cocoa objects, such
as NSString. This consistency through the frameworks makes it easier to remember what

methods are available.

Several methods can be used to change the value of an NSControl. They are

- (void)setStringValue:(NSString *)aString;
- (void)setIntValue:(int)anInt;
- (void)setFloatValue:(float)aFloat;
- (void)setDoubleValue:(double)aDouble;
- (void)setAttributedStringValue:(NSAttributedString *)obj;
- (void)setObjectValue:(id)obj;

Note that all these methods can be sent to any control. Each control attempts to do the right
thing if a value is sent in a form that isn't native to the control. For example, text fields
display strings. Asking it to set its value to a number causes it to do a number-to-string
conversion so that is has a new string to display.

The -setAttributedStringValue: method is somewhat special because it allows a
string with multiple fonts and styles to be set. Most controls treat this as a regular string,
but text fields use the extra text attributes to modify how the text is displayed.

The -setObjectValue: method is a little different from the others because usually no
type conversion will take place, and the value displayed by the control will not be changed.
Instead, the object is stored by the control and otherwise ignored. This allows a particular
object, which can be retrieved later, to be associated with a given control.

Whenever any of the previous methods are used to change a control's value, the control
immediately ends any in-progress editing and is marked as needing to be redisplayed.

To get the current value of a control, use one of these methods:

- (NSString *)stringValue;
- (int)intValue;
- (float)floatValue;
- (double)doubleValue;
- (NSAttributedString *)attributedStringValue;
- (id)objectValue;

Finally, there is a group of methods that can be used to get one control to take the value
from another object and set itself to that value. The methods are

- (void)takeStringValueFrom:(id)sender;
- (void)takeIntValueFrom:(id)sender;
- (void)takeFloatValueFrom:(id)sender;
- (void)takeDoubleValueFrom:(id)sender;

- (void)takeObjectValueFrom:(id)sender;

There are a couple of things to note. The sender parameter should be an object that can
respond to the previous get methods, such as -intValue, and so on. This is important
because the -take methods will call the correlating accessor method. Usually, the sender
will be an instance of another NSControl subclass, which implicitly guarantees this
condition. Also, notice that there is no method for taking an attributed string value. A
method for attributed strings would be expected for the sake of consistency, but as of Mac
OS X 10.1 there is no such method.

To see how these methods work, try creating an Interface Builder file with a single window
containing a slider and a text field. Drag a connection from the slider to the text field,
setting the action to -takeIntValueFrom:. Enter Interface Builder's Test Interface
mode and drag the slider. The text field will continuously update to show the value of the
slider as the slider is dragged.

Tags

All controls can be assigned a tag. A tag is an arbitrary integer that can be used to identify
the control to program code. The tag for a control can be set programmatically or in the
control's inspector in Interface Builder. The tag is most often used by action methods to
determine which control sent the action message. Often, it is unnecessary to know which
control sent a message, in which case the tag can remain unset. The Interface Builder
default is to set the tag to zero.

To determine a control's tag, use the -tag method, which returns an integer. To change a
control's tag, use the -setTag: method, providing it with a new integer or change the tag
in the Interface Builder inspector. Many advanced Cocoa programmers use a #define
statement or an enumerated type to assign symbolic names to integers used as tags. This
can enhance code readability and maintainability.

NOTE

For controls with titles, the title should not be used to identify the control in
program logic. Titles change with localizations and are, therefore, unreliable.
Tags, which are invisible to the user, are a much better way to identify control
objects.

Relationship Between Controls and Cells

Nearly every Cocoa control is associated with a cell object. A cell is a lightweight object
that behaves much like a view object. Cells don't manage a coordinate system or graphics

context, however. Instead, they rely on a view, typically a control, to perform those tasks.
Most controls use cells to implement the drawing behavior as well as some of the event-
handling behavior. Although most controls are paired with a single cell object, some of the
more complex controls use more than one cell. The extra cells are typically used as labels
or as extra active areas of the control.

One of the most common questions for developers new to Cocoa is "why bother with cells
at all when you can just use views everywhere?" The answer is that this is a performance
enhancement that has the additional benefit of adding some extra flexibility to the design of
control objects.

Using cells is a performance enhancement for a couple of reasons. First, view objects use
much more memory for their instance variables than do cell objects. For controls that use
more than one cell, the memory savings is significant. Second, each view has its own
Quartz drawing context. (Drawing contexts are defined in Chapter 12, "Custom Views and
Graphics Part I," and are described more fully in Chapter 13, "Custom Views and Graphics
Part II.") To render a view, its drawing context needs to become active. For a control with
multiple elements, all these context switches can eat up a lot of CPU cycles. Because a cell
requires its parent view object to handle the context, a control with many cells doesn't need
to switch contexts as each cell is drawn. All the cells use the same context. This makes
drawing significantly faster.

Cells also increase the flexibility of Cocoa controls and reuse throughout the framework.
By laying out several cells of different types, complex controls such as steppers can be
created. A matrix control, which is used to implement radio buttons and other repeated
types of controls, is also a collection of cells. Most controls can be turned into a matrix of
cells in Interface Builder by dragging the resize handles while holding down the option
(alternate) key. The only requirement for this to work is that the control have an associated
NSCell subclass. Thus, the NSButton class has the associated NSButtonCell class,
and so on.

Because cells are so prevalent, before diving into the individual types of controls, it is
important to understand what the NSCell class has to offer.

NSControl Methods for Working with Cells

The NSControl class has a few methods for manipulating its associated cell classes. The
-cell method returns the control's cell. The -setCell: method can be used to change
a control's cell. Both methods are most useful with controls that have only a single
associated cell. Controls that use multiple cells often have their own specific methods that
are better choices to use than these two methods.

Much of a control's appearance is controlled by its cell object. Therefore, when configuring
a control programmatically, most of the work is done by changing settings in the associated
cell. The -cell method is used to obtain a pointer to the cell instance.

When a new control is initialized, it creates a default cell instance for itself. The class of
the cell that is generated can be changed with the class method +setCellClass:. This
method should normally be used with a specific subclass of NSControl. For example, to
set NSSlider to use the custom class MySliderCellSubclass for all sliders, this
code is used:

[NSSlider setCellClass:[MySliderCellSubclass class]];

The +setCellClass: method only changes the cell class for objects initialized after it
has been invoked. Existing controls remain unaffected. It is common to change the class
temporarily while programmatically building a user interface. To restore the previous cell
class, the previous class needs to be obtained and stored. Use the +cellClass method to
see what class a particular control is using at the moment.

NSCell Class

A large majority of the methods implemented by the NSCell class are duplicates of the
methods implemented by the NSControl class. The methods described in the previous
sections "Methods to Define a Control's Appearance," "Methods to Implement Target-
Action," "Setting and Getting a Control's Value," and "Tags," are all implemented by
NSCell.

NOTE

Although the NSCell class defines methods for target-action, it is a passive
object. It doesn't really store targets or actions, nor does it send actions.
Subclasses that use target-action need to define instance variables for storing
the target and action as well as implement the target-action-related methods.
The NSActionCell class does this for most Application Kit cells.

The NSCell class offers many methods for defining its appearance. Some of these
methods don't make sense for cells of a particular type. In such cases, the cell attempts to
do the right thing, whatever that may be. Usually, a parameter that doesn't make much
sense is ignored. Because many of these methods are specific to a particular type of
control, such as a button or text field, they are discussed throughout this chapter in the
appropriate section.

A few parameters apply to all cells, however. The way a cell is initialized determines how
it will be used, favoring images or text. The control size (large or small) and control tint
(aqua blue or graphite) can be changed. The border, highlight, and bezel can be turned on
and off.

When a cell is initialized, it is generally set up to be primarily used for text or for images.
As a result NSCell defines two designated initializers, -initTextCell: and -
initImageCell:. Subclasses of NSCell tend to favor one method over the other.
Because NSCell is abstract and shouldn't be instantiated, having two initializers doesn't
cause any confusion. The initializer favored by a given subclass should be used for that
subclass.

Cells can be converted between the two types of cell with the -setType: method and the
current type is returned with the -type method. Both methods use the constants
NSTextCellType, NSImageCellType, and NSNullCellType. (The null type is a
cell that displays nothing.)

To change the control size of a cell object, use the -setControlSize: method. It takes
either the NSRegularControlSize or NSSmallControlSize constant as its
argument. The -controlSize method returns the current control size.

To change the tint of a cell object, use the -setControlTint: method. It takes either
the NSDefaultControlTint or NSClearControlTint constant as its argument.
The NSDefaultControlTint constant causes the control to be rendered in aqua blue
or graphite, depending on the user's setting in preferences. The -controlTint method
returns the current control tint.

The -setBordered:, -setBezeled:, and -setHighlighted: methods turn a
cell's border, bezel, or highlight on or off, respectively. Each takes YES or NO as a
parameter. These methods only turn these features on or off. Specific methods to change a
cell's border or bezel type are found in the various NSCell subclasses. To see whether a
feature is on or off, use one of the -isBordered, -isBezeled, or -
isHighlighted methods.

Some cells have titles. This is usually the case with a cell that displays both an image and
text, such as some buttons. The accessors for the title are -setTitle: and -title.

NSActionCell Class

Most controls use cells that are designed to manage user events and send an action at the
appropriate time. NSCell objects, although they define target-action methods, are actually
passive. A cell subclassed from NSActionCell actually makes use of the target-action
information. It stores the target-action information and implements all the related methods.
The NSActionCell class doesn't define any significant new methods not already defined
in its superclass, NSCell.

Book: Cocoa® Programming
Section: Chapter 10. Views and Controls

Simple Views and Controls

Most of this chapter is concerned with cataloging the many user interface elements offered by Cocoa.
This section covers the simplest views and controls. Buttons, sliders, and text fields are controls common
to almost any graphical user interface. Passive views for displaying images and progress of a long task
are also common. In Cocoa, each of these objects has a single cell instance associated with it.

These controls are normally laid out and configured in Interface Builder. Many methods can also be used
to modify all Cocoa controls without the need for Interface Builder. It is important to realize that
Interface builder is actually instantiating these objects and editing them. That means that internally
Interface Builder is actually calling the methods described in this chapter. Anything that can be done in
Interface Builder can be done in code. No special magic is involved.

Buttons

A button is a user-interface object that sends an action when it is clicked. Apple's Aqua user interface
supports many different styles of buttons. In Cocoa, all these buttons are implemented by the NSButton
and NSButtonCell classes. Because there are so many options available for buttons, these classes can
at first seem somewhat complex. Normally, a user interface's buttons are configured in Interface Builder,
which simplifies the process a little. It is also possible to change the details programmatically.

NOTE

The terminology between the Cocoa method names and the Interface Builder options is
sometimes different. The programmatic interface is also much more detailed. In most cases,
a single option in Interface Builder actually changes several of the programmatic options
simultaneously. Because of these discrepancies, it is difficult to describe the underlying
methods at the same time the Interface Builder options are being explained. Because of this,
Interface Builder options are described first, and then all the programmatic options are
discussed separately.

The following button-related sections explain the available button options and the methods offered by
NSButton and NSButtonCell to change them. The described methods are technically
NSButtonCell methods, but the NSButton class also implements them as a convenience. The
NSButton implementations simply forward the messages on to the underlying NSButtonCell object.

Button Options in Interface Builder

The first option, which affects a button's appearance the most, is the button's type. Interface Builder
supports six different button types as defined by Aqua: Rounded Bevel Button, Square Button, Push
Button, Check Box, Radio Button, and Round Button. All six buttons are available on the Cocoa-Views
palette in Interface Builder. Click the palette button with a small button and text field on it to open the
Cocoa-Views palette. This palette and the six button types are shown in Figure 10.3.

Figure 10.3. Buttons on the Cocoa-Views palette.

It is also possible to change the button type using the button inspector. Open the inspector by hitting Cmd-
1 with a button selected. Figure 10.4 shows this inspector.

Figure 10.4. Interface Builder's button/button cell inspector.

To change the button type, use the pop-up list labeled Type. The rest of this section refers back to Figure
10.4 as the other options are described.

NOTE

In this case, the label Type in Interface Builder is not the same as the word type when seen
in the Cocoa method names. The type pop-up in Interface Builder's inspector actually
changes a button's bezel style, gradient, images, and more. There is a method -
setButtonType:, but it refers to what Interface Builder labels Behavior.

At the top of the inspector are text fields for setting a button's title, image, and sound. The sound is
played whenever the button is clicked. The title and/or image are displayed on the button to identify it to
the user. When the button is in the off state, the normal title and image are displayed. When in the on
state, the alternate title and icon are displayed. Normally, titles should be kept as short as possible while
remaining clear. ToolTips, as described in Chapter 20, "Adding Online Help," can be used if more
information than the title needs to be offered to the user. Images are typically small icons. In the case of
radio buttons and switches (also known as check boxes), a special icon is used for the image and alternate
image to show the button's state.

Buttons can have a key equivalent. When the key equivalent is typed, the button is triggered as if the
mouse had clicked it. If the window doesn't have an active first responder, it acts as the first responder
and looks for buttons that have key equivalents for anything typed at the keyboard. If the key equivalent
uses the Cmd key, the window looks for a button to click even if it has a first responder. Buttons with
Cmd-key equivalents take precedence over menu items with the same key equivalents when the window
containing the button is the key window.

A button's key equivalent can be configured by the row of controls labeled Equiv in Interface Builder.
The key is typed into the text field. Alternatively, special keys, such as Return or Tab, can be selected
with the pop-up list. The two switches determine whether the Option or Cmd keys need to be pressed to
trigger the key equivalent. Refer to Figure 10.4 to see these controls.

The Behavior pop-up controls how a button behaves. This setting varies between the button objects on
the palette and is generally set to be the way a user would expect a button of a particular type to behave.
It is very rarely changed because most changes would violate the Aqua guidelines. To prevent the worst
offenses, this pop-up is disabled for some button types. It offers six options, as described in Table 10.1.

Table 10.1. Button Behaviors

Behavior Name Behavior

Momentary Light Redraws itself between mouse-down and mouse-up to be highlighted.

Momentary Change Redraws itself between mouse-down and mouse-up to show the alternate image
and title.

Momentary Push In Redraws itself between mouse-down and mouse-up to be highlighted and, if
bordered, pushed in.

Toggle The first click turns the button on, the second turns it off. On buttons display their
alternate text and image. Highlighting happens between mouse-down and mouse-
up.

On/Off The first click turns the button on, the second turns it off. On buttons are
highlighted, but don't show alternate text or image.

Push On/Push Off The first click turns the button on, the second turns it off. On buttons are
highlighted and, if bordered, appear pushed in.

The key difference between these modes is whether the button is momentary or toggles state. The other
difference is in whether the alternate title and image are used. The difference between appearing pushed
in or not is actually moot in Mac OS X 10.1.

NOTE

A button that is highlighted and a button that is highlighted and pushed in are actually
drawn the same in Aqua. The difference between the two was more apparent on versions of
Cocoa prior to Mac OS X that implemented the classic Macintosh interface and the NeXT
interface.

The options area of the button inspector controls miscellaneous button options. They can alter a button's
appearance, event handling, and state.

Three check boxes control the appearance of a button. Some buttons have borders. The Border check box
allows this to be changed for buttons that allow it to be changed. Some types of buttons, such as push
buttons, don't allow the border to be turned off. Transparent buttons don't draw anything, but are still
sensitive to being clicked. These buttons can be used to make certain areas of a user interface become
live, even though there's not necessarily anything obvious to click. One use of this is as a secret button
that triggers an Easter egg. The Small check box causes the small version of the button to be drawn, if
such a thing applies. All the button types except for rounded bevel and square have small versions.

Continuous buttons are buttons that repeatedly send their action message while they are in the on state.
The Continuous check box turns this behavior on or off. The Enabled check box can be used to disable a
button. An enabled button can be clicked and sends its action, but a disabled button is grayed out and all
clicks on the button are ignored. The Selected check box changes a button's state. A selected button is a
button that is in the on state. This makes sense only for toggle, on/off, check box, and radio buttons.

The Icon Position buttons determine how buttons display their titles and images. Refer to Figure 10.5 to
see the icons on each of these buttons and how they correspond to Cocoa constants. They behave similar

to radio buttons because only one can be selected at a time. On the buttons, a line represents the text title
and a square represents the image. Select just a line to display only the text title. Selecting the square
displays only the image. The four remaining buttons cause the text and icon to be used, with the text to
the top, bottom, left, or right of the icon. The Pixels Inset pop-up controls the spacing between the image
and the text and is, therefore, only available when image and text are both to be rendered.

Figure 10.5. Icon Position control from Interface Builder's button/button cell inspector.

The final two controls on the inspector, alignment and tag, have already been explained in the previous
sections "Methods to Define a Control's Appearance" and "Tags." The justified option is not available for
buttons, but because buttons only display a single line of text, this is not a problem. Single line justified
text looks just like left justified text.

Configuring a Button's Titles, Images, and Sound

There are methods for setting a button's titles. The two types of titles are the normal and alternate, and
each can be set with a string or attributed string. Thus, there are four methods, the function of each is
obvious from the name:

- (void)setTitle:(NSString *)aString;
- (void)setAlternateTitle:(NSString *)aString;
- (void)setAttributedTitle:(NSAttributedString *)aString;
- (void)setAttributedAlternateTitle:(NSAttributedString *)aString;

Likewise, there are four methods for retrieving a button's title. They are -title, -alternateTitle,
-attributedTitle, and -attributedAlternateTitle.

Use -setImage: and -setAlternateImage: to set a button's image and alternate image. The
image and alternate image can be retrieved with the -image and -alternateImage methods. Both
methods use the NSImage class. This class is explained in Chapter 14, "Custom Views and Graphics
Part III."

The image position can be altered with the -setImagePosition: method. The possible constants
that can be passed to this method are NSNoImage, NSImageOnly, NSImageLeft,
NSImageRight, NSImageBelow, NSImageAbove, and NSImageOverlaps. The first six in that
list correspond to the Icon Position control in Interface Builder's button inspector. The constant
NSImageOverlaps cannot be set from Interface Builder. It can be used to make the image and title
overlap.

Finally, -setSound: sets the sound the button plays when it is triggered. The -sound method returns

the sound. Both methods use the NSSound object, which is described in Chapter 21, "Multimedia."

All the methods for altering a button's titles, images, and sound can be sent to instances of both the
NSButton and the NSButtonCell class.

Configuring a Button's Rendering

Quite a few methods alter the way a button is rendered. Some of these methods correspond directly to
counterparts in Interface Builder's inspector. However, most of the controls in the inspector actually call
several of these methods at once.

To make a button transparent, use the -setTransparent: method. The -isTransparent method
is used to determine if a button is transparent or not. These methods correspond to the Transparent switch
in Interface Builder.

The border around a button is controlled by the -setBordered: and -setBezelStyle: methods.
These values are accessed with the -isBordered and -bezelStyle methods. The border methods
take and return the constants YES and NO. The bezel style constants are NSRoundedBezelStyle,
NSRegularSquareBezelStyle, NSThickSquareBezelStyle,
NSThickerSquareBezelStyle, NSShadowlessSquareBezelStyle, and
NSCircularBezelStyle.

NOTE

For all cells that support borders and bezels, the border and bezel are mutually exclusive.
Setting one turns off the other.

The bezel types loosely correspond to the Type pop-up list in Interface Builder. The
NSRoundedBezelStyle constant corresponds to the Rounded Bevel button. A button using
NSCircularBezelStyle is a Round button. The four square bezel style constants are variants of the
Square button type. Other methods can be used to select the other types. A button using
NSShadowlessSquareBezelStyle can be tiled with other buttons of the same bezel style, which
is useful for tool palettes.

The Type button in Interface Builder sets a button's gradient as well as its bezel. Square buttons display a
gradient that simulates a shadow. This makes them look as though they have a slightly curved surface.
The gradient can be concave or convex and weak or strong. A concave gradient makes the button look
like it curves slightly into the screen, whereas a convex gradient makes the button appear to be curved
out of the screen. Weak versus strong refers to the contrast between the light and dark colors of the
gradient. Strong gradients appear to have more curvature.

To set a gradient, use -setGradientType: with one of the constants NSGradientConcaveWeak,
NSGradientConcaveStrong, NSGradientConvexWeak, or NSGradientConvexStrong.
To use no gradient, use the constant NSGradientNone instead.

It is possible to alter how a button renders itself when it is highlighted with the -setHighlightsBy:

method. The -highlightsBy method returns the current highlight mode. Both methods use a series of
mask constants. The value can be either NSNoCellMask or the bitwise OR of the constants
NSContentsCellMask, NSPushInCellMask, NSChangeGrayCellMask, and
NSChangeBackgroundCellMask.

The NSNoCellMask constant specifies no change between highlighted and nonhighlighted buttons. The
NSContentsCellMask constant causes the alternate title and image to be used. The
NSPushInCellMask constant is supposed to make the button appear to be pushed in, but has no effect
in Mac OS X. The NSChangeGrayCellMask and NSChangeBackgroundCellMask constants
make the button appear to be darker when it is highlighted. The key difference is that
NSChangeBackgroundCellMask is meant for buttons using images that have alpha channel data.

Similar to highlighting, it is possible to change the way a button renders itself when in the on state. The -
setShowsStateBy: method changes this, and the -showsStateBy method returns the current
setting. Both methods use the same set of masks as the -setHighlightsBy: and -highlightsBy
methods.

NOTE

Depending on how a button is configured, it might make a distinction between being
highlighted and being in the on state. Interface Builder sets up both parameters based on a
combination of how the Type and Behavior pop-up lists are set.

A final rendering parameter controls the look of a disabled button. When a button with an image is
disabled, normally the image should be dimmed along with the text. This is generally always the case in
Mac OS X, even for switches and radio buttons. It is possible, however, to have the image remain
undimmed when a button is disabled. In such a case, only the text is dimmed to indicate that the control
is disabled. Sending YES or NO to the -setImageDimsWhenDisabled: method controls whether
the image is dimmed and -imageDimsWhenDisabled returns the current setting.

Configuring a Button's Behavior

It is possible to modify the way a button behaves with the -setType: method. The Interface Builder
pop-up lists Type and Behavior both send this message along with several other messages to modify the
button's rendering. Remember that in the programming API, the word type is not used entirely the same
as it is used in the Interface Builder interface. The various button types and their meanings are shown in
Table 10.2. It might also be useful to refer back to the button behaviors in Table 10.1.

Table 10.2. Button Type Constants

Constant Meaning

NSSwitchButton Same as Switch Button in Interface Builder Type pop up

NSRadioButton Same as Radio Button in Interface Builder Type pop up

NSMomentaryLightButton Same as Momentary Light in Interface Builder Behavior pop up

NSMomentaryChangeButton Same as Momentary Change in Interface Builder Behavior pop up

NSMomentaryPushInButton Same as Momentary Push In in Interface Builder Behavior pop up

NSToggleButton Same as Toggle in Interface Builder Behavior pop up

NSOnOffButton Same as On/Off in Interface Builder Behavior pop up

NSPushOnPushOffButton Same as Push On/Push Off in Interface Builder Behavior pop up

The NSCell methods -setContinuous: and -isContinuous affect NSButtonCell objects.
Continuous buttons send their actions repeatedly until released. The following two methods control the
timing of the repeats:

- (void)setPeriodicDelay:(float)delay interval:(float)interval;
- (void)getPeriodicDelay:(float *)delay interval:(float *)interval;

The delay is the time in seconds before the button starts sending repeated action messages. The interval is
the time between each of the repeated action messages.

When a button is being held down, it normally remains highlighted until the mouse is dragged outside of
the button's bounds. It is possible to make a border-based highlight remain on when the mouse strays
outside of the button with the -setShowsBorderOnlyWhileMouseInside: method. The -
showsBorderOnlyWhileMouseInside method returns the current setting. This only affects the
button's border. It will not cause a button's other highlights to stay on when the mouse leaves the button's
bounds.

Configuring a Button's Key Equivalents

Two methods exist for setting a button's key equivalent. The -setKeyEquivalent: method sets the
actual key equivalent. An NSString containing a single character should be provided. To tell a button
whether modifier keys, such as Cmd and Option, need to be pressed down, use the -
setKeyEquivalentModifierMask: method. It requires the bitwise OR of the modifier key masks
described in Chapter 15. The NSCommandKeyMask and NSAlternateKeyMask refer to the Cmd
and Option keys, respectively, and are the only ones that can be set with Interface Builder. The current

key equivalent setting can be obtained with the -keyEquivalent and -
keyEquivalentModifierMask methods.

When a button is set to display text and an image, but the image has been set to nil, the key equivalent
is shown in place of an image. Although Interface Builder doesn't allow the font used for the key
equivalent to be altered, it can be changed programmatically. The following three methods can be used to
get and set the key equivalent's font:

- (NSFont *)keyEquivalentFont;
- (void)setKeyEquivalentFont:(NSFont *)fontObj;
- (void)setKeyEquivalentFont:(NSString *)fontName size:(float)
fontSize;

NOTE

The three methods for working with a key equivalent's font are only available in the
NSButtonCell class. This differs from the other methods for modifying buttons. The
others can be sent to either NSButton or NSButtonCell.

Configuring a Button's State

Normal buttons, created in Interface Builder, can have one of two states, on or off. The -setState:
method can take the constants NSOnState or NSOffState to change the state. The -state method
returns the current state of a button.

NOTE

The constants YES and NO can be used as synonyms for NSOnState and NSOffState,
respectively, but this is implementation dependent and should be avoided. It is common to
see YES and NO used in older example code, so it is useful to know that this works. It is
stylistically discouraged, however, in part because it doesn't work well with mixed state
buttons.

It is also possible to programmatically create buttons that are capable of displaying a third state, known
as mixed. This is very common for check boxes that are displaying the attributes of a selection. If a
selection contains objects with a particular attribute on, the check box is set to on. It is set off if none of
the objects has the characteristic. But if the selection contains some objects with the setting on and some
with it off, a mixed state is usually used. For example, suppose a check box is showing whether a text
selection is in boldface. The text selection could be all in boldface, all in a nonbold style, or mixed, with
some text in bold and some not.

To enable a button to have a mixed state, use the -setAllowsMixedState: method. The -
allowsMixedState method can be used to see if this is already on or not. The -setState: and -
state methods use the constant NSMixedState to denote the mixed state.

When a mixed state toggle button is clicked, instead of toggling between on and off it cycles through the
three states. The order of the cycle is on, off, mixed, and so on. The -nextState method returns the
next state the button takes on, but doesn't actually change the state. The -setNextState method
moves the button into the next state in the cycle. Of course, -setState: can be used to set a particular
state.

Sliders

A slider is a user interface element that can deal with a range of numeric values. On Mac OS X, sliders
can be horizontal or vertical. Some sliders can be configured to have tick marks on one side or the other,
whereas others can be configured to have no tick marks at all. A slider can be disabled, which causes it to
be grayed out. Sliders also come in large and small forms. Figure 10.6 shows a wide variety of sliders
displaying these various characteristics.

Figure 10.6. A variety of slider configurations.

A slider's knob is moved by clicking and dragging inside the slider. If the user clicks outside of the
slider's knob, the knob jumps to the mouse location and can then be dragged from there. If a slider has
tick marks, the knob movement can optionally be constrained to move in jumps aligned with the tick
marks. Sliders can be configured to send their actions either continuously as the slider is moved or once
when the mouse is released. Several preconfigured sliders are available on the Cocoa-Other palette in
Interface Builder. This palette is shown in Figure 10.7.

Figure 10.7. Sliders on the Cocoa-Other palette.

The NSSlider object implements a single slider. It uses the NSSliderCell object in the same way
NSButton uses NSButtonCell objects. Also like buttons, the methods supported by the
NSSliderCell class can also be sent to the NSSlider class. Most messages to NSSlider are
forwarded to its cell.

Cocoa offers a second object that acts much like a slider, the NSScroller. Scrollers and sliders both
navigate a one-dimensional range, but cannot be used interchangeably. Sliders select a single point from
within their range, whereas a scroller is designed to allow the user to select a fixed-size range within a
range. Because scrollers are usually used indirectly as part of an NSScrollView object, they are
discussed later in this chapter in conjunction with scroll views.

Slider Options in Interface Builder

All the options for configuring a slider can be found in Interface Builder's NSSlider inspector. This
inspector, shown in Figure 10.8, is displayed by using the Cmd-1 key equivalent when a slider or slider
cell is selected.

Figure 10.8. Interface Builder's slider/slider cell inspector.

In the inspector, the minimum and maximum values control the range of the slider. The current value
represents the slider's current position. When the slider's .nib is loaded, the slider will already be set to
this value.

In the inspector, the Options box, with the Continuous, Enabled, and Small switches, and the Tag text
field are all control options defined by NSControl and NSCell. All four of these options are
described previously in this chapter.

The Markers box is used to set tick marks. Set the number of markers to zero for a slider with no tick
marks. If the number is set to 1, there will be a single mark at the slider's center. If there are two or more
marks, there will be a mark at each end of the slider with the remaining marks distributed evenly between
the ends.

The Position radio buttons change their titles depending on whether the slider is vertical or horizontal and
control which side of the slider has the tick marks. Depending on where the slider is located in a user
interface, one layout might look better than another. Although this setting can be changed if there are no
tick marks, doing so won't change the rendering of the slider until tick marks are added.

The Marker Values Only switch forces the slider knob to always be over a tick mark. As the knob is
dragged, it jumps from one tick mark to the next. Although Interface Builder allows this to be turned on
for a slider with a single tick mark, doing so is somewhat useless because it renders the slider immobile.
It can also be turned on for sliders with no tick marks, but there will be no change in the slider's behavior.

Slider Sizes

Some constraints are set by Aqua for NSSlider objects. Sliders dragged from Interface Builder's

palette automatically follow these constraints. Sliders created programmatically should be created so that
the correct sizes are used.

First, determine whether the slider should be horizontal or vertical. The NSSlider class automatically
decides whether it is horizontal or vertical based on its size. A slider that is horizontal should be created
so that it is wider than it is high. A vertical slider should be higher than it is wide. To see how a slider
will be rendered, the -isVertical message can be used.

When the orientation is decided, there are certain limits to the shorter dimension. A horizontal slider's
height should be 25 pixels for a large slider with tick marks or 21 pixels for a large slider without ticks.
Small sliders should be 17 pixels high with tick marks and 15 pixels without.

NOTE

Curious readers will eventually discover that the horizontal slider with tick marks on
Interface Builder's palette is actually 26 pixels in height. This is probably a bug because
turning the ticks off and back on will change the height to 25 pixels. This is true for the
April 2002 Mac OS X Developer tools release, future releases might fix this discrepancy.

For vertical sliders, the width is the constrained dimension. A large vertical slider with ticks should be 25
pixels in width. Without ticks, a large slider should be 21 pixels wide. A small slider with ticks should be
19 pixels wide. A small slider without ticks should be 15 pixels wide.

Configuring a Slider's Range

The range of a slider is set using the -setMinValue: and -setMaxValue: methods, both of which
take a double. The -minValue and -maxValue methods return the current settings. These
correspond to the Interface Builder inspector's minimum and maximum values. The current value setting
in Interface Builder is set using the standard methods for setting a control's value, such as -
setFloatValue:.

If the user holds down the Option key when dragging a slider knob, it is possible to have the knob move
in precise increments instead of smoothly. This is somewhat like constraining a slider to only land on tick
marks, except that it is optional. To set the increment size, use the -setAltIncrementValue:
method. The -altIncrementValue method retrieves the current setting.

Configuring a Slider's Tick Marks

The options for setting tick marks in Interface Builder's inspector have obvious accessor method
counterparts. To set the number of ticks, use the -setNumberOfTickMarks: method. The -
numberOfTickMarks method returns the current setting. To control where tick marks are rendered,
use the -setTickMarkPosition: method with the constants NSTickMarkBelow,
NSTickMarkAbove, NSTickMarkLeft, and NSTickMarkRight. The -tickMarkPosition
method returns the current setting. Finally, the -setAllowsTickMarkValuesOnly: method
controls whether the slider knob is always forced to be over a tick mark or able to move smoothly. The -
allowsTickMarkValuesOnly method returns the current setting.

A few other methods for dealing with tick marks might be useful. For a slider with n tick marks, each
mark is given an index from 0 to n-1. Given an NSPoint, the nearest tick mark can be determined with
the -indexOfTickMarkAtPoint: method. It returns the index of the nearest tick mark or
NSNotFound if the point is too far away to be considered near any tick mark.

Given the index of a tick mark, the double value of the slider at that tick mark can be found using the -
tickMarkValueAtIndex: method. The area of the view where the tick mark is drawn is obtained
with the -rectOfTickMarkAtIndex: method. This is useful when overriding a slider's -
drawRect: to do custom rendering.

Given a particular slider value, it is possible to determine the value represented by the nearest tick mark.
The -closestTickMarkValueToValue: method takes a hypothetical double value and
determines which tick mark is closest to that slider value. It then returns the double value that the slider
would have if its knob were at that mark.

Configuring a Slider's Rendering

Prior to the Aqua user interface in Mac OS X, Cocoa supported two rendering options for sliders. The
first option would alter the size of the slider's knobs, using the -setKnobThickness: and -
knobThickness methods. The other option, using -setImage: and -image, would allow an
image to be laid in the slider's track, much like the sliders in the standard color panel.

As of Mac OS X 10.1.4, neither of these rendering options works, even though the methods for
controlling both can be found in the Cocoa headers. They are mentioned here to avoid frustration.
Although Apple has taken the time to fully document these methods, they do nothing no matter how hard
you try to make them work.

NOTE

It is obvious that images could be put in a slider's track because this is done in the color
panel. The Application Kit actually uses an undocumented NSSlider subclass to
implement this functionality.

Titles for Sliders

The NSSlider and NSSliderCell classes define several methods for drawing a title on the slider. If
they are used, a separate cell is used to draw the slider's title. Unfortunately, the title is drawn in the
middle of the slider, and can be obscured by the knob. Because of this, the title methods should be
avoided for sliders. Instead, it is best to use a separate text field object placed near the slider to act as a
label. This is also how labels should be placed to show the user a slider's range.

Text Fields

Text fields are controls that can display or edit text. A noneditable text field can be used as a text label in
a user interface. It is possible to configure a text field so that the data it displays is given a specific
format. Editable text fields can be used for data entry of string or numeric values. Such fields can be set

up to validate input, rejecting unacceptable values.

Similar to other controls, text fields are implemented by two classes. The NSTextField class is a
subclass of NSControl, and the NSTextFieldCell class is a subclass of NSActionCell. The
NSDateFormatter and NSNumberFormatter classes, both subclasses of NSFormatter, work
with text fields to implement formatting and validation.

The Cocoa-Views palette in Interface Builder contains four instances of NSTextField; three are
configured as labels and one is editable. The palette also has instances of NSDateFormatter and
NSNumberFormatter. Figure 10.9 shows where these objects are located on the Cocoa-Views palette.
There is also an NSForm object on the palette. The NSForm class is more complex than a text field. It is
described in the "Compound Controls" section later in this chapter. The separator objects are discussed in
the "Boxes" section later in this chapter.

Figure 10.9. Text fields on the Cocoa-Views palette.

Text Field Options in Interface Builder

All the options for configuring a text field can be found in Interface Builder's NSTextField inspector.
This inspector, shown in Figure 10.10, is displayed by using the Cmd-1 key equivalent when an
NSTextField or an NSTextFieldCell is selected.

Figure 10.10. Interface Builder's text field/text field cell inspector.

The title field in the inspector can be used to change the text displayed by the view. This can also be
edited by double-clicking the text field in Interface Builder.

The color of the text and the background color of the field can be set with the two color wells. Dragging a
color swatch and dropping it on the text field also changes the text color. The Draws Background switch
can be used to suppress drawing the background for some border types.

The alignment control changes where the text is drawn in the field. The tag field at the bottom of the
inspector is used to set the text field's tag. Both controls are described earlier in this chapter as part of the
discussion of the NSControl class.

The border control selects between three border types. The left button, with the dashed line, is used to
configure a text field to have no border. The middle button, with a solid black line, is for bordered text
fields. The border is drawn as a 1-pixel thick black line. The border's color cannot be changed. The right
button sets the text field to have a bezeled border. Figure 10.11 shows the border control. The setting of
this control enables or disables the Draws Background switch. Bezeled fields always draw their
backgrounds. The background can be turned off for bordered or unbordered text fields.

Figure 10.11. Border control in Interface Builder's text field/text field inspector.

The send action radio buttons control when the text field sends its action. The On end editing setting

causes the action to be sent whenever the text field's editing ends. This happens when the user presses the
Return key, tabs to a new field, or clicks in another field to change focus. This is the default behavior.
The Only on enter setting causes the action to only be sent if the user hits the Return (or Enter) key.

The options box offers four options for text fields. The Editable switch determines whether the text field's
value can be changed by the user. If the field is bezeled, making it noneditable lightens (dims) the color
of the bezel. The Enabled switch can be used to disable a text field, even if it is editable. This setting is
often changed as a program runs. A disabled text field dims its text.

The Selectable switch is always turned on for an editable text field. For noneditable fields, this switch
controls whether the user can select the text and use the Copy command. Usually, text fields used as
labels are not selectable. Making a field noneditable, but selectable is useful primarily to allow the user to
copy data from the field while disallowing modification. For example, some programs use a unique host
ID for generating licenses. The host ID is immutable, so a field displaying it should not be editable.
Usually, such IDs are prone to being mistyped, however, so it is wise to allow the user to copy the value
from the host ID field. It can then be pasted elsewhere, avoiding the possibility of typing mistakes.

The Small switch chooses a smaller version of the text field. It changes both the font and bounds of the
text field object. This can be convenient, but is somewhat redundant because the font of the text field can
be changed with the standard font panel, and the text field itself can be resized to any arbitrary size by
dragging the object's resize handles.

The Layout radio buttons control how the text field renders text that is too wide to fit within its bounds. If
it is set to Scrollable, the text always is a single line in height. As the user types, the text scrolls leftward
to make room for new characters. This is generally the preferred behavior for simple data-entry text
fields. The Wraps setting is used to make the text wrap to multiple lines. In Figure 10.2, shown earlier in
this chapter, the text fields on the right side of the window are all set to wrap instead of scroll.

Configuring an NSTextField

As with all Cocoa controls, the NSTextField and NSTextFieldCell classes define methods that
implement all the functionality accessible from the Interface Builder inspector. These methods can be
used to programmatically configure text views or change their appearance as a program runs. Both
classes implement the same set of methods.

The text field's value can be set using the standard NSControl methods, such as -
setStringValue:. This is labeled as the Title in the Interface Builder inspector.

NOTE

Some of the more complex user interface controls have titles that are distinct from the
values they contain and/or edit. Such controls use the -setTitle: and -title methods
for the titles and the normal value accessors such as -setStringValue: and -
stringValue for the data. Because the Interface Builder inspector's label says Title for a
text field's value, it is common to mistakenly use the -setTitle: and -title methods
instead of the appropriate value accessor methods when working with text fields.

A text field's colors are controlled by three pairs of accessor methods that correspond to the controls in
the Color box of the Interface Builder NSTextField inspector. Set the colors by passing an NSColor
object to the -setTextColor: and -setBackgroundColor: methods. The -textColor and -
backgroundColor methods both return an NSColor. The NSColor class is described in Chapter
17, "Color." For text fields used as labels, it is common to not draw a background color, so that the
window's background shows through. To turn the background color on or off, pass YES or NO to the -
setDrawsBackground: method. The -drawsBackground method returns the current setting.

The text field's border is controlled by the -setBordered: and -setBezeled: methods. The
current setting can be determined with -isBordered and -isBezeled. Only one feature, bezeled or
bordered, can be active at a time. If both are set, the bezel will win out.

To change the way a text field lays out its text, use the -setScrollable: and -setWraps:
methods. Use -isScrollable and -wraps to determine the current settings. The scrollable and
wraps options are mutually exclusive. Setting one causes the other to be unset. These four methods
correlate to the Layout radio buttons in Interface Builder.

Editability of a text field is controlled by the -setEditable: method. Selectability is controlled by
the -setSelectable: method. These methods correlate with the Editable and Selectable switches in
Interface Builder. The current settings are returned by the -isEditable and -isSelectable
methods.

The NSTextField class also responds to the action message -selectText:. Sending this message
attempts to make the text field become the first responder, and then all the text in the field will be
selected. This method is the one to use to programmatically change the keyboard focus to a particular text
field.

Tabbing Between Text Fields

Cocoa supports use of the Tab key to move focus from one text field to another. This process works as a
loop within each window. Continually pressing Tab moves keyboard focus from one field to the next
until it returns to the field where it started. When a window is first brought onscreen, focus will be on the
first field in the loop.

Cocoa sets all this up automatically. The first text field in the loop is the field that is topmost and leftmost
on the window. Focus then moves from left to right, and then from top to bottom across the window.
Tabbing out of the bottommost, rightmost field returns the focus to the first field.

If Cocoa's automatic tab loop in unsuitable, it is possible to manually set up a different tab loop. To do
this, each of the fields must be connected together. Drag a connection from a field to the next field in the
Tab loop and set the connection to the nextKeyView outlet. This should be done for every field in the
loop. To identify the first field in the loop, drag a connection from the window to the first field and set
the connection to the initialFirstResponder outlet.

NSTextField Delegates

Text field objects can have delegates to help modify their behavior. As usual, the delegate accessor

methods -setDelegate: and -delegate are available. NSTextField objects send the following
messages to their delegate:

- (BOOL)textShouldBeginEditing:(NSText *)textObject;
- (BOOL)textShouldEndEditing:(NSText *)textObject;
- (void)textDidBeginEditing:(NSNotification *)notification;
- (void)textDidEndEditing:(NSNotification *)notification;
- (void)textDidChange:(NSNotification *)notification;

The methods returning a BOOL can be used to prevent the start or end of editing. The remaining methods
notify of various changes in the text field's state.

Many text fields don't actually need to have a delegate. Many of the functions that would be performed
by a delegate can be performed by formatter objects instead. To learn about formatter objects, see the
"Validation and Formatters" section later in this chapter.

The Field Editor

Text rendering and editing is an extremely complex task. The NSTextField and
NSTextFieldCell classes are too lightweight to handle all the complexities involved. Rather than
lose functionality or duplicate code, all text fields share a single NSText object called the field editor.

The NSText class is extremely heavyweight and supports all the most advanced features of text
handling Cocoa offers. Sharing a single instance helps to simplify the implementation of the text-field
classes while amortizing the overhead of the NSText class across several NSTextFieldCell
instances.

Normally, developers don't need to worry about the field editor. It remains behind the scenes, doing its
thing. When subclassing NSTextFieldCell, however, it is often necessary to intervene and configure
the field editor for the new subclass. This is usually done by overriding the NSTextFieldCell
method -setUpFieldEditorAttributes:. This method is handed an NSText instance, the field
editor, and should return the same instance after finishing. It is common to call the super
implementation of the method when overriding.

Other methods are related to the field editor, but they are beyond the scope of this book. Refer to the
documentation for the NSControl class for information about these methods. Furthermore, many of the
NSControl delegate methods allow customization of field editor behavior without a need for
subclassing.

Input Managers

All Cocoa text objects make use of input managers to handle complex input tasks. They allow the user to
type characters not available on their keyboards. This is used heavily for oriental languages, but even
European languages take advantage of this facility for adding accents and other diacritical marks to
characters. The NSText class is the primary customer of input managers' services. Because text fields
use an NSText as their field editor, all NSTextField and NSTextFieldCell instances can
implicitly take advantage of this rich functionality.

Input managers are typically separate processes that communicate using RPC. The NSInputManager
and NSInputServer classes implement the actual functionality. Under normal circumstances,
developers never need to work with either class directly. All interation is handled automatically and
transparently by NSText. Menus to allow users to change between input managers are also fully
automatic. Cocoa adds the appropriate menus as necessary without any developer intervention.

Developers wanting to create custom input managers should consult the Cocoa documentation for the
NSInputManager and NSInputServer classes. The developer example at /Developer/
Examples/AppKit/HexInputServer is also very helpful.

Secure Text Fields

The NSSecureTextField and NSSecureTextFieldCell classes implement a special variation
on the standard text field. Secure text fields override the normal field editor behavior so that the field's
value is not displayed when the user types. For added security, it also prevents the standard cut, copy, and
paste operations. This type of text field should always be used for extremely sensitive data such as
passwords.

Unfortunately, all NSSecureTextField objects must be created programmatically because Interface
Builder does not yet have an instance of this class on any of its palettes. A partial workaround for this is
to create an NSTextField object where the secure field is wanted, and then change it to an
NSSecureTextField in the Custom Class inspector (Cmd-5). The cell class is not changed, however,
and there's no way to change it in Interface Builder as of Mac OS X 10.1.4. Therefore, when the .nib is
unarchived, it is necessary to create a new NSSecureTextFieldCell object and pass it to the
NSSecureTextField by using the -setCell: method.

The NSSecureTextFieldCell class can have one of two behaviors. It can echo a user's typing as
either a series of bullets (small, black-filled circles), one per character typed, or by moving the cursor, but
drawing nothing. The -setEchosBullets: method controls which behavior is used and the -
echosBullets method returns the current setting. Unlike most methods used to configure control and
cell pairs, these methods are only implemented by the cell subclass.

Validation and Formatters

Cocoa supports automatic validation and formatting of text field entries. When validation is being used, a
user is not allowed to stop editing a field until it contains a legal value. The computer beeps if they try to
click in another field or Tab to the next field. Formatting concerns how a field displays its values.
Formatting includes instructions such as how many decimal places to display for numeric values or
which separators to use for date strings. The abstract class NSFormatter is designed to perform both
validation and formatting tasks. Cocoa supplies two concrete subclasses, NSNumberFormatter and
NSDateFormatter.

For other types of validation, such as Zip codes, phone numbers, or application-specific validation a
custom subclass of NSFormatter is required. Subclassing NSFormatter is shown in Chapter 11.
The reader should also refer to the third-party frameworks listed in Appendix C, "Finding Third-Party
Resources." Many of these frameworks have very good examples.

The easiest way to configure formatters is to use Interface Builder. There are two ways to attach a

formatter to a text field in Interface Builder. The first is to drag a formatter off the Cocoa-Views palette
and drop it onto a text field. The formatter will automatically be attached to the text field. The second is
to drop the formatter into the main .nib window. Drag a connection from the text field to the formatter
and connect it to the formatter outlet.

The interface between these two approaches is slightly inconsistent in Interface Builder as of the April
2002 developer tools release. When a formatter is dropped onto a text field, it can be adjusted with a
formatter inspector brought up by Cmd-7. The formatter object remains invisible, so although a formatter
is connected to the field, the connection won't be shown in the connections inspector. On the other hand,
dragging an explicit connection between a text field and a formatter gives a connection that shows up in
the text field's connection inspector. But the text field won't have a Cmd-7 format inspector available,
even though there is a formatter attached. To get the formatter inspector, the formatter itself needs to be
selected and its attributes inspector (Cmd-1) should be brought up.

The second approach, dragging an explicit connection to a formatter instance in the main .nib file, is
the only approach that allows a single formatter to be shared between multiple text fields. Because
formatters can be shared, it is a good idea to do so whenever possible.

Program code can use the NSControl/NSCell methods -formatter and -setFormatter: to
retrieve and change the formatter for a given field, respectively.

Both of the formatters provided by Cocoa, for dates and numbers, are easiest to configure with Interface
Builder. When set up, there is rarely a need to change them programmatically. In fact,
NSDateFormatter instances are immutable. The date formatter's inspector in Interface Builder offers
two options. The first is the date format to be used, and the second is whether to allow natural language.
The date formatter inspector is shown in Figure 10.12.

Figure 10.12. Interface Builder's NSDateFormatter inspector.

Clicking one of the preset formats in the table automatically fills the Custom Format field with the right
value. Alternatively, any format can be typed into this field. The format should follow the format
specifiers accepted by the strftime() C function. Type man strftime at the command line to see
the function's manual page, which lists all the options.

Turning on the switch to allow natural language makes it possible for the user to type things like
yesterday, next week, today, and so on. The phrase is parsed, the date is calculated, and the
correct date is put into the text field being formatted. This is very useful, and works remarkably well, but
it isn't perfect. For example, relative terms can be problematic. The phrase "two days ago" doesn't work
at all and "day before yesterday" incorrectly fills yesterday's date into the field. So, although this is a
really neat feature, it might not be acceptable for all uses.

To programmatically create a date formatter, use the designated initializer -initWithDateFormat:
allowNaturalLanguage:. The -dateFormat and -allowsNaturalLanguage methods
return the object's characteristics. NSDateFormatters are immutable, so there are no -set accessor
methods.

The number formatter's inspector in Interface Builder offers several complex options. It is shown in
Figure 10.13.

Figure 10.13. Interface Builder's NSNumberFormatter inspector.

The easiest way to set a number format is to use one of the preset formats available in the table at the top
of the inspector. There are formats for floating-point numbers, integers, money, and percentages. Any
format can be selected from the table by clicking on its row. The relevant settings will be made in the rest
of the inspector panel.

The other way to set a number format is to provide a format for positive, zero, and negative numbers. In
the formats, characters such as spaces, dollar signs ($), and percent signs (%) will be used verbatim in the
output. Zeros are used as placeholders for digits that should always exist. These digits are zero-filled if
necessary, allowing for leading or trailing zeros to be defined. Pound signs (#) are used for optional digits
and repeat as necessary. They are used primarily in formats that have thousands separators. The Add
1000 Separators switch must be on for this to work. To get a better feel for how the formats are defined,
it is best to play with the Interface Builder inspector a bit and watch how the appearance samples change.

The minimum and maximum settings allow the range of numbers to be constrained. This is especially
useful for text fields associated with sliders. The Negative in Red switch can be used to make negative
numbers be displayed in red instead of the field's normal text color. The normal text color is still used
when editing the field, even if it contains a negative value, and the negative color can only be red.

The Add 1000 Separators switch enables and disables the separators, and takes precedence over what the
formats in the fields above it say to do. In some locales, the character used for decimal points and
thousands separators are swapped. In the United States, a period (.) is used as the decimal point, and a
comma (,) is used as the thousands separator. This is reversed in many other countries. The , <-> . switch
swaps the separators. The Localize switch overrides that setting and swaps the separators only when
necessary, depending on the locale. In most cases, using the localize feature is preferred because it should
always do the right thing for the current locale.

The Detach Formatter button in both the date and number formatters' respective inspectors can be used to

delete the formatter instance. Clicking the button causes the formatter object to be deallocated with the
side effect of severing any connections made to the formatter. This button works for both shared and
private formatters, so it should be used with care. To detach a shared formatter from only one text field
instead of all fields, select the field in question and disconnect the formatter outlet.

Dozens of methods can be used to adjust an NSNumberFormatter. Rather than discuss them all here,
refer to the class reference sheet. It can be found as part of the developer documentation at /
Developer/Documentation/Cocoa/Reference/Foundation/ ObjC_classic/
Classes/NSNumberFormatter.html. Many of the methods do not directly correspond to the
controls in the Interface Builder inspector, though all the same functionality is available.

Image Display

Image views are used to display images. For instance, an image view can be used to skin a window's
content area. Image views can also be used as a way for users to select images. When editable, a user can
drag an image to an image view and drop it there. Image views are implemented in Cocoa with the
NSImageView and NSImageCell classes.

NOTE

The class names NSImageView and NSImageCell don't follow the naming convention
established between the other Cocoa control/cell pairings. There is already an NSImage
class for representing images (described in Chapter 14) so that name is not available for this
control. The name NSImageViewCell is cumbersome and misleading because the cell is
not a view, so NSImageCell is used.

Image views are found on the Cocoa-Other Interface Builder palette. (Refer to Figure 10.7 shown earlier
in this chapter to see this palette.) The NSImageView instance is the rectangular object with rounded
corners that is displaying a picture of a mountain.

Image View Options in Interface Builder

All the options for configuring an image view can be found in Interface Builder's NSImageView
inspector. This inspector, shown in Figure 10.14, is displayed by using the Cmd-1 key equivalent when
an NSImageView or an NSImageCell is selected.

Figure 10.14. Interface Builder's image view inspector.

There are five configurable features in the NSImageView class-icon, border, alignment, scaling, and
editability. The icon is the name of the image being displayed. This can be the name of an image in the
project, one of the system bitmap names, or even the full path of an image anywhere in the file system.
The border can be turned on or off. Cocoa actually supports other options for the border, but they are not
Aqua-compliant. To avoid the temptation to use these extra options, they aren't available from within
Interface Builder.

The alignment and scaling determine how the image is displayed. Alignment controls where the image is
placed within the view, and scaling allows the image to be stretched. Each of the scaling options is worth
examining. Proportional scaling means that the image will be shrunk in size if it doesn't completely fit
within the view's bounds. The scaling will be done proportionally, which preserves the image's aspect
ratio. Scaling to fit will expand or shrink the image as necessary to make it cover the entire bounds of the
view. This can seriously distort the image if the view's aspect ratio differs significantly from the image's
aspect ratio. No scaling will always render the image without any size adjustment or distortion. If the
view is too small, the excess parts of the image will be clipped (cropped) so that the image stays within
the bounds of the view.

The editable parameter determines whether the user is allowed to drag and drop new images into the
image view. It is usually best to disable this for borderless image views because the user wouldn't know
that there was an active control without the border to send the necessary visual cues.

Modifying Image View Instances

A few methods are available in NSImageView and NSImageCell to expose the functionality used in
Interface Builder.

The image view's image, labeled Icon in Interface Builder, can be manipulated with the -setImage:

and -image accessors. They take and return an NSImage instance, respectively. Refer to Chapter 14
for an in-depth discussion of NSImage. To make the view editable or not, or see the current setting, use
the standard NSCell methods -setEditable: and -isEditable.

To work with the border of an image view, use the -setImageFrameStyle: and -
imageFrameStyle methods. They take and return the constants NSImageFrameNone,
NSImageFramePhoto, NSImageFrameGrayBezel, NSImageFrameGroove, and
NSImageFrameButton. Only the NSImageFrameNone and NSImageFramePhoto constants
should be used to keep within the Aqua guidelines.

Scaling options are accessed with the -setImageScaling: and -imageScaling methods. The
constants used by these methods are NSScaleProportionally, NSScaleToFit, and
NSScaleNone. Alignment is accessed with the -setImageAlignment: and -imageAlignment
methods. The following constants can be used with the alignment methods:

NSImageAlignCenter

NSImageAlignTop

NSImageAlignTopLeft

NSImageAlignTopRight

NSImageAlignLeft
NSImageAlignBottom

NSImageAlignBottomLeft

NSImageAlignBottomRight

NSImageAlignRight

The default image scaling is NSScaleProportionally. The default image alignment is
NSImageAlignCenter.

Progress Indicators

Progress indicators can be used to provide feedback about long-running processes. There are two types of
indicator: indeterminate and determinate. An indeterminate progress indicator looks like a sideways
barber pole. While a long-running task is being performed, it appears to spin. This animation tells the
user that the program hasn't hung up. Determinate progress indicators start out empty and fill in their
bounds from left to right as a process is completed. The filled-in part of the progress indicator has a
subtle animation that makes it look somewhat like flowing water.

Progress indicators are implemented by the NSProgressIndicator class. This class is a subclass of
NSView, not NSControl, and has no partner NSCell subclass. Because of this, progress indicators
cannot be used in matrices or other objects requiring cells. A progress indicator instance can be found on
Interface Builder's Cocoa-Other palette. (Refer to Figure 10.7 earlier in this chapter to see the palette.) It
is set to be indeterminate, so it looks like a sideways barber pole.

Progress Indicator Options in Interface Builder

All the options for configuring a progress indicator can be found in Interface Builder's
NSProgressIndicator inspector. This inspector, shown in Figure 10.15, is displayed by using the
Cmd-1 key equivalent when an NSProgressIndicator is selected.

Figure 10.15. Interface Builder's progress indicator inspector.

This inspector is very simple. The progress indicator's type, indeterminate or not, is set with the
Indeterminate switch. The Small switch is used to choose a smaller version of the progress indicator.

If the progress indicator is determinate, the range parameters become meaningful. When a long task is
running, it periodically updates the progress indicator's value to show how far the task has proceeded.
The range is set beforehand to tell the indicator the range of values it should expect to see between
starting and completing the task. Then, as the value changes, the progress indicator knows how much of
its bar should be colored in. The default range of zero to 100 nicely matches the idea of percent complete.
Of course, any range will work, so it is best to choose a range that best suits the task reflected by the
progress indicator.

There is no way to set the progress indicator's value in Interface Builder. This must be done through
program code. In general, the NSProgressIndicator class requires some amount of code to be used
properly.

NSProgressIndicator Methods

The basic options offered from Interface Builder are available from a set of self-explanatory accessor
methods. They are

- (BOOL)isIndeterminate;
- (void)setIndeterminate:(BOOL)flag;
- (NSControlSize)controlSize;
- (void)setControlSize:(NSControlSize)size;
- (double)minValue;
- (double)maxValue;
- (void)setMinValue:(double)newMinimum;
- (void)setMaxValue:(double)newMaximum;

The NSControlSize type is enumerated and can be either NSRegularControlSize or
NSSmallControlSize.

If a progress indicator is determinate, its value can be manipulated by using the -setDoubleValue:
and -doubleValue methods. These are the only two value accessors available. Because this class isn't
a control, it doesn't implement other value accessors such as -setIntValue:, and so on. The method
-incrementBy: can be used to move the progress indicator forward by a set amount. It takes a double
as its parameter. The -incrementBy: method is for convenience only, so the following two lines of
code are equivalent:

[myIndicator incrementBy:someDelta];
[myIndicator setDoubleValue:[myIndicator doubleValue] + someDelta];

There are also several methods that can be used to start, stop, and control the animation of an
NSProgressIndicator. To start the animation, use the -startAnimation: action method. The
-stopAnimation: action method stops the animation. To manually advance the animation by one
frame, call the -animate: action method. This method's sender argument is ignored.

The speed of the animation can be adjusted with the -setAnimationDelay: method. The -
animationDelay method returns the current delay. These methods work with the
NSTimeInterval type, which is a floating-point number representing seconds. So, an interval of 0.5
would mean two frames per second.

It is possible to have the animation of the progress indicator be run from an NSTimer in the main thread
or from a separate thread. If the task being monitored runs in the main thread and blocks the main event
loop until it is finished, it is usually best to run the animation from a separate thread. If a background
worker thread is being monitored, running a separate thread might not be necessary. Chapter 24,
"Subprocesses and Threads," describes threads in detail and includes an example that uses an
NSProgressIndicator. To change the threading behavior of an NSProgressIndicator
instance, use the -setUsesThreadedAnimation: method. Use the -
usesThreadedAnimation method to see the current setting.

Book: Cocoa® Programming
Section: Chapter 10. Views and Controls

Container Views and Controls

Several of Cocoa's view subclasses can be wrapped around other Cocoa views. Because of these
behaviors, they are often referred to as containers. Boxes, scroll views, tab views, split views, and
matrices can all be considered containers. Boxes simply draw a pretty border around the views
they contain. A scroll view allows a user to scroll around a view that is much larger than the scroll
view itself. Tab views allow users to switch between several related views. Split views provide a
separator that can be dragged to reallocate screen real estate between two views.

NOTE

Most Cocoa containers use both the GOF Decorator and GOF Facade patterns.
Chapter 6, "Cocoa Design Patterns," briefly discusses these and other patterns found
in Cocoa.

In Interface Builder, the Cocoa-Containers palette, shown in Figure 10.16, has tab view and box
instances on it. These instances can be dragged into any window. Matrices, scroll views, and split
views are not available on any palettes, however. Interface Builder offers an alternative means of
creating these views. First, select one or more views that are to become subviews of the container.
Next, select one of the items in the Layout>Make subviews of> menu. This enables
arbitrary views to be wrapped in a box, scroll view, split view, tab view, or a custom view
subclass.

Figure 10.16. Interface Builder's Cocoa-Containers palette.

After a container instance has been created, double-clicking the container or clicking one of the
container's visible subviews enables the contents of the container to be edited. Items can also be

dragged from the palette into the container.

Boxes

Boxes are used to visually group user interface items. Normally, boxes draw a border around their
bounds and a title at the top. Boxes do not accept user input. Boxes are implemented by the
NSBox class. Figure 10.17 shows three variations of the basic box available in Interface Builder.
There is an NSBox instance on the Cocoa-Containers palette, as shown in Figure 10.16. Refer to
the previous section "Container Views and Controls" for instructions on how to create an NSBox
instance in Interface Builder.

Figure 10.17. NSBox instances created with Interface Builder.

Some boxes are drawn to be very narrow. Look for the vertical and horizontal separator lines in
the Cocoa-Views Interface Builder palette. (The palette is shown in Figure 10.9 earlier in this
chapter.) These separators are actually instances of NSBox. It is not possible to change an NSBox
instance from a rectangular box into a separator or vice-versa, even though they are the same
class. Separators can't be changed between being vertical or horizontal, either. Interface Builder
prevents such changes. Instead of changing existing instances, a new instance of the right kind
would need to be dragged from the palette.

Box Options in Interface Builder

All the options for configuring a box can be found in Interface Builder's NSBox inspector. This
inspector, shown in Figure 10.18, is displayed by using the Cmd-1 key equivalent when an
NSBox is selected.

Figure 10.18. Interface Builder's NSBox inspector.

Interface Builder offers two options for boxes, changing the title and type of the box. The Title is
Visible switch turns the title on or off. The title itself can be changed by modifying the text field
under the switch. It can also be changed by double-clicking the title on the box itself and
modifying the title in place.

NOTE

Setting the title to an empty string is not the same thing as making it invisible. A
box actually obscures part of its border before drawing the title. An empty title still
leaves a small gap in the border. Making the title invisible makes the box border
seamless.

The Box Type control allows the choice between three styles of box, as shown in Figure 10.17.
The rightmost box is actually borderless. Most boxes seen in Aqua are of the leftmost style.

NSBox Methods

It is easiest to configure an NSBox in Interface Builder and be done with it. Several accessor
methods can be used to make changes programmatically, though. Several options that are
available through code are not offered in Interface Builder. These extra options sometimes create
boxes that are not Aqua compliant, so extra care should be taken with these methods to ensure a

user interface that looks like it really belongs on Mac OS X.

To turn the border on or off, use the -setBorderType: method. Use -borderType to see
the current setting. Four constants are available for use with these methods, NSNoBorder,
NSLineBorder, NSBezelBorder, and NSGrooveBorder. The NSNoBorder constant
gives a borderless box. NSGrooveBorder is the default setting for all boxes. To change the
style of the box, use -setBoxType:. Use -boxType to see the current setting. Four constants
can be used with these methods, NSBoxPrimary, NSBoxSecondary, NSBoxSeparator,
and NSBoxOldStyle. The leftmost box shown in Figure 10.17 is a primary style box, whereas
the center box exhibits the secondary style. Separators are thin lines placed between user interface
elements and do not enclose any views. The old style box should be avoided because it is not
Aqua compliant.

The title is manipulated with the -setTitle: method. The current title is returned by the -
title method. The title font is changed with the -setTitleFont: method. The current title
font is returned by the -titleFont method. The title's position can be changed with the -
setTitlePosition: method. The current position is returned by the -titlePosition
method.

The title position methods work with several different constants. Interface Builder uses the
NSNoTitle and NSAtTop constants, controlled by the Title is Visible switch. These are the
only two that are Aqua compliant. The other constants that are available, but should be avoided,
are NSAboveTop, NSBelowTop, NSAboveBottom, NSAtBottom, and NSBelowBottom.
The title position can be at the top or bottom border of the box. A title can also be above, below,
or at the border. Titles at the border interrupt the border, whereas titles above or below the border
do not.

Every box has a content view object. All the views enclosed by a box are subviews of the content
view. To manipulate the content view of a box, use the -setContentView: method. The
current content view is returned by the -contentView method. Using the normal NSView
methods -addSubview: and -replaceSubview:with: will also do the right thing,
adding the views to the content view of the box.

Borderless Boxes

A common use of borderless boxes is to implement inspectors such as the one in Interface
Builder. The inspector changes its user interface based on the current selection. To support this, it
is convenient to define an inspector view for each object that might be selected. An inspector
view will typically be an NSBox instance containing the full user interface for the object's
inspector.

When it comes time to swap one inspector interface with another, a tabless NSTabView or other
appropriate container is used as a container, and the inspector views are swapped in and out. The
container and inspector view are invisible to the user. All the user sees is that one set of controls
has vanished and a new set has appeared. (Tab views are explained in the upcoming "Tab Views"

section.)

Scroll Views

Scroll views allow a large view, such as a document, to be displayed in a much smaller window.
The large view being scrolled is known as the scroll view's document view. By adding scrollbars
around the edges of the document view, it becomes possible to navigate through extremely large
views. Scroll views can also optionally manage rulers and ruler markers.

A scroll view is implemented in Cocoa with the NSScrollView class. A scroll view contains
multiple subviews in addition to its document view. Instances of NSScroller implement the
scrollbars. The content area of the scroll view, called the content view, is actually an
NSClipView instance. The document view being managed by the scroll view is really a
subview of the clip view. The clip view can be thought of as a window that displays only a
portion of the document view at any given time. Scroll views that have rulers use instances of
NSRulerView and NSRulerMarker. Figure 10.19 shows how these views are normally laid
out by a scroll view.

Figure 10.19. The layout of subviews inside an NSScrollView instance.

Refer to the previous section "Container Views and Controls" for instructions on how to create an
NSScrollView instance in Interface Builder.

Scroll View Options in Interface Builder

All the options for configuring a scroll view can be found in Interface Builder's NSScrollView
inspector. This inspector, shown in Figure 10.20, is displayed by using the Cmd-1 key equivalent
when an NSScrollView is selected.

Figure 10.20. Interface Builder's NSScrollView inspector.

The background color is displayed as the scroll view's background if the views it encloses are
transparent or do not cover the entire content area of the scroll view. It is common to set this color
to a shade of gray if the default window background color is unacceptable.

The border setting allows there to be no border, a solid black line, a bezel, or a groove. Most user
interfaces use the bezeled border if the scroll view is not the only user interface element in its
window. If the scroll view is the only element, it is preferable to use no border and size the scroll
view so that it covers the entire window content area. An example of this would be a document
window in TextEdit.

The scrollbars are actually optional. Normally, it is best to have at least one scrollbar visible. It is
entirely possible, though, to use a scroll view as if it were a sliding window over a view. In such a
situation there would be no scrollbars and the application would programmatically move the
scroll view, as necessary. The scrollers can also be set to use small versions. This is handy for
cramped interfaces, but should not be done for full-window scroll views.

The Parameters box controls scrolling behavior. The first parameter, Line Amount, controls how
many pixels the scroll view will move when an arrow is clicked on one of the scrollbars. The
Page Context parameter is trickier. When a scroll arrow is Option-clicked, it asks the scroll view
to scroll by a page instead of a line. The default behavior is to move the scroll view so that
whatever was shown at the bottom of the scroll view before the page scroll is moved to the top of
the scroll view after the scroll. The page context tells the scroll view how many pixels of data
from the bottom (before the page scroll) should remain visible at the top (after the page scroll). A
setting of zero means that the last row of pixels before the scroll will be just off the top of the

screen after the scroll. A positive setting means that slightly less than a screenful will be
considered to be a "page" for scrolling purposes.

Scroll views implement methods to expose all the functionality that is supported by Interface
Builder. There is also a large amount of functionality that is not currently available from Interface
Builder, so it is common to write some set up code to make final tweaks to a scroll view after it is
loaded from a .nib.

Configuring NSScrollView Rendering

The background color of a scroll view is controlled with the -setBackgroundColor: and -
setDrawsBackground:, methods. The current settings are returned by the -
backgroundColor and -drawsBackground methods. In Interface Builder, background
drawing is always turned on. Turning it off makes it possible for views underneath the scroll view
to show through.

The border is manipulated with the -setBorderType: method. The current border type is
returned by the -borderType method. These methods use the same four border type constants
as boxes, NSNoBorder, NSLineBorder, NSBezelBorder, and NSGrooveBorder.

Scrolling Parameters

The scrollers are turned on and off with the -setHasVerticalScroller: and -
setHasHorizontalScroller: methods. The scroller status is returned by the -
hasVerticalScroller and -hasHorizontalScroller methods. To change the
scroller size, it is necessary to manipulate the scroller objects themselves. The accessors for the
scroller objects are -setVerticalScroller:, -verticalScroller, -
setHorizontalScroller:, and -horizontalScroller. All four scroller accessors
either accept or return NSScroller instances.

The NSScroller class implements scrollbars. Normally, there is little need to manipulate this
class directly. The NSScrollView class takes care of all interaction with the class
automatically. Scrollers are controls, so it is possible to use the standard NSControl methods to
configure them. Scrollers do not have an associated cell subclass.

The scrolling parameters for line amount and page context from Interface Builder are controlled
by several methods. All these methods work with float values. The line amount is accessed
with -setLineScroll: and -lineScroll. The page context is accessed with -
setPageScroll: and -pageScroll. These methods treat the horizontal and vertical
scrolling amounts identically. It is possible to treat the horizontal and vertical directions
differently. The following methods control the scrolling parameters precisely in just the
horizontal or vertical direction:

- (void)setHorizontalLineScroll:(float)value
- (void)setVerticalLineScroll:(float)value

- (float)horizontalLineScroll
- (float)verticalLineScroll
- (void)setHorizontalPageScroll:(float)value
- (void)setVerticalPageScroll:(float)value
- (float)horizontalPageScroll
- (float)verticalPageScroll

Rulers in Scroll Views

A scroll view wrapped around an NSText object is already set up to use rulers. To have rulers
available for any other type of scroll view content requires some extra code. By convention, rulers
are turned on and off by sending the -toggleRuler: method down the responder chain. The
NSScrollView class doesn't support the -toggleRuler: action method. Instead, this
method must be implemented by the class that is the scroll view's document view. This may seem
odd because the ruler is actually laid out by the scroll view as one of its subviews. The NSText
object in Interface Builder has the capability to show rulers because it implements the -
toggleRuler: method. A -toggleRuler: method implementation should be written to
cooperate with the enclosing scroll view to manage the rulers.

Prior to making the rulers visible, the ruler objects need to be set up. The -
setHorizontalRulerView:, -horizontalRulerView, -
setVerticalRulerView:, and -verticalRulerView accessors work with
NSRulerView objects to set up and retrieve the rulers. The -setHasHorizontalRuler:
and -setVerticalRulerView: methods can be used to turn the rulers on or off,
individually. Finally, the -setRulersVisible: method causes the enabled rulers to be either
displayed or not. The -rulersVisible method returns the current setting. The scroll view
tries to automatically set up its rulers if possible. How this is done can be altered by telling the
scroll view class which ruler class to use. Use the +setRulerViewClass: and
+rulerViewClass class methods to do this.

Ruler views require a client view. The client view is the view being measured by the rulers. The
scroll view will not automatically connect the document view to the ruler as a client. It is up to the
document view to complete this part of the setup. The document view should use the
NSScrollView -horizontalRulerView and -verticalRulerView accessors to
obtain the rulers from the scroll view. After it has the rulers, the document view can call the
NSRulerView -setClientView: method to set up the client relationship.

Rulers inside of scroll views are implemented by the NSRulerView class. Markers along the
length of the ruler, such as tab stops, are implemented with the NSRulerMarker class. A single
ruler view can have many markers. Both classes are highly configurable and relatively easy to
use. The Sketch example at /Developer/ Examples/AppKit/Sketch shows how to use
rulers in the most basic form. The TextEdit example at /Developer/Examples/AppKit/
TextEdit shows a much more complex ruler.

Using an NSScrollView

When working with the contents of a scroll view, it is important to remember that the content
view is actually a clip view instance. The view that is scrolled is the document view, which is in
turn a subview of the clip view. The clip view, an NSClipView instance, is accessed with -
setContentView: and -contentView. The document view is accessed with -
setDocumentView: and -documentView. The size of the content area is returned by -
contentSize. The part of the document view currently being displayed is returned by -
documentVisibleRect.

NOTE

It is rare to work directly with the NSClipView class because NSScrollView
handles it automatically. It is, therefore, best to stick with the document view
methods instead of using the content view methods.

Usually, the only reason to subclass NSScrollView is to add new controls to the interface. A
common control is a zoom pop-up inside the horizontal scrollbar. The main method to override is
the -tile method. This method is called by Cocoa to lay out the scroll view. Calling the super
implementation, and then adjusting the subviews to make room for the new controls usually
accomplishes the desired result. The TextEdit source code at /Developer/Examples/
AppKit/TextEdit shows one way to do this in its ScalingScrollView class.

Another useful method is defined by the NSView class. The -scrollRectToVisible:
method takes an NSRect and attempts to scroll so that the rectangle becomes visible; it returns
YES if successful. This method should be sent to the document view of a scroll view. This is the
primary means of scrolling programmatically. Search the NSView class reference or header file
for the word "scroll" to find a handful of other methods that are occasionally useful when working
with scroll views.

Sometimes a scroll view's document view implements mouse-dragging and wants to scroll
automatically in response to mouse-dragged events. To do this, it should invoke the enclosing
clipview's -autoscroll: method, passing in the mouse-dragged event. Chapter 15 discusses
events, such as mouse-drags, in detail. For now, it is enough to know that simply adding this line
to a custom view's -mouseDragged: method usually suffices:

[[self superview] autoscroll:event];

It is always safe to call the -autoscroll: method because NSView defines it. The
NSClipView class simply overrides -autoscroll: to work effectively with an enclosing
scroll view. If a view isn't in a scroll view, the method call is ignored.

Adding this call in -mouseDragged: causes the scrolling to only happen when the mouse is
moved. To have the scrolling happen continuously, even when the mouse isn't being moved, use
an NSTimer to send the auto scroll message repeatedly. Doing auto scrolling with a timer often

feels smoother to the user.

Tab Views

Tab views are containers that have multiple content views, but only one is available at any given
time. Across the top is a row of labeled tabs that the user can click to move from one pane to
another. Some tab views are tabless. Such views can still switch from pane to pane under program
control, but the user is unaware that this is the case until they see it change. The Animal example
from Chapter 24, "Subprocesses and Threads," puts a tabless tab view to good use. The tabless
form is usually used to implement a wizard interface, where the user steps through a series of
pages to accomplish a complex task.

Tab views are an economical means of putting many, many user interface controls into a
reasonably sized window. The controls in a tab view should be grouped in a logical manner. Each
grouping should be placed on a single tab. An example of putting tab views to good use is the
System Preferences application. Many of the preferences panes it supports contain tab views.

Tab views are implemented by the NSTabView class. Each individual tab is represented by an
NSTabViewItem instance. A typical NSTabView instance owns many NSTabViewItem
instances. There is an NSTabView instance on the Cocoa-Containers palette, as shown in Figure
10.16 earlier in this chapter. Usually, Interface Builder is used to create tab views. Refer to the
previous section "Container Views and Controls" for instructions on how to create an
NSTabView instance in Interface Builder.

Tab View Options in Interface Builder

Options for configuring a tab view can be found in Interface Builder's NSTabView inspector.
This inspector, shown in Figure 10.21, is displayed by using the Cmd-1 key equivalent when an
NSTabView is selected.

Figure 10.21. Interface Builder's NSTabView inspector.

The most significant attribute is the number of items (tabs). Any number can be used, but there
are some caveats. Tab views don't deal well with having too many tabs. They tend to clip out any
tabs that don't fit within the tab view's bounds. To help this situation, the Allows truncated labels
switch can be turned on to reduce the size of the individual tabs a little bit. The Small Tabs switch
might help a little as well. If after all this the tabs are still too large, they will be clipped
regardless. It is a good idea to make sure everything looks good in Interface Builder. Making the
window larger and setting a relatively large minimum window size might be necessary to keep
the user interface looking good.

The other key option is to choose whether the tab view should have tabs. If yes, the tabs will be at
the top of the view. Even in a tabless view, there can still be an arbitrary number of items.
Because tabless views don't have to worry about drawing tabs, any number of items is usable.

NOTE

There is a disabled pop-up button for tab view that is set to Has Tabs. The pop up
looks like it allows the tabs to be put on a different side of the view, but it cannot be
enabled. Tabs are always at the top. The fact that Apple added this pop up in the
December 2001 developer tools release clearly implies that there are plans to allow
tabs to be in other locations in the future.

Tabless tab views can display with or without a border. The Animal example in Chapter 24 uses a
borderless, tabless tab view to implement its primary user interface. A bordered view looks like a
raised box with drop shadow, floating just a tiny bit above the window containing it.

The Draws Background switch only affects tab views that are tabless and borderless. If it is on,
the tab view's background will be drawn in solid black. There is no way to change this, so
drawing the background isn't a terribly useful option at present.

Tab View Item Options in Interface Builder

Options for configuring a tab view item can be found in Interface Builder's NSTabViewItem
inspector. This inspector, shown in Figure 10.22, is displayed by using the Cmd-1 key equivalent
when an NSTabViewItem is selected.

Figure 10.22. Interface Builder's NSTabViewItem inspector.

There are two settings in this inspector-the label and the identifier. The label is the text that
appears on the tab itself, and can also be edited by double-clicking one of the tabs. The identifier
is like a tag on a typical control except that it can be any string value. It doesn't have to be an
integer. This identifier can be used in program code to find tab view items.

The control Displaying Tab Item: with the field and stepper is a convenient means of switching
between tabs while working on a tab view in Interface Builder. This is especially handy for tab

views that are tabless because, in that case, it is the only way to switch from tab to tab in Interface
Builder. The tabs can be selected like normal to switch around, but only if they are visible.

Configuring an NSTabView

When configuring a tab view in code, the InterfaceBuilder controls for tabs/tabless and border
type are combined into a single pair of accessor methods, -setTabViewType: and -
tabViewType. The constants that can be used with these methods are
NSTopTabsBezelBorder, NSNoTabsBezelBorder, NSNoTabsLineBorder, and
NSNoTabsNoBorder. The NSNoTabsLineBorder constant is not available from Interface
Builder.

NOTE

Three other constants are defined in the NSTabView.h header file:
NSLeftTabsBezelBorder, NSBottomTabsBezelBorder, and
NSRightTabsBezelBorder. A note in Mac OS X 10.1 says that these create a
tab view with the tabs at the top, but implies that they will be supported in the future.

The -setAllowsTruncatedLabels: method controls whether the tab view will truncate
the labels, if necessary, to make the tabs fit. The -setDrawsBackground: method turns the
background on and off, but only for the NSNoTabsNoBorder (borderless) tab view type. The
current settings of these attributes are returned by the -allowsTruncatedLabels and -
drawsBackground methods.

Selecting Tabs

Selecting a tab is done by selecting one of the NSTabViewItem instances managed by the tab
view. Tabs can be selected based on identifier with -
selectTabViewItemWithIdentifier:. Tabs can also be selected by index with the -
selectTabViewItemAtIndex: method. The indices run from zero to the number of tabs
minus one. Both methods raise a range exception if a nonexistent tab is requested. When selecting
by index number, examining the number of tabs first with the -numberOfTabViewItems
method can prevent the exception.

A new tab can also be selected in a relative manner. Tabs are considered to run from left to right,
so the first tab is the leftmost tab. The last tab is rightmost. In relation to the currently selected
tab, the previous tab is to the left and the next tab is to the right. Four obvious action methods can
be used to select tabs. They are -selectFirstTabViewItem:, -
selectPreviousTabViewItem:, -selectNextTabViewItem:, and -
selectLastTabViewItem:. These methods are useful when creating a wizard-like interface
that steps the user through a series of tasks. The next and previous actions correspond directly to
the buttons that would be at the bottom of the wizard to move from page to page.

There are also a few methods for looking up tab view items within the tab view. The -
tabViewItems method returns an NSArray with all the items. This array is immutable, so
tabs are not added and removed by manipulating this array. Refer to the "Adding, Removing, and
Modifying Tabs" section later in this chapter to do that. The -selectedTabViewItem
method returns the currently active tab view item or nil if no tab has been selected.

A particular tab view item can be obtained with the -tabViewItemAtIndex:, which returns
an NSTabViewItem instance. As with the selection methods, exceptions are raised for numbers
that are out of range. The -indexOfTabViewItem:, or -
indexOfTabViewItemWithIdentifier: methods both return indices of the items or
NSNotFound. There is no method to get an item based on its identifier. Instead, two messages
must be sent-one to obtain the index, and another to obtain the item.

Adding, Removing, and Modifying Tabs

There are several methods for adding and removing tab view items. These methods function
similarly to the NSMutableArray methods, but the names are more specific. To add an item to
a tab view, it must first be created. The NSTabViewItem class uses the -
initWithIdentifier: method as its designated initializer.

Add a newly created NSTabViewItem instance to a tab view with either -
addTabViewItem: or -insertTabViewItem:atIndex:. The -addTabViewItem:
method adds the tab at the end of the list. Remove an item with the -removeTabViewItem:
method.

A tab view item can be modified in several ways. The identifier and label can be accessed through
the standard accessor methods -setIdentifier:, -identifier, -setLabel:, and -
label. The label is displayed on the tab itself, whereas the identifier is private to the
application's internals. When set in Interface Builder, both are NSString instances, but
identifiers don't have to be strings. An instance of any class is acceptable, so if something makes
more sense than a string, feel free to use it.

A tab view item has a content view. The -setView: and -view methods allow the content
view to be manipulated. As with windows, a tab item can have an initial first responder. This is
the view that will become first responder when the tab is activated. The initial first responder is
accessed with the -setInitialFirstResponder: and -initialFirstResponder
methods.

NSTabView Delegates

Tab views can havedelegates. The usual accessor methods for delegates, -setDelegate: and -
delegate are available. The tab view sends any of the following four methods to a delegate if it
implements them:

- (BOOL)tabView:(NSTabView *)tabView
 shouldSelectTabViewItem:(NSTabViewItem *)tabViewItem;
- (void)tabView:(NSTabView *)tabView
 willSelectTabViewItem:(NSTabViewItem *)tabViewItem;
- (void)tabView:(NSTabView *)tabView
 didSelectTabViewItem:(NSTabViewItem *)tabViewItem;
- (void)tabViewDidChangeNumberOfTabViewItems:(NSTabView *)
TabView;

The -tabView: shouldSelectTabViewItem: method allows the delegate to prevent the
user from switching tabs. Because there's no way to disable a tab visually, it is not a good idea to
simply return NO without offering the user some feedback as to why the tab can't be changed. An
alert sheet to help the user along is recommended.

Delegates are usually used most often as part of the implementation of a wizard interface.
Delegates can do tricky things such as inserting extra tabs based on user input in other tabs.
Delegates often perform or coordinate input validation tasks as well.

Split Views

Split views lay out two or more views and draw divider bars between them. The user can drag the
divider bars to change the relative sizes of the subviews. Split views lay out the subviews either
horizontally or vertically, but never both ways at once. In other words, the layout is always in one
dimension. Any number of subviews is supported, even though the most common layout is to
have only two views, one atop the other.

The NSSplitView class implements split views in Cocoa. There are no instances on the
palettes in Interface Builder, but it is possible to create an instance by wrapping multiple selected
views in a split view. The menu item Layout, Make subviews of, Split View does this.

Split View Options in Interface Builder

Options for configuring a split view can be found in Interface Builder's NSSplitView
inspector. This inspector, shown in Figure 10.23, is displayed by using the Cmd-1 key equivalent
when an NSSplitView is selected.

Figure 10.23. Interface Builder's NSSplitView inspector.

There are two parameters that can be modified. The first is the orientation of the divider drawn
between the subviews of the split view, and the second is the way that the divider itself is
rendered.

If horizontal orientation is selected, the divider runs horizontally and the subviews are stacked
one atop the other (vertically). A vertical orientation has a vertical divider with the subviews
stacked side by side (horizontally). This can be confusing; it is easiest to remember that this
setting controls how the divider between subviews is drawn.

The type switches change the divider's rendering. The button on the left gives an opaque divider
with a bubbly Aqua look. Split views configured this way are known as pane splitters. If the
divider orientation is vertical, there is no difference between the two types, and there is also no
marking drawn on the divider.

NSSplitView Methods

The two parameters that can be altered in Interface Builder have their own accessor methods. The
-setVertical: and -isVertical methods work with the orientation. The -
setIsPaneSplitter: and -isPaneSplitter methods change the divider's rendering.
Pane splitters draw an opaque divider with a bubbly Aqua look. Split views that aren't pane
splitters draw a wider marking on the divider, and have a background that matches the window's
background pattern.

NOTE

As of Mac OS X 10.1.4, the NSSplitView class reference says that the default
orientation of the split view is vertical in the description of the -isVertical
method. In the description of the -setIsVertical: method, it says that the
default orientation is horizontal. Clearly, both can't be right. The real default
orientation is actually horizontal, so the documentation for -isVertical is
incorrect. The documentation for the -setIsPaneSplitter: method is also in
error, claiming both settings are achieved by sending YES. To get a separator
without the bubbly Aqua look, a NO is what should actually be sent. These errors are
likely to be fixed eventually, of course.

There are no methods to move the dividers. Instead, the frames of the subviews should be
modified directly, and then the split view should be redisplayed. Care must be taken to be ensure
that the views are laid out properly and that enough room has been left for the divider(s). To make
this a little easier, the -dividerThickness method returns the size of the dividers. The -
isSubviewCollapsed: method returns YES if the divider is placed such that no part of a
subview is actually visible. In this case, the split view retains the subview, but doesn't display it
until the divider is moved to expose it.

NSSplitView Delegates

Split views support delegates and implement the standard delegate accessor methods -
setDelegate: and -delegate. There is a very rich collection of delegate methods
available, as well as a pair of notifications. Delegates are allowed to lay out all the subviews at
once when a split view is about to be rendered for the first time. They can also place maximum
and minimum size constraints on the subviews. Delegates can also say whether a subview can be
collapsed.

The NSSplitViewWillResizeSubviewsNotification notification is sent before
resizing a subview. After resizing subviews, the
NSSplitViewDidResizeSubviewsNotification notification is sent.

A full description of each delegate method is beyond the scope of this book. Refer to the
NSSplitView class documentation at /Developer/Documentation/Cocoa/
Reference/ApplicationKit/ObjC_classic/ Classes/NSSplitView.html for
full descriptions of each of the available methods.

Book: Cocoa® Programming
Section: Chapter 10. Views and Controls

Compound Controls

Compound controls use multiple cells to produce a more complex interface object. They
often contain glue code that makes the cells work together in a specific way. Most of these
controls still have their own specialized cell subclass. Much of the complexity of managing
multiple elements falls to the associated cell class instead of the control object.

Steppers look like a pair of very small buttons with up and down arrows on them. The most
complex and most flexible of the compound controls is the NSMatrix, a class for laying
out an arbitrary number of cells of arbitrary classes in a uniform way. Forms look like a
pair of text fields, one an uneditable label, and the other an editable text field. Forms are
usually used in matrices. Pop-up buttons are special buttons that can open a menu when
clicked. They can also be configured as pull-down menus.

Steppers

A stepper is a small control that draws an up and a down arrow. Clicking one of the arrows
will increment or decrement its value. Clicking and holding down an arrow will make some
steppers autorepeat. Steppers are normally used in conjunction with another control,
usually a text field. They send their actions whenever the user changes their value.

Steppers are implemented by the NSStepper control subclass and the NSStepperCell
cell subclass. An NSStepper instance can be found on the Cocoa-Other palette shown
earlier in this chapter in Figure 10.7. The stepper is under the vertical sliders.

Stepper Options in Interface Builder

Options for configuring a stepper can be found in Interface Builder's NSStepper
inspector. This inspector, shown in Figure 10.24, is displayed by using the Cmd-1 key
equivalent when an NSStepper or NSStepperCell is selected.

Figure 10.24. Interface Builder's NSStepper inspector.

The settings for steppers are straightforward. The value is the current value of the stepper.
Similar to sliders, a minimum and maximum value is provided. The increment amount
determines how much the stepper's value changes when an arrow is clicked. If the down
arrow is clicked, the increment value is used as a decrement value.

The Value Wraps check box determines if the stepper should start over from the beginning
of its range if the user attempts to increment or decrement beyond its minimum or
maximum values. If this check box is off, the stepper stops changing its value when it hits
the boundary of its range.

The Autorepeats check box turns autorepeat behavior on or off. If on, the stepper continues
to increment or decrement periodically while the mouse is held down on one of the arrows.
The stepper's action is resent for each autorepeat.

Similar to other controls, steppers support an integer tag that can be used to identify them
uniquely in program code.

Configuring a Stepper

Like every control, both NSStepper and NSStepperCell respond to the standard
accessor methods such as -intValue for their value. The standard -setTag: and -
tag also work as expected.

Both classes also respond to a series of new accessor methods. The minimum value's
accessors are -setMinValue: and -minValue. The maximum value's accessors are -
setMaxValue: and -maxValue. The accessors for the increment amount are -
setIncrement: and -increment. All six of these methods use double values.

The accessors for the boolean settings all take BOOL arguments. The -
setValueWraps: and -valueWraps methods control whether the value wraps
around. Autorepeat is manipulated and inspected with -setAutorepeat: and -
autorepeat, respectively.

NSMatrix Class

The NSMatrix class can take a collection of cells and lay them out uniformly in one or
two dimensions. It is commonly used with text fields and forms. When filled with button
cells, a matrix can make them work in concert to behave like radio buttons. (Only one
button can be on at a time, like the station selector buttons on an old-time car radio.)
Selection lists, such as those used to select multiple files, are also possible. Matrices can
contain cells of many different types, but place the restriction that all cells must be the
same size.

To create a matrix, simply Option-drag one of the resize handles of a standard control. This
works with any control that has an associated cell subclass. For example, color wells,
described in Chapter 17, don't have an associated cell class, so they can't be turned into
matrices. The Cocoa-Views palette, shown earlier in this chapter in Figures 10.3 and 10.9,
contains two preconfigured NSMatrix instances, one populated with basic NSFormCell
objects, and the other with NSButtonCell objects set up as radio buttons.

NSMatrix is a huge, complex class, so a full discussion of all its features is beyond the
scope of this book. Be sure to refer to the Cocoa documentation when attempting to do
complex manipulation of matrices. This discussion of NSMatrix leaves out several of the
more advanced methods that are available.

Event Handling with NSMatrix Objects

Because a matrix has many cells, it tends to respond differently to user events when
compared to a standard control. Matrices can handle drags between cells in special ways.
Matrices support standard target/action, and they extend it by adding the idea of a double-
click action.

When a user clicks inside a matrix, and then drags the mouse, the matrix has four ways to
interpret the action. A matrix's mode determines which interpretation is used. The four
matrix modes are described Table 10.3.

Table 10.3. Matrix Modes

Mode Constant Description

Track NSTrackModeMatrix Acts as if the cells were working
individually. The cell where the mouse-
down event occurred tracks the mouse until
mouse-up.

Highlight NSHighlightModeMatrix Which cell tracks the mouse changes as the
mouse moves over other cells. No cells
remain selected after mouse-up.

Radio NSRadioModeMatrix Only one cell can ever be on at a time.
Selecting a cell deselects all others.

List NSListModeMatrix Drag to select multiple cells. Shift and other
selection modifiers work as expected. This
works like selecting multiple files in the
open and save panel's browsers.

Matrices extend target/action so that each cell can have its own target and action or a single
target and action can be used for the whole matrix. NSMatrix offers a default target and
action for any cells that don't have them set. It is important to be careful when making
connections in Interface Builder. When connecting from a matrix, be sure the connection is
coming from the right place, a single cell or the whole matrix. Any connections made for
individual cells will override the connections made for the whole matrix. When connecting
to a matrix, be careful to connect to the whole matrix or individual cells. It is easy to
accidentally connect to a cell when a connection to the whole matrix is desired.

The NSMatrix class also adds the idea of a double-click action. This is an action sent
when a double-click occurs inside the matrix. This is always sent to the matrix's target,
never the target of an individual cell. This action cannot be set in the Interface Builder
connection inspector. It can only be set programmatically, using the -
setDoubleAction: method. The double action is returned by the -doubleAction
method. The -sendDoubleAction method sends the action as if the user had double-
clicked. One important consideration when using double-click actions is that the single-
click action is always sent before the double-click action.

NOTE

Sometimes developers want to have a double-click action for a standard
control. Controls don't support this, but turning a control into an NSMatrix
with a single cell produces a control that looks just like a single control, but
also implements a double-click action. This can save the trouble of
subclassing.

Matrix Options in Interface Builder

Options for configuring a matrix can be found in Interface Builder's NSMatrix inspector.
This inspector, shown in Figure 10.25, is displayed by using the Cmd-1 key equivalent
when an NSMatrix is selected.

Figure 10.25. Interface Builder's NSMatrix inspector.

The color well and switch control the background of a matrix. The background color only
applies to the area between cells (intercell spacing) and any cells that don't draw their
backgrounds.

The Mode radio buttons set the matrix's selection mode. Refer to Table 10.3 for a

description of the various modes. If the mode is set to Radio, the Allows empty selection
check box is available. Radio mode only allows one cell to be selected. The check box tells
the matrix whether one cell must be selected at all times.

When a matrix is created in Interface Builder, the first cell created is considered to be the
prototype cell. Newly created matrix cells are created as copies (clones) of the prototype.
This makes it easier to add new cells because they don't have to be reconfigured one at a
time. It is important to configure a control completely before Option-dragging its handles
to create a matrix. After the matrix is created, there is no way to edit the prototype.

NOTE

Older versions of Interface Builder, such as the version for NeXTSTEP, had a
button to copy a selected cell in the matrix so that it would be used as the
prototype cell. This functionality has sadly been lost, so now care must be
taken to remember to preconfigure a control to its final settings before turning
it into a matrix.

The Cells options refer to basic NSMatrix behaviors. Autosizing refers to how the matrix
handles being resized. If autosizing is off, the cells will not change their frames as the
matrix is resized. If autosizing is on, the cells will resize proportionally across the whole
matrix.

The Selection by rect switch enables the user to drag out a rectangle to select multiple cells.
This is especially useful for two-dimensional matrices in list mode. If this option is off, the
user must move the mouse over every single cell they want to select.

The Spacing control determines how much space is inserted between the cells of the
matrix. This can also be adjusted graphically by Cmd-dragging one of the resize handles.
The Row/Col fields set the number of cells in the matrix. This can also be adjusted by
Option-dragging a resize handle.

Methods for Configuring an NSMatrix

All the options available in Interface Builder can be adjusted programmatically through
accessor methods.

To manipulate the background color, use the -setBackgroundColor:, -
backgroundColor, -setDrawsBackground:, and -drawsBackground
methods. The matrix's mode is accessed with the -setMode: and -mode methods. The
four constants shown in Table 10.3 should be used to set the mode. If radio mode is
selected, the -setAllowsEmptySelection: and -allowsEmptySelection

accessors can be used.

Cell size is accessed for all cells with the -setCellSize: and -cellSize methods.
The intercell spacing is adjusted with -setIntercellSpacing: and -
intercellSpacing. The parameters and return values for these methods are NSSize
structures.

The prototype cell is set using the -setPrototype: and -prototype methods.
Individual cells can be looked up with the -cellWithTag: or -cellAtRow:
column: methods. To get all the cells in the matrix, use the -cells method. It returns
an NSArray. To add and remove cells, don't try to modify the immutable array. Instead,
use the methods described in the "Methods for Manipulating Cells" section later in this
chapter.

Autosize behavior is accessed by the -setAutosizesCells: and -
autosizesCells methods. Selection by rectangle is controlled by -
setSelectionByRect: and -isSelectionByRect.

Methods for Managing Cell Selection

To select a specific cell in the matrix, use either the -selectCellWithTag: or -
selectCell: method. It is also possible to select a cell based on location in the matrix
using the -selectCellAtRow:column: method. To select all cells, use the standard -
selectAll: action method (the same as used by text fields for selecting all their text).

Cells can be deselected with -deselectSelectedCell or -deselectAllCells.
Despite the name, the -deselectSelectedCell method will actually deselect all
selected cells if a multiple selection is active. The only real difference between these two
methods is that -deselectSelectedCell does not redisplay the matrix. Neither
method will deselect a cell if the matrix is in radio mode and disallows empty selections.

There are two ways to determine which cells are selected. If the mode is radio mode, where
only one cell can be selected at a time, it is safe to use the -selectedTag and -
selectedCell methods inherited from NSControl. If multiple selections are possible,
the -selectedCells method is best because it returns an array of all the selected cells.

Methods for Manipulating Cells

The -numberOfRows and -numberOfColumns methods return the current number of
rows and columns in a matrix. There are several methods that can be used to add or remove
columns or rows.

Add a column with -addColumn or -insertColumn:. The -addColumn method
adds the column at the right side of the matrix. The -insertColumn: method inserts a

new column before the specified column. A column can be removed with -
removeColumn:.

Add a row with -addRow or -insertRow:. The -addRow method adds the row at the
bottom of the matrix. A row can be removed with -removeRow:.

NOTE

Notice that the -insertColumn:, -removeColumn:, -insertRow:,
and -removeRow: method names are one of the very few inconsistencies in
the Cocoa framework. Based on how methods with a similar function are
named elsewhere in Cocoa, the methods really should have been given names
such as -insertColumnAtIndex:, and so on. Be careful to use the right
names when writing your code! There is no compiler error if the id type is
used instead of static typing with (NSMatrix *). Programs using the
wrong names will malfunction and report a runtime error.

Forms

Forms are controls that look like multiple text fields, each with a label. They provide a
convenient means of treating multiple data entry fields as a single unit.

Forms are implemented by the NSForm and NSFormCell classes. Unlike other controls,
the NSForm class does not have a one-to-one mapping of control to cell. NSForm is a
subclass of NSMatrix, so it can handle many NSFormCell instances at once.

Interface Builder has an NSForm on the Cocoa-Views palette, as shown earlier in Figure
10.9. After dragging a form to a window, it can be Option-dragged so that it has the needed
number of form cells. Although they descend from matrices, forms are constrained so that
they can have only one column.

Form Options in Interface Builder

Options for configuring a form can be found in Interface Builder's NSForm inspector. This
inspector, as shown in Figure 10.26, is displayed by using the Cmd-1 key equivalent when
an NSForm is selected.

Figure 10.26. Interface Builder's NSForm inspector.

The options for forms and form cells are a limited combination of the options for text fields
and matrices. The background color control works like the one for NSMatrix objects.
The alignment controls work as expected. Alignment can be set independently for the title,
or label, and the editable part of the form cell.

The various options in the Options box work like their counterparts in the text field and
matrix inspectors. The only switch that is a little different is the Scrollable switch. If it is
turned on, the editable part of the form behaves similar to a text field that has been set to
Scrollable. If it is turned off, however, the text will not wrap; it will simply be cut off.
Usually, the scrollable behavior is preferred.

NSForm Methods

The NSForm class augments the NSControl and NSMatrix classes with a few new
methods. Most manipulation of forms is done using methods from the superclasses. A few
exceptions, however, are worth considering.

The alignment and font for all the cells can be set for both the title and the editable text.
The methods to make these changes across the whole form are -
setTitleAlignment:, -setTextAlignment:, -setTitleFont:, and -
setTextFont:. The alignment methods take the same constants as text fields and other
controls. They are NSLeftTextAlignment, NSRightTextAlignment,

NSCenterTextAlignment, and NSNaturalTextAlignment. The
NSJustifiedTextAlignment constant is meaningless for forms. The font methods
work with NSFont instances.

The sizes and spacing of the cells in a form can be set using the -setEntryWidth: and
-setInterlineSpacing: methods. The -setEntryWidth: method affects the
entire width of all the cells. The -setInterlineSpacing: method is preferred over
the NSMatrix -setIntercellSpacing: method for setting the spacing between
cells.

Cells can be added with the -addEntry: and -insertEntry:atIndex: methods.
Both require that a title, in the form of an NSString, be provided. The -addEntry:
method adds the new cell at the bottom of the form. A cell can be removed with the -
removeEntryAtIndex: method.

To find a particular cell, the -cellAtIndex: and -indexOfCellWithTag:
methods are used. The selected cell's index is obtained with -indexOfSelectedItem.
A particular cell can be activated and have all its text selected at the same time by calling
the -selectTextAtIndex: method.

NSFormCell Methods

Working with an NSFormCell class is much like working with an NSTextField. The
main difference is the addition of the title (label). All the normal NSCell methods for
setting fonts, values, and so on, work on the editable portion of the field. To manipulate the
title, a new set of methods is provided.

Change the title with -setTitle: if an NSString is available. The -title method
returns the current title. The -setTitleFont:, -titleFont, -
setTitleAlignment:, and -titleAlignment methods can access the title's font
and alignment attributes. To work with the title and the attributes all at once, use an
NSAttributedString with -setAttributedTitle: and -attributedTitle.

The title's width can be accessed with the -setTitleWidth: and -titleWidth
methods. This width is what the cell uses to decide how to split itself between the title and
editable portion.

Pop-Up Buttons and Pull-Down Lists

Pop-up buttons are a special kind of button that, when clicked, open a menu of options.
There are two types of pop-up button in Cocoa. The first, a basic pop up, performs a
function much like a set of radio buttons. It offers a list of choices, only one of which can
be selected at a time. When the menu is not open, the button's title displays the title of the
selected menu item. Radio buttons are preferred for this function when they fit in the

interface. If space is cramped or there are more than ten options, a pop up is a good
alternative.

A pull-down menu is different. The title on the button never changes. Selecting an item in a
pull-down menu doesn't cause the item to be selected as it would in a pop up. Instead, it
simply triggers an action to be sent. Pull downs are good for implementing verbs in the
user interface. Opening a pull down offers users a series of actions that they can perform.

Pop-up buttons and pull-down lists are both implemented by the NSPopUpButton and
NSPopUpButtonCell classes. Changing configuration parameters alters the pop up or
pull down behavior of an instance.

Interface Builder offers an NSPopUpButton instance preconfigured as a basic pop up
button on the Cocoa-Other palette. Figure 10.7 shows this palette. (There are no instances
preconfigured as pull down menus.) The NSPopUpButton instance is found at the upper
center of the palette. The text Item1 appears on the button. The preconfigured pop up has
three items in it, named iItem1, Item2, and Item3. Double-clicking the button opens the
button's menu for editing. It can be edited like any other menu. Refer to Chapter 16,
"Menus," for information about manipulating menus.

Pop-Up Button Options in Interface Builder

Options for configuring a pop up button can be found in Interface Builder's
NSPopUpButton inspector. This inspector, shown in Figure 10.27, is displayed by using
the Cmd-1 key equivalent when an NSPopUpButton is selected. The individual items
inside the pop-up button's menu are NSMenu items. They are discussed in Chapter 16.

Figure 10.27. Interface Builder's NSPopUpButton inspector.

The Type control at the top of the inspector is used to change the pop-up button between
basic pop-up and pull-down behaviors. The PullDown Options area only applies if the
PullDown option has been chosen. The other options, Enabled, Small, and Tag all work the
same as they do for other controls.

The pull-down options primarily affect the visual aspects of the pull down. The title and
icon are shown on the pull down itself. The style and arrow direction determine rendering
details of the pull down. The available styles are Rounded, Square, and Shadowless Square.
The rounded type can only have a downward pointing arrow. The two square styles can
have their arrow point either right or down. When the menu appears onscreen it appears
below or to the right of the NSPopUpButton as indicated by the arrow. Figure 10.28
shows how the various different pop-up and pull-down list styles are rendered.

Figure 10.28. Different styles of NSPopUpButton.

NSPopUpButton Methods

The main behavior of a pop-up button is controlled with the -setPullsDown: and -
pullsDown accessors. Set it to YES for a pull down menu and NO for a pop up.

The various items inside the pop-up button are menu items, and part of a menu object. The
menu object is accessed with the -setMenu: and -menu methods. Chapter 16 explains
these objects and shows how to manipulate them from within program code. The
DynamicMenu example in Chapter 16 shows programmatic manipulation of the menu
inside of a pop-up button.

NOTE

The -setMenu: and -menu accessors exist for all control classes and
normally control contextual menus, as explained in Chapter 16. In the case of
pop-up buttons, no contextual menu is possible or available because the
control itself opens its own menu. Dynamically adding and removing items
from the pop up's menu would make a contextual menu pointless anyway
because the menu that pops up is effectively a contextual menu as it is.

Pop-up buttons also implement several convenience methods for manipulating the pop-up
menu. Refer to the class reference at /Developer/Documentation/Cocoa/
Reference/ApplicationKit/ObjC_classic/Classes/NSPopUpButton.
html for more information about these methods.

Three methods exist for dealing with a pop-up button's current selection. These methods
really only make sense when the button is in pop-up mode. The methods are -
selectItem:, -selectItemAtIndex:, and -selectItemWithTitle:. Which

method to use depends on whether it is more convenient to set a selection based on
NSMenuItem object, int index, or NSString title, respectively.

The current selection is determined by -selectedItem or -
titleOfSelectedItem. Surprisingly, there is no -indexOfSelectedItem
method. That's easy enough to fix with the following NSPopUpButton category, though:

@interface NSPopUpButton(MyIndexOfSelectedItemCategory)
- (int)indexOfSelectedItem;
@end
@implementation NSPopUpButton(MyIndexOfSelectedItemCategory)
- (int)indexOfSelectedItem
{
 return [self indexOfItem:[self selectedItem]];
}
@end

NSPopUpButtonCell Methods

The NSPopUpButtonCell class is actually a subclass of the NSMenuItemCell class.
It is the object that actually owns the menu associated with a pop-up button, so most of the
NSPopUpButton methods work with this cell class as well.

There is one pair of accessors implemented by NSPopUpButtonCell that isn't available
elsewhere. To change the direction an arrow points on a square pull-down menu, use the -
setArrowPosition: and -arrowPosition methods. Use one of the
NSPopUpNoArrow, NSPopUpArrowAtCenter, or NSPopUpArrowAtBottom
constants. It isn't very clear how these constants correspond to the settings in Interface
Builder. The NSPopUpArrowAtCenter constant gives a right-pointing arrow, whereas
NSPopUpArrowAtBottom is a down pointing arrow. The NSPopUpNoArrow constant
is not an option in Interface Builder.

Book: Cocoa® Programming
Section: Chapter 10. Views and Controls

Summary

Cocoa offers a wide variety of user interface controls. All the standard controls that you
would expect to use, such as buttons, sliders, and text fields are present. Also, several view
classes can be used to help organize the controls in a window. Boxes, scrolling views, tab
views, and split views all add different ways to lay out a user interface.

As alluded to in the discussions of text fields in this chapter, handling text is a very
complex function. Cocoa offers a rich set of objects for manipulating text. The next chapter
discusses Cocoa's text-handling features in depth.

This chapter hasn't covered every view and control class Cocoa has to offer. Several more
controls are available that are very complex. Chapter 18, "Advanced Views and Controls"
discusses these additional NSView subclasses.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 11. The Cocoa Text System

IN THIS CHAPTER

● Using the High-Level Text Classes
● The Text System Architecture
● Managing Fonts
● Text Input

Cocoa provides powerful text presentation and input capabilities that are not matched on
any other platform. The classes that are used to store and present text are complex and
include many hooks that provide flexibility and enable customization. This chapter begins
with several examples that show how to use the basic high-level features of the text system.
The examples demonstrate common tasks and use features that are sufficient for many
applications. This chapter then delves into the architecture of the text systems and
identifies the many classes that interact to implement high-level features and provide low-
level flexibility.

Cocoa's font support is an essential and powerful feature of the text system. This chapter
explains the classes used to represent and manage fonts. Interaction with the user and font
selection with Cocoa's built-in Font panel are explained. An overview of the sometimes
complex relationship between fonts and Unicode character sets is provided.

Finally, this chapter explains Cocoa's text-input system. Cocoa provides classes that assist
with user input validation. Hooks are provided to enable programmatic restriction of user
input. The interaction with the operating system and features to support bidirectional text
input and Eastern language input are explained. Apple's overview documentation for the
text system is available at http://developer.apple.com/techpubs/macosx/Cocoa/
TasksAndConcepts/ProgrammingTopics/TextArchitecture/index.html.

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/TextArchitecture/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/TextArchitecture/index.html

Book: Cocoa® Programming
Section: Chapter 11. The Cocoa Text System

Using the High-Level Text Classes

Cocoa's text system is extremely complex. The complexity is needed to support state-of-the-art features and a high
degree of customizability. However, it is possible to use the text system without exposing the underlying
complexity. High-level features common to most applications are easily accessed. The details and complexity are
only encountered when using advanced or specialized features.

The easiest way to include formatted text display and input in a Cocoa application is to drag a text object from the
Interface Builder Cocoa-Data palette. The NSTextView object on the Interface Builder palette is actually an
instance of the NSTextView class embedded as the document view of a scroll view. Scroll views, the
NSScrollView class, and document views are all explained in the "Scroll Views" section of Chapter 10, "Views
and Controls."

The combination of the NSTextView instance and the scroll view provide sophisticated text features including
display of arbitrary amounts of formatted text, rulers, undo and redo, multiple text justification options, multiple
text alignment options, kerning, ligatures, underlining, spell checking, embedded graphics, copy and paste, drag and
drop, and more. No programming is needed to use these features.

The Cocoa text classes are able to read, display, and write Rich Text Format (RTF) data. Apple provides an
additional format called RTFD that extends RTF to store text and embedded graphics in a directory with multiple
files instead of packing all the data in a single file. The text classes provide limited support for HyperText Markup
Language (HTML) formatted text display.

If a text object dragged from the Interface Builder palette is configured via Interface Builder's attributes inspector to
enable editing, users can edit the NSTextView directly. Even if the text object is not editable, it can be configured
to be selectable. If so, users can select the noneditable text for use with copy and paste, searching, or services.
Services are described in the "Services" section of Chapter 19, "Using Pasteboards." Text in Cocoa applications
should usually be selectable even if it is not editable. Even the text of labels in the user interface can benefit from
being selectable. If such text is selectable, users can select the words in the labels to search for them in online
documentation or use a Service to define words that might be unfamiliar.

NOTE

Services provide a mechanism for all Cocoa applications to benefit from features such as dictionary
lookup, email integration, automatic file format conversion, and text formatting. Each Cocoa
application is able to use Services provided by other Cocoa applications. Services are described in the
"Services" section of Chapter 19, "Using Pasteboards."

Setting the Text to Display

Text objects can be programmatically modified. One of the most common tasks is to programmatically set the text
to be displayed by an instance of NSTextView. The easiest way to do that is to use the -setString: method.
NSTextView is a subclass of NSText, which is in turn a subclass of NSView. The -setString: method is
implemented by NSText and is, therefore, available for use with instances of NSTextView. As its name implies,
the -setString: method accepts an NSString argument and replaces the entire content of the receiving text
view with the string. NSText's -string method is used to obtain the entire content of the text object.

NSString objects do not normally contain any formatting information. When text is set via -setText:, the new

text is displayed with the formatting that was previously applied to the first character of the text that was replaced.

To change the formatting of the text, use NSText's -setBackgroundColor:, -setFont:, -
setAlignment:, and -setTextColor: methods. Formatting attributes can be applied to all or part of the
text. NSText also provides -backgroundColor, -font, -alignment, and -textColor methods for
retrieving the attributes.

Many of NSText's methods such as -changeFont:, -alignCenter:, -alignLeft:, -alignRight:, -
superscript:, -subscript:, -unscript:, and -underline: apply formatting to the currently selected
range of text. The selected range of text can be set with the -setSelectedRange: method and obtained with
the -selectedRange method. Ranges are stored in NSRange structures. NSRange is explained in the
"NSRange" section of Chapter 7, "Foundation Framework Overview."

Appending, Inserting, and Replacing Text

There are several ways to append text to the existing content of a text object. The simplest, but least efficient, way
is to use code such as the following:

// Append "Text to append" to a text object called aTextView
[aTextView setString:[[aTextView string]
 stringByAppendingString:@"Text to append"]];

NSText provides the -replaceCharactersInRange:withString:, -
replaceCharactersInRange:withRTF:, and -replaceCharactersInRange:withRTFD:
methods for replacing arbitrary ranges of text. The first argument to each of the methods is an NSRange structure.
The second argument to -replaceCharactersInRange:withString: is an NSString instance
containing the new text. The -replaceCharactersInRange:withRTF:, and -
replaceCharactersInRange:withRTFD: methods accept a second argument that is an NSData instance
containing RTF data or RTFD data, respectively.

To append text to an NSTextView instance, use code similar to the following:

// Append "Text to append" to a text object called aTextView
[aTextView replaceCharactersInRange:NSMakeRange(
 [[aTextView string] length], 0) withString:@"Text to append"]];

This code replaces zero characters just past the end of the existing text with the specified string.

NOTE

To automatically scroll the newly appended text so that it is visible to the user, use NSText's -
scrollRangeToVisible: method and pass an NSRange containing the appended text as the
argument.

To insert text at a specific location, use code such as the following:

// Insert "Text to insert" at insertLocation in a text object called
aTextView
[aTextView replaceCharactersInRange:NSMakeRange(
 insertLocation, 0) withString:@"Text to append"]];

Finally, to replace text, use one of the -replaceCharactersInRange: methods and specify a range with a
length greater than zero to replace.

Programmatically Ending Editing

When an editable Cocoa text object becomes the first responder, a standard insertion cursor is displayed, and the
user can begin entering text into the text object. When another object becomes the first responder, any current
editing in the text object that is no longer the first responder is ended. Editing needs to be ended to trigger delegate
messages that inform the application that editing is complete and application logic can be applied to the new input.
Controlling user input and delegate messages are explained in the "Using Delegate Methods" section of this chapter.

Many applications need to programmatically end editing to trigger the delegate messages and other logic. For
example, if a text object is inside a tab view and the user selects a different tab, the editing might not be ended until
the user selects another text object and makes it the first responder. However, after changing the visible tab, the user
can no longer see the text object that is being edited. Therefore, he might quit the application thinking that the edits
made have been accepted and saved by the application when in fact the application is unaware of the changes
because the editing was not ended.

The following code is recommended to programmatically end all editing within a window:

// gracefully end all editing in a window named aWindow
if([aWindow makeFirstResponder:aWindow])
{
 // All editing is now ended and delegate messages sent etc.
}
else
{
 // For some reason the text object being edited will not resign
 // first responder status so force an end to editing anyway
 [aWindow endEditingFor:nil];
}

This code gives the Cocoa frameworks maximum opportunity to end the editing gracefully. It works for ordinary
text views as well as the window's field editor. The field editor is a shared text object used to handle input in text
fields and other controls and is explained in "The Field Editor" section of Chapter 10.

Book: Cocoa® Programming
Section: Chapter 11. The Cocoa Text System

The Text System Architecture

Many classes are used to implement the complete text system. The classes are organized using the Model-View-
Controller (MVC) design introduced in the "Model-View-Controller" section of Chapter 6, "Cocoa Design Patterns."
The text to be displayed and the attributes that affect that display are stored in the model. The visual representation of
text and handing user input are the responsibility of the view layer. The logic that links the model and view is
implemented in the controller layer. Figure 11.1 shows the classes used by the text system, and their role in the
Model-View-Controller design:

Figure 11.1. Many classes interact to implement Cocoa's text system.

This Model-View-Controller design reduces dependencies between objects in different layers and makes it easier to
modify individual components without having to change the entire system. The MVC design also reduces the amount
of information needed to accomplish common tasks. It is possible to manipulate text in many ways using only the
NSTextView class.

The principal classes in the text system are NSTextStorage, NSLayoutManager, NSTextContainer,
NSTextView. Only NSTextContainer is intended to be subclassed. The behavior of the other classes should be
specialized by using delegates and notifications and only subclassed as a last resort. The advantages of using

delegates and notifications are explained in the "Delegates" section of Chapter 8, "The Application Kit Framework
Overview."

Most applications that customize the text system work with either the Model layer or the View layer. Complex text
can be created and processed entirely within the Model layer and displayed automatically by the View layer. In some
cases, changes to the way text is displayed or edited by users must be made by an application. Those changes take
place entirely in the View layer. There is seldom any need to interact directly with the Controller layer in Cocoa's text
system, and there are not many modifications that can be made to the Controller layer without disrupting the View
and Model layers.

Apple provides the following document to explain how to assemble the Model, View, and Controller parts of the text
system without using the preconfigured object in Interface Builder at http://developer.apple.com/techpubs/macosx/
Cocoa/TasksAndConcepts/ProgrammingTopics/TextArchitecture/Tasks/AssembleSysByHand.html.

The Model Layer: Text Storage and Attributed Strings

The Model layer of the text system can be used independently. For example, using only the Model layer, it is possible
to search for text, specify formatting, load and save text, and apply application logic to the text. The Model layer can
be used in nongraphical applications to perform text processing without the overhead of laying out and drawing text.

The primary class used to store text in the Model layer is NSTextStorage. NSTextStorage is a subclass of
NSMutableAttributedString, which is in turn a subclass of NSAttributedString. Attributed strings
store Unicode character strings as well as formatting commands that are applied to the strings when they are drawn.
Mutable attributed strings can be modified after they are created. The NSTextStorage class extends the
NSMutableAttributedString class to provide notifications when the attributes or strings are changed.

The NSAttributedString and NSMutableAttributedString classes are implemented in the Foundation
framework so that even nongraphical applications can work with them. Applications can define custom attributes as
needed. The Application Kit Framework extends the attributed string classes with categories to draw the strings and
provide a standard set of attribute definitions such as font face, point size, color, paragraph style, tab stops, and more.

NOTE

Font dimensions are measured in Postscript Points (pts.), which equal 1/72 of an inch. Points are the
standard unit of measurement in the printing industry. Points are also the standard unit of measurement
for all graphical operations in Quartz.

Table 11.1 lists the attributes that are defined by the Application Kit framework. Attribute values are normally stored
in NSDictionary instances using the attribute names as the keys for retrieving the values.

Table 11.1. Application Kit-Defined Text Attributes

Attribute Names Attribute Type Default Value

NSAttachmentAttributeName NSTextAttachment none

NSBackgroundColorAttributeName NSColor none

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/TextArchitecture/Tasks/AssembleSysByHand.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/TextArchitecture/Tasks/AssembleSysByHand.html

NSBaselineOffsetAttributeName NSNumber float 0.0

NSFontAttributeName NSFont Helvetica 12 pts.

NSForegroundColorAttributeName NSColor black

NSKernAttributeName NSNumber float 0.0

NSLigatureAttributeName NSNumber int 1

NSLinkAttributeName id none

NSParagraphStyleAttributeName NSParagraphStyle value returned by
NSParagraphStyle's
+defaultParagraphStyle method

NSSuperscriptAttributeName NSNumber int 0

NSUnderlineStyleAttributeName NSNumber int 0 (no underline)

Attachments such as images and files are stored in attributed strings by using a special character,
NSAttachmentCharacter, within the string to identify the location of the attachment. The attributes applied to
the NSAttachmentCharacter must include NSAttachmentAttributeName with an
NSTextAttachment instance as the value. The NSTextAttachment instance stores the data of the attachment
itself or information sufficient to load the data. The NSTextAttachment class is described at http://developer.
apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSTextAttachment.html, and in
the documentation that comes with Apple's developer tools.

The NSParagraphStyleAttributeName attribute uses values that are NSParagraphStyle instances that
define how strings are aligned when displayed. NSParagraphStyle instances also define tab stops and word
wrapping. The NSParagraphStyle class is documented at http://developer.apple.com/techpubs/macosx/Cocoa/
Reference/ApplicationKit/ObjC_classic/Classes/NSParagraphStyle.html, and in the documentation that comes with
Apple's developer tools.

Initializing Attributed Strings

The Foundation framework implementation of NSAttributedString provides three methods to initialize
instances. The -initWithString: method accepts an NSString argument and returns an
NSAttributedString instance containing the string and default attributes. The -initWithString:
attributes: method accepts a string for the first argument and a dictionary containing attribute names and values
for the second argument. The returned NSAttributedString contains the string and attributes specified. Finally,
the -initWithAttributedString: returns an attributed string containing a string and attributes identical to
the ones specified in the NSAttributedString provided as an argument.

The Application Kit framework provides additional NSAttributedString methods to support initialization with
HTML, RTF, or RTFD format data, and data that is convertible to one of those formats using Services. The -

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSTextAttachment.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSTextAttachment.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSParagraphStyle.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSParagraphStyle.html

initWithHTML:documentAttributes:, - initWithRTF:documentAttributes:, -
initWithRTFD:documentAttributes:, and - initWithRTFDFileWrapper:
documentAttributes: methods each accept an NSData instance containing appropriately formatted data as
the first argument. The second argument is a pointer to a pointer to an NSDictionary instance. If the second
argument is not NULL, it is used to return by reference an NSDictionary instance containing the attributes defined
for the newly initialized attributed string. The dictionary returned must be retained if it is used outside the scope of
the call to one of the initializers. The complete set of attributes that can be stored in the dictionary returned by
reference in the documentAttributes: argument of one of these initializers is defined in Table 11.2.

Table 11.2. Keys and Values for documentAttributes: Arguments

Key Attribute Type Description

@"PaperSize" NSValue Contains an NSSize.

@"LeftMargin" NSNumber Contains a float value in pts.

@"RightMargin" NSNumber Contains a float value in pts.

@"BottomMargin" NSNumber Contains a float value in pts.

@"HyphenationFactor" NSNumber Contains a float value.

@"DocumentType" NSString Contains the value of one of the following constants:
NSPlainTextDocumentType,
NSRTFTextDocumentType,
NSRTFDTextDocumentType,
NSMacSimpleTextDocumentType,
NSHTMLTextDocumentType.

@"CharacterEncoding" NSNumber Contains an int specifying the NSStringEncoding used.
Present only in plain-text files.

@"ViewSize" to display in. NSValue Contains an NSSize representing the view size

@"ViewZoom" NSNumber Contains a float describing current zoom as a percentage.

@"ViewMode" NSNumber Contains an int. 1 indicates show page layout format
such as page boundaries and margins. 0
indicates not to show page layout.

@"CocoaRTFVersion" NSNumber Contains an int if created by Cocoa. Value of 100 indicates
Mac OS X, whereas lower values are earlier versions.

@"Converted" NSNumber Contains an int. If the file was converted by a filter service, the
value will be 1 or greater. Absent or lower values indicate it was
not converted by a filter service.

An additional initializer, -initWithHTML:baseURL:documentAttributes:, is similar to -
initWithHTML:documentAttributes. It accepts an NSData instance containing the HTML data as the first
argument. The attributes dictionary is returned by reference in the last argument. The additional baseURL:
argument specifies a URL used to resolve relative URLs within the HTML data. The baseURL: argument must be
an instance of the NSURL class. The NSURL class is described in the "NSURL and NSURLHandle" section of
Chapter 23, "Networking."

NOTE

If the data passed to any of the Application Kit defined NSAttributedString initializers cannot be
interpreted, the initializers return nil.

Finally, the -initWithPath:documentAttributes: and -initWithURL:documentAttributes:
methods are used to initialize an attributed string with the contents of a file. These methods are not format specific. If
the file contains one of the supported types of data returned by NSAttributedString's
+textUnfilteredFileTypes class method, the contents are loaded directly. Otherwise, an attempt is made to
use Services to convert the data to a recognized format. The complete list of supported data types including the ones
that require Services is returned by the +textFileTypes method.

The -initWithPath:documentAttributes: method expects the first argument to be an NSString
containing a path. The first argument to -initWithURL:documentAttributes: must be a file location
specified by an NSURL instance. Both methods return the attributes dictionary for the loaded data by reference in the
second argument.

NOTE

The URL passed to -initWithURL:documentAttributes: must use the file:// URL
scheme. It is not possible to use the http:// scheme or other remote formats with this method. To
initialize an attributed string with remote data, use an NSURL instance to fetch the data from the remote
location via NSURL's -resourceDataUsingCache: method, and then use the data to initialize an
attributed string with -initWithHTML:baseURL:documentAttributes:.

NSAttributedString provides a convenience method to create an instance that contains an attributed string
representing an attachment. The +attributedStringWithAttachment: method returns an autoreleased
instance of NSAttributedString consisting of the NSAttachmentCharacter with attributes set to contain
the NSTextAttachment passed as the argument.

Using Attributed Strings

The length of an attributed string instance is returned as an integer by calling the method -length. An NSString
instance that contains the text portion of the NSAttributedString is returned by calling -string.

The -isEqualToAttributedString: method compares the receiver to the NSAttributedString passed
as the argument. To be considered equal, the string and the attributes of both attributed strings must correspond. This

method returns a Boolean value of YES if the strings are equal.

The -attributedSubstringFromRange: method returns an NSAttributedString instance that
contains the text and attachments within the range specified using an NSRange structure. If the NSRange argument
lies outside of the contents of the string-for example, beyond the end-this method raises an NSRangeException
exception.

The attributes that are attached to an attributed string are accessed by calling -attributesAtIndex:
effectiveRange:. This method expects an unsigned integer index for the first argument and returns an
NSDictionary containing all attributes that apply to the character at the specified index. The second argument is
an NSRange returned by reference that identifies the full range of characters to which the attributes in effect at the
index apply. If the effectiveRange: argument is NULL, the range is not returned. If the index is past the end of
the string, an NSRangeException is raised.

The -attribute:atIndex:effectiveRange: method is similar to -attributesAtIndex:
effectiveRange:, but it allows specification of a particular attribute. The attribute: argument is an
NSString instance containing an attribute name. If an attribute with the specified name is in effect at the specified
index, the value of the attribute is returned. If the effectiveRange: argument is not NULL, and the specified
attribute is in effect at the specified index, the range of characters to which the attribute applies is returned by
reference. If the specified attribute is not in effect at the specified index, and the effectiveRange: argument is
not NULL, the range that the attribute does not apply to is returned by reference.

The following example takes an NSAttributedString, finds any underlined text, and returns an NSString
containing a version of the string in HTML format with underline formatting preserved.

- (NSString *)convertUnderlineTextToHTML:(NSAttributedString *)
attributedString
// Returns a string containing HTML format text that preserves any underline
// formatting in attributedString but discards all other formatting
{
 unsigned int length;
 NSRange effectiveRange;
 NSMutableString *resultString = [NSMutableString string];

 length = [attributedString length];
 effectiveRange = NSMakeRange(0, 0);

 while (NSMaxRange(effectiveRange) < length)
 {
 id attrVal;
 NSString *plainStr;

 // get the effective range that has the same value for the underline
 // attribute
 attrVal = [attributedString attribute:NSUnderlineStyleAttributeName
 atIndex:NSMaxRange(effectiveRange) effectiveRange:&effectiveRange];

 if (nil != attrVal)
 {
 // this range is underlined so insert the HTML code for underline
 [resultString appendString:@"<u>"];
 }

 // append the plain string to the result
 plainStr = [[attributedString string] substringWithRange:effectiveRange];

 [resultString appendString:plainStr];

 if (nil != attrVal)
 {
 // this range was underlined so insert the HTML code to end underline
 [resultString appendString:@"</u>"];
 }
 }

 return resultString;
}

Initially, the length of the attributed string is determined using the -length method, and the location of
effectiveRange is set to the start of the string. The while loop continues as long as effectiveRange is
within the attributed string.

The -attribute:atIndex:effectiveRange: method is called specifying the maximum position within
effectiveRange as the index argument. This causes the search to begin at index 0 the first time through the loop
and at the end of the previous search during each subsequent iteration. During each pass through the loop,
effectiveRange is updated to store the next contiguous range of characters with the same value for the
NSUnderlineStyleAttributeName. If the attributed string does have an
NSUnderlineStyleAttribute for the requested index, the value returned by -attribute:atIndex:
effectiveRange is nil, but effective range is still returned with the range of the string that does not have the
attribute.

A similar example using -attributesAtIndex:effectiveRange: can be constructed. Each contiguous
range of characters that have the same attributes is processed by the loop. The attributes can be analyzed inside the
loop to implement almost any format conversion.

Additional variants of the -attribute:atIndex:effectiveRange: method are available. Each provides a
slightly different way of searching for contiguous ranges of characters with similar formatting. Not all the methods
are described here, but enough information is provided to enable the straightforward usage of all the variations.

The -fontAttributesInRange: method returns attributes related to the appearance of an attributed string. The
returned NSDictionary contains any of the following attributes if they are in effect for the first character in the
specified range: NSBackgroundColorAttributeName, NSBaselineOffsetAttributeName,
NSFontAttributeName, NSForegroundColorAttributeName, NSKernAttributeName,
NSLigatureAttributeName, NSLinkAttributeName, NSSuperscriptAttributeName, and
NSUnderlineStyleAttributeName.

Similarly, the -rulerAttributesInRange: returns an NSDictionary containing the
NSParagraphStyleAttributeName for the first character in the specified range. Apple has indicated that in
the future there might be additional ruler-related attributes returned.

The method -containsAttachments returns a Boolean value of YES if the receiving attributed string instance
contains any attachments and NO otherwise.

Several methods are available to convert a requested range of an attributed string to RTF and RTFD formats. The
method -RTFFromRange:documentAttributes: returns an NSData instance with the appropriately
generated RTF for the NSRange passed as the first argument. The documentAttributes argument is optional.
If provided, it should be an NSDictionary with keys from Table 11.2, and their associated values. If the requested
range is outside of the receiving attributed string, an NSRangeException is raised. This method strips out any
attachments within the attributed string, but does not remove the NSAttachmentCharacter from the generated
RTF.

The method -RTFDFromRange:documentAttributes: is identical except that the returned NSData instance
contains a flattened RTFD representation of the attributed string, including any attachments.

-RTFDFileWrapperFromRange:documentAttributes: expects the same arguments, but returns the
RTFD contents as an NSFileWrapper instance, which represents the contents of an RTFD-bundled document.

Also included in the Application Kit extensions to NSAttributedString is support for finding linguistic
elements within an attributed string. The methods are -doubleClickAtIndex:, -lineBreakBeforeIndex:
withinRange:, -nextWordFromIndex:forward:. They are primarily used for determining ranges of text
affected by mouse clicks or user interaction with the keyboard.

The Application Kit framework adds NSAttributedString methods for drawing and calculating the graphical
size of the attributed strings when they are drawn. These methods are described in the "NSString Drawing Methods"
section of Chapter 14, "Custom Views and Graphics Part III."

Using Mutable Attributed Strings

The NSMutableAttributedString class extends the NSAttributedString class to enable modification
of the strings and attributes. As with the NSAttributedString class, the implementation of
NSMutableAttributedString is split across Cocoa's Foundation and the Application Kit frameworks.

There are methods to append, replace, and delete characters within the attributed string. -
appendAttributedString: appends the attributed string passed as the argument to the end of the receiver.
Similarly, an attributed string can be inserted at a specified location in an NSMutableString using the method -
insertAttributedString:atIndex:. If the index is not a valid position within the receiver, an
NSRangeException is raised.

The method -replaceCharactersInRange:withAttributedString: deletes the characters in the
specified NSRange and replaces them with the attributed string passed as the second argument. Similarly, -
replaceCharactersInRange:withString: replaces the characters within the specified NSRange with the
characters in the NSString that is passed as the second argument. If -replaceCharactersInRange:
withString: is used, the newly inserted characters have the attributes that were set for the location of the first
deleted character in the range. In both methods, if the NSRange is outside the bounds of the
NSMutableAttributedString, an NSRangeException is raised.

It is also possible to completely replace the contents of an NSMutableAttributedString using the method -
setAttributedString: passing an attributed string to use as the replaced contents.

The characters within a given range of an NSMutableAttributedString can be deleted by using the method -
deleteCharactersInRange:. If the NSRange passed as the argument is outside the bounds of the receiving
NSMutableAttributedString, an NSRangeException is raised.

Attributes can be modified for a range of text in an NSMutableAttributedString using the methods -
setAttributes:range:, -addAttribute:value:range:, -addAttributes:range:, and -
removeAttribute:range:. The method -setAttributes:range: replaces any attributes set on the
characters in the specified NSRange with those contained in the NSDictionary passed as the first argument. The
method -addAttributes:range: adds the attributes in the NSDictionary passed as the first argument to
the characters in the range. If an attribute already exists on the text, the value of that attribute is changed to the value
in the dictionary. A simpler method, -addAttribute:value:range:, does the same thing, but expects only a
single attribute identifier and value instead of an NSDictionary. Finally, attributes are removed from a range of
characters by the -removeAttribute:range: method. In all cases, if the range is outside of the receiving
string, an NSRangeException is raised.

NSMutableAttributedString's -mutableString method returns the receiver's string as an
NSMutableString instance.

The Application Kit adds methods to NSMutableAttributedString for dealing with font changes, attachment
handling, and fixing attributes that have changed because of editing. The method -applyFontTraits:range:
applies the font traits that are passed as a C bitwise mask in the first argument to the specified range. The mask
consists of one or more of the NSFontTraitMask values combined using the C logical OR operator.
NSFontTraitMask is described in the "Font Traits and Weights" section of this chapter.

A portion of a mutable attributed string can be given superscript or subscript traits by calling -
superscriptRange: or -subscriptRange:, respectively; passing the character range as an NSRange
argument. Any existing superscript or subscript traits can be removed from a range of characters by calling -
unscriptRange:.

The alignment of paragraphs within a range can be modified by calling -setAlignment:range:. The alignment
argument must have one of the following constant values: NSLeftTextAlignment,
NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment, or
NSNaturalTextAlignment. NSNaturalTextAlignment uses the language-appropriate alignment for the
characters in the selected range. For example, Japanese or Arabic characters have different natural alignment than
common Western characters. Changes to the alignment only apply to paragraphs that begin within the specified range
of characters. If the range is outside of the receiving string, an NSRangeException is raised.

The method -readFromURL:options:documentAttributes: replaces the contents of the receiving
NSMutableAttributedString with the contents of the file at the NSURL passed as the first argument. The
second argument is an NSDictionary that specifies how the contents of the file are handled. For plain-text files,
the dictionary is consulted for the @"CharacterEncoding" key, which must have a corresponding NSNumber
value containing the NSStringEncoding constant that should be applied to the characters in the file.
NSStringEncoding is an enumerated type declared in NSString.h. NSStringEncoding values range from
1, which specifies NSASCIIStringEncoding, to 65536, which specifies
NSProprietaryStringEncoding. The available encoding constants are documented at http://developer.apple.
com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/TypesAndConstants/FoundationTypesConstants.
html. The @"DefaultAttributes" key has an NSDictionary value that defines the attributes to be applied
to the characters loaded from the file. Table 11.1 lists the valid attribute keys and values. If the file being read from
the URL is an HTML file, a dictionary passed as the options: argument might contain the @"BaseURL" key,
which is consulted to resolve relative URLs within the file being read. The third argument to -readFromURL:
options:documentAttributes: is a pointer to a pointer to an NSDictionary. If the third argument is not
NULL, a dictionary that describes the document attributes of the file being read is returned by reference. Document
attribute keys and values are listed in Table 11.2. If the file identified by the URL is successfully read, -
readFromURL:options:documentAttributes: returns the Boolean value of YES. NO is returned
otherwise.

There are several methods to ensure that the attributes for a requested range are appropriate: -
fixAttributesInRange:, -fixAttachmentAttributeInRange:, -
fixFontAttributeInRange:, and -fixParagraphStyleAttributeInRange:. The -
fixAttachmentAttributeInRange: method removes any NSAttachmentAttributeName identifiers
that don't apply to NSAttachmentCharacter characters within the specified range of characters. The -
fixFontAttributeInRange: method ensures that the font settings on text within the range are correct. For
example, characters that lie within the Chinese Unicode character set but have a Western font attribute are corrected
to have an appropriate Chinese font attribute.

The method -fixParagraphStyleAttributeInRange: ensures that NSParagraphAttributes affect
only complete paragraphs. The method -fixAttributesInRange: invokes each of the other methods,
providing a single call to fix all the text within a range. Once again, ranges outside the bounds of the string cause an
NSRangeException to be raised.

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/TypesAndConstants/FoundationTypesConstants.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/TypesAndConstants/FoundationTypesConstants.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/TypesAndConstants/FoundationTypesConstants.html

The View and Controller classes in Cocoa's text system make changes to NSTextStorage instances automatically
as the result of user input. NSTextStorage is a subclass of NSMutableAttribtedString. A complex
system of notifications keeps the View and Control layers synchronized with changes in the text storage. When an
NSTextStorage instance is modified directly by program code, it's important to bracket the changes with calls to
NSMutableAttribtedString's -beginEditing and -endEditing methods. Doing so causes
NSTextStorage to coalesce notifications for changes that occur between -beginEditing and -endEditing
calls.

The classes in the View and Control layers of the text system need to perform time consuming layout and display
calculations each time they are notified of changes to the underlying NSTextStorage. The most efficient way to
modify an attributed string such as an NSTextStorage is to call -beginEditing, make as many changes as
needed, and then call -endEditing. The -beginEditing and -endEditing block prevents the other objects
in the text system from being notified until -endEditing is called.

The Control Layer: Text Layout and Containers

The visual representation of each character in an attributed string requires one or more glyphs. A glyph is a pictorial
representation of a character. Glyphs are managed by font and are described in more detail in the "Managing Fonts"
section of this chapter. The glyphs that are used to represent a character might depend on the context. Factors such as
the preceding and following glyphs, the position of a glyph on a line, and the orientation of a glyph all contribute to
the glyph that is ultimately displayed.

The NSLayoutManager class is responsible for selecting glyphs to represent the characters in attributed string
based on the attributes and context. The NSLayoutManager class must also position glyphs relative to each other
and the graphical area that contains the glyphs.

NSLayoutManager does not normally draw anything without the help of a view or accept user input. The View
layer handles those tasks in the text system. NSLayoutManager has its hands full mapping the attributed strings,
fonts, attachments, and paragraph styles in the Model layer to positioned glyphs ready for display in the View layer.
NSLayoutManager requires an incredibly complex implementation to support diverse languages, writing styles,
and fonts from around the world. It is one of the most complex and sophisticated classes in the Cocoa frameworks,
but it exposes very little of its complexity to Cocoa programmers.

NSLayoutManager uses instances of the NSTextContainer and NSTypesetter classes to assist it with its
task. The NSTextContainer class defines graphical areas within which the layout manager can place glyphs. By
default, text containers are rectangular, but NSTextContainer can be subclassed to simulate almost any shape.
Text containers can be used to force a layout manager to place glyphs around an irregular shape or leave gaps in the
glyph placement. NSLayoutManager uses private subclasses of NSTypesetter to control word wrapping,
hyphenation, line breaks, and even layout direction. Typesetters exist for right-to-left languages and vertical
languages. The NSSimpleHorizontalTypesetter class is used for most Western languages.

Diagrams of different ways layout managers and text containers can be configured are available at http://developer.
apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/TextArchitecture/index.html.

One NSTextStorage instance can be used with multiple NSLayoutManager instances. One
NSLayoutManager instance can have any number of ordered NSTextContainer instances. When the layout
manager has filled one container with glyphs, it moves on to the next container until it either runs out of glyphs to
place or runs out of containers. Each NSTextContainer instance is associated with at most one NSView
instance. NSLayoutManager can be used with NSTextContainer instances even if the containers are not
associated with views. In that configuration, the layout manager is used to calculate glyph placement and obtain
information such as the amount of space needed to display all the glyphs. The layout manager can even perform
precalculations and layout text in the background while other application threads continue to execute.

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/TextArchitecture/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/TextArchitecture/index.html

Apple provides the CircleView example in /Developer/Examples/AppKit/CircleView. The
CircleView example uses a custom NSView subclass and NSLayoutManager to position and draw glyphs
around the circumference of a circle. This example shows rudimentary use of NSLayoutManager in combination
with NSTextContainer and NSTextStorage.

Apple's TextEdit example (/Developer/Examples/AppKit/TextEdit) and the
TextSizingExample (/Developer/Examples/AppKit/TextSizingExample) both show complex
use of NSLayoutManager in combination with NSTextContainer to implement multiple column text, text
with margins, and text with complex sizing, wrapping and line break behaviors.

A new TextViewConfig example that is not distributed with Apple's Developer Tools prior to the release of Mac
OS X 10.1.5 is available at http://developer.apple.com/samplecode/Sample_Code/Cocoa/TextViewConfig.htm. This
example shows how to use multiple instances of NSLayoutManager with a single NSTextStorage instance
and multiple text containers.

The View Layer: NSTextView

The NSTextView class implements the View layer in Cocoa's text system. NSTextView handles display and
input of text at the user interface level. NSTextView is a subclass of NSText. NSText provides a general
interface to Cocoa's text system, but NSText is not normally used directly. Instead, NSTextView instances are
used. NSTextView provides the highest-level interface to the text system and includes features not available in
NSText.

Some simple uses of the NSTextView class have already been shown in the first sections of this chapter. The
simplest configuration for an NSTextView instance is the one provided by the text view on Interface Builder's
Cocoa-Data palette. That NSTextView is the document view of a scroll view and is preconfigured with one text
container as wide as the text view and very tall. Only one layout manager is used, and only one text storage is used.

The NSTextView methods for setting the text to be displayed and configuring text attributes such as color and
underline are all implemented to change the contents of the NSTextStorage instance associated with the view.
The NSTextContainer associated with the view is configured to resize horizontally when the view is resized
horizontally. The NSTextView instance is configured to automatically resize vertically to contain all the text in the
associated text container. If either the text storage or the text container change, the layout manager associated with
the NSTextView instance automatically lays out the text storage-attributed string within the text container to
account for the changes.

If the NSTextView changes size to accommodate a change in the size of the text container after text layout has
completed, the scroll view automatically adjusts the scrollbars to reflect the change.

NSTextView provides the -textStorage method that returns its associates NSTextStorage instance. The -
textContainer method returns the associated NSTextContainer instance. The -layoutManager method
returns the associated NSLayoutManager instance.

NSTextView provides a comprehensive set of methods for setting text attributes, controlling the display of text,
configuring text-input behavior, interacting with rulers, managing the user's current selection, undo, spell checking,
drag and drop, and even text-to-speech features. The NSTextView class is document at http://developer.apple.com/
techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSTextView.html and in the
documentation that comes with Apple's developer tools.

NSTextView is very seldom subclassed. Powerful techniques for controlling, validating, and formatting text input
by users without subclassing are described in the "Text Input" section of this chapter. NSTextView's methods are
largely self-explanatory after its interaction with NSLayoutManager, NSTextContainer, and
NSTextStorage has been described. The complete documentation for NSTextView is available at http://

http://developer.apple.com/samplecode/Sample_Code/Cocoa/TextViewConfig.htm
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSTextView.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSTextView.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSTextView.html

developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSTextView.html
and comes with Apple's developer tools. The remainder of this section is dedicated to providing a couple of examples
that use NSTextView and the other text system classes.

Appending or Inserting an Image Attachment

One method for inserting or appending content to an NSTextView is by directly interacting with the
NSTextView's text storage. For example, a common task is to insert an image attachment into a text view. This can
be done at the NSTextStorage level using the following code:

NSTextAttachment *att;
NSString *path;
NSFileWrapper *wrapper;
NSAttributedString *attStr;

// determine the path to our image
path = [[NSBundle mainBundle] pathForResource:@"image" ofType:@"tiff"];

// construct an NSFileWrapper for the path
wrapper = [[[NSFileWrapper alloc] initWithPath:path] autorelease];

// construct an NSTextAttachment for the NSFileWrapper instance
att = [[[NSTextAttachment alloc] initWithFileWrapper:wrapper] autorelease];
attStr = [NSAttributedString attributedStringWithAttachment:att];

//Insertion Code Begins
[[theTextView textStorage] beginEditing];
[[theTextView textStorage] appendAttributedString:attStr];
[[theTextView textStorage] endEditing];
//Insertion Code Ends

The theTextView variable is a previously created NSTextView instance. The path to an image is used to
initialize a new NSFileWrapper instance. The NSFileWrapper instance is then used to create a new
NSTextAttachment. The NSAttributedString method, +attributedStringWithAttachment:,
creates an instance of an attributed string configured to hold the image attachment. NSFileWrapper is described
in Chapter 7's "NSFileWrapper" section. NSBundle is described in the "NSBundle" section of Chapter 7.

After the attributed string is constructed, theTextView's associated NSTextStorage is notified that editing is
going to begin by calling the -beginEditing method. The attributed string is appended directly to the text
storage, and the NSTextStorage is notified that editing is complete using -endEditing. The -
beginEditing and -endEditing methods cause NSTextStorage to coalesce change notifications for
changes that occur between -beginEditing and -endEditing. This is not very important in this example, but
if many changes are made at once, the -beginEditing and -endEditing block prevents the associated
NSLayoutManager from expensively recalculating the layout after each change. Instead, the layout can be
recalculated once including all the changes.

It is possible to insert the image at a specific location, using code such as the following:

//Insertion Code Begins
[[theTextView textStorage] beginEditing];
[[theTextView textStorage] replaceCharactersInRange:NSMakeRange(
 insertionLocation,0) withAttributedString:attStr];
[[theTextView textStorage] endEditing];
//Insertion Code Ends

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSTextView.html

To replace text with an image or attachment, use one the -replaceCharactersInRange: method and specify
a range with a length greater than zero.

Inserting a Web Link

Inserting a Web link is similar to inserting an image. Begin by constructing an instance of NSDictionary that
contains an NSString instance (the link) as the value for the NSLinkAttribute identifier; then create a new
NSAttributedString with the text that should be displayed and the link requested.

The following NSAttributedString category provides an +attributedStringWithLink:
labelString: method that returns a properly formatted NSAttributedString for a link:

@implementation NSAttributedString (_MYLinkSupport)

+ (NSAttributedString *)attributedStringWithLink:(NSString *)link
 labelString:(NSString *)text;
{
 NSDictionary *attrsDict;
 attrsDict = [NSDictionary dictionaryWithObject:link
 forKey:NSLinkAttributeName];
 return [[[NSAttributedString alloc] initWithString:text
 attributes:attrsDict] autorelease];
}

@end

The +attributedStringWithLink:labelString: method is used to append a link to the text in an
NSTextView as follows:

NSAttributedString *linkStr;

linkStr = [NSAttributedString
 attributedStringWithLink:@"http://www.cocoaprogramming.net"
 labelString:@"Go to Cocoa Developer's Handbook site"];
[[textView textStorage] beginEditing];
[[textView textStorage] appendAttributedString:linkStr];
[[textView textStorage] endEditing];

Book: Cocoa® Programming
Section: Chapter 11. The Cocoa Text System

Managing Fonts

In the "The Control Layer: Text Layout and Containers" section of this chapter, it was
stated that glyphs are managed by font objects. Each font can be thought of as a collection
of glyphs. Each glyph depicts a character in a particular character set. Character sets are
described in the "NSCharacterSet" section of Chapter 7. Character sets describe groups of
Unicode characters. Because no font can contain glyphs for every possible Unicode
character, a complex relationship between character sets, Unicode characters, and fonts is
needed. The complexity is encapsulated within the NSLayoutManager class that is
responsible for laying out glyphs corresponding to the characters and attributes in
attributed strings.

Cocoa's text system can use Fonts specified in PostScript, Macintosh TrueType, Windows
TrueType, or OpenType formats. Fonts are automatically available for use if they are
located in the standard font locations (/Network/Fonts, /Local/Library/
Fonts, /Library/Fonts, ~/Library/Fonts, and /System/Library/
Fonts). The standard locations and the logic used to search for fonts and other resources
are described in the "Standard Locations" section of Chapter 22, "Integrating with the
Operating System."

Cocoa provides three principal classes for managing fonts: NSFont, NSFontPanel, and
NSFontManager. Fonts are grouped into font families. For example, Helvetica and
Times are two common font families. Each family consists of one or more individual fonts,
also called typefaces. Fonts exhibit one or more style traits. For example, bold and italic
are traits of a font. The terminology used to describe fonts is almost as old as the printing
press. A complete discussion of typography and fonts requires a book longer than this one.
By necessity, only an overview of Cocoa's font support and font usage is provided here.

When working with fonts, an individual typeface is often referenced by its fully specified
font name, which consists of the family name combined with the typeface's traits.
Helvetica-BoldOblique, LucidaGrande-Bold, and Futura-CondensedExtraBold are
examples of fully specified font names. Each typeface also has a weight, which refers to
how visually heavy the font appears. Examples of font weights include ultralight, light,
book, regular (also called plain or book), bold, extrabold, and black.

The Cocoa font managing classes use the Model-View-Controller architecture. The
NSFont class is the model. It encapsulates the glyphs and traits of a font. The standard
Font panel represented by an instance of the NSFontPanel class is the view component.
It provides a way for users to view and select fonts. The NSFontManager class is the
controller. It provides a list of available fonts, keeps track of which fonts are being used,
converts fonts between typefaces and traits, and controls communication between the Font

panel and an application.

The NSFont Class

Each NSFont instance represents a specific typeface and is created only once for each
application. Each NSFont instance is stored and reused. When an NSFont instance is
requested with a typeface that has been previously used, the existing instance is returned. If
the no appropriate NSFont instance has been created for the requested typeface, a new
instance is automatically created, stored for later reuse, and returned.

Getting an NSFont Instance

An instance of NSFont that corresponds to a specific font is returned by calling the
method +fontWithName:size: passing an NSString as the name argument and a
float as the size. The font name must be the fully specified font family name. The size is
measured in Postscript Points (pts.). Passing 0.0 as the size: parameter causes
+fontWithName:size: to return a font with a default size. The default size is
determined by the user's preference the defaults database that is described in the "Defaults
System" section of Chapter 7.

NOTE

Fonts created via +fontWithName:size: automatically flip themselves
when drawing in an NSView that has a flipped coordinate system. Flipped
views are described in the "Rectangle Tests" section of Chapter 12, "Custom
Views and Graphics Part I."

There are a number of convenience methods available to access standard fonts. Using the
standard fonts ensures a consistent appearance across applications. The
+systemFontOfSize: method provides the font that is used for standard interface
items such as buttons and menu items. Passing zero or a negative value as the size returns
the system font with the default size. The default size for the system font is returned by
+systemFontSize. The bold variation of this font is available using the method
+boldSystemFontSize:, again passing the size as a float. The
+smallSystemFontSize method returns the size to use when specifying a small
system font. The +labelFontOfSize: method returns an instance of NSFont
consistent with Apple's Aqua guidelines for labels in the user interface. The default size for
such fonts is returned by +labelFontSize.

The user font (also called the Application font) is returned by calling the method
+userFontOfSize:. This is the font used by default for text that the user is able to edit.
The user's default fixed pitch font is returned by the method

+userFixedPitchFontOfSize:. In both cases passing zero or a negative size results
in the return of a font with the default size. A fixed pitch font is one in which all the glyphs
require the same space when printed. Most fonts are proportionally spaced, meaning that
different glyphs require different amounts of space. The user font for an application can be
set by calling the method +setUserFont: passing an NSFont instance as the
argument. The fixed pitch user font is set by calling +setUserFixedPitchFont:.

Obtaining Font Information

NSFont provides a myriad of methods for getting detailed information about a font and
specific glyphs within a font. Only the most commonly used methods are described in this
section. The complete documentation for NSFont is available at http://developer.apple.
com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSFont.
html, and in the documentation that comes with Apple's developer tools.

The fully specified name of a font is returned by NSFont's -fontName method. The
family name is returned by -familyName. The method -displayName returns the
name that should be used to identify the font in a user interface. The -displayName
method returns a name in the user's preferred language.

To determine if a font is a fixed pitch font, call the method -isFixedPitch. This
method returns a Boolean value of YES if the font has fixed pitch and NO if it is a
proportionally spaced font.

NSFont's -pointSize method returns a float that represents the size of the font in
Postscript Points. This is the overall height of the font from its lowest descender to its
highest ascender, and because of this, two fonts with the same point size might appear to be
radically different sizes. Figure 11.2 shows the critical dimensions of a font that are used to
layout glyphs and calculate the area needed to display glyphs. The method -ascender
returns the distance in Postscript Points from the baseline of the font to the highest
ascender. Likewise, -descender returns the distance of the lowest descender from the
font baseline.

Figure 11.2. Fonts are measured by their total point size as well as ascender,
descender, xHeight, and capHeight dimentions.

Calling -capHeight returns a float that is the height in Postscript Points of a capital

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSFont.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSFont.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSFont.html

letter in the font. Individual letters might have ascenders that are larger or smaller than the
-capHeight value. The -xHeight method returns the height of a lowercase letter in
the font. NSFont approximates both the -capHeight and -xHeight values in some
cases because not all font formats provide the information.

The -defaultLineHeightForFont method returns a float that is the sum of the
ascender and descender of the font plus the default line gap (vertical distance between two
lines of text).

The method -maximumAdvancement returns an NSSize structure that represents the
maximum advancement of a glyph in the font. Depending on the type of font, the
advancement can be horizontal or vertical. The -boundingRectForFont method
returns an NSRect that is the union of the bounding rectangles for all the glyphs in the
font. The bounding rectangle is the minimum rectangle that completely encloses a glyph.
The union of those rectangles is the minimum rectangle that encloses all of the bounding
rectangles.

Using the Font Manager

The NSFontManager class is the hub of font used in Cocoa. It tracks the available fonts
and traits, displays the NSFontPanel, and notifies responders when a font is changed.
There is a single shared NSFontManager instance in each graphical Cocoa application.
The shared instance is retrieved with NSFontManager's +sharedFontManager class
method.

When a user changes font attributes with the Font panel, the shared NSFontManager
object records the requested attribute, changes, and then sends a -changeFont: message
up the responder chain. Objects in the responder chain implement -changeFont: to call
NSFontManager's -convertFont: method. The argument to -convertFont: is
an NSFont instance that will be converted to be consistent with the user's choices in the
Font panel. For example, if the user has changed only the point size selected in the Font
panel, the font passed to -convertFont: is modified to have the specified size without
affecting other attributes such as the font face or whether the font is italic.

The -convertFont: method can be called multiple times as the result of one -
changeFont: message. For example, if the current selection in a text editor includes text
with several different fonts, the -convertFont: method is called once for each font in
the selection. Because -convertFont: only modifies the attributes that were explicitly
set by the user, several convenient features are automatically provided to users. When the
selection includes multiple fonts, the user is able to change only the size of each font
without changing the font face. Similarly, the user is able to change all the selected text to
one font face without changing the different font sizes in the selection.

NSFontManager methods such as -addFontTrait: and -removeFontTrait:
simulate the corresponding changes made through the Font panel and cause

NSFontManager to send the -changeFont: message up the responder chain.

The weight of an NSFont instance is returned by calling the method -weightOfFont:
passing an NSFont instance as the argument. An NSFontTraitMask describing the
traits of a font is returned by calling the -traitsOfFont: passing an NSFont instance
as the argument. Font traits and weights are described in the next section.

Font Traits and Weights

Each typeface exhibits one or more style traits. A group of traits can be specified with an
NSFontTraitMask value. NSFontTraitMask values are used to create new
typefaces or modify existing typefaces. Table 11.3 lists common traits and their
restrictions. This is not a complete list of the possible traits for a font. Only the traits used
by NSFontManager to convert font into another are listed.

Table 11.3. Common Font Traits and Restrictions

Trait Restrictions

NSBoldFontMask Mutually exclusive with
NSUnboldFontMask

NSUnboldFontMask Mutually exclusive with
NSBoldFontMask

NSItalicFontMask Mutually exclusive with
NSUnitalicFontMask

NSUnitalicFontMask Mutually exclusive with
NSItalicFontMask

NSNonStandardCharacterSetFontMask None

NSNarrowFontMask None

NSCondensedFontMask Mutually exclusive with
NSExpandedFontMask

NSExpandedFontMask Mutually exclusive with
NSCondensedFontMask

NSSmallCapsFontMask None

NSPosterFontMask None

NSCompressedFontMask None

NSFixedPitchFontMask None

NSFont provides several methods for requesting a specific font using the fully specified
typeface name. NSFontManager provides alternative methods that use the family name,
the font traits, the font weight, and the size to specify a font. NSFontManager's -
fontWithFamily:traits:weight:size: accepts a family name passed as an
NSString for the first argument. The traits: argument is the value of an
NSFontTraitMask, or a C bitwise logical OR of multiple NSFontTraitMask values
from Table 11.3. The weight is an integer value between 0 and 15 that represents the visual
heaviness of a face. Table 11.4 lists the available integer weight values and the
corresponding typographic term for the weight. Finally, the size argument is passed as a
float value measured in Postscript Points.

Table 11.4. Font Weight Constants and Corresponding Typographic Terms

Weight Constant Standard Term

1 ultralight

2 thin

3 light, extralight

4 book

5 regular, plain, display, roman

6 medium

7 demi, demibold

8 semi, semibold

9 bold

10 extra, extrabold

11 heavy, heavyface

12 black, super

13 ultra, ultrablack, fat

14 extrablack, obese, nord

NOTE

If the NSBoldFontMask trait is included in the traits: argument to -
fontWithFamily:traits:weight:size:, the weight: argument
is ignored.

The weight of an NSFont instance is returned by calling the method -weightOfFont:
passing the NSFont instance as the argument. An NSFontTraitMask consisting of the

logical OR of all the traits of an NSFont is returned by calling -traitsOfFont:
passing the NSFont instance as the argument.

It is possible to determine if a font typeface has specific traits using the method -
fontNamed:hasTraits:. This method requires a fully specified font typeface name
such as an NSString for the first argument and a NSFontTraitMask value, or a
logical OR of multiple NSFontTraitMask values, as the second argument. It returns the
Boolean YES only if all the traits specified in the hasTraits: argument are true for the
named font.

Determining Available Fonts

An application can get an array of all available font typefaces by calling
NSFontManager's -availableFonts method. This method returns an NSArray
containing fully specified typeface names. Similarly, an application can get a subset of the
available fonts that correspond to a specific set of font traits by using the method -
availableFontNamesWithTraits: passing a logical OR of NSFontTraitMask
values as the argument. A value of 0 for the NSFontTraitMask returns fonts that are
neither bold nor italic faces. In both methods, fonts that are not normally displayed to the
user are prefaced with a . character.

A localized version of the family and face name is returned by the method -
localizedNameForFamily:face:. Passing nil as the face string returns a
localized version of the face name.

Converting Fonts

NSFontManager is able to provide NSFont instances by converting any of the family,
face, size, weight, or traits of an existing NSFont instance. The conversion methods
accept an NSFont instance argument used as the basis for changes.

The principal conversion method is -convertFont:. It returns an NSFont instance
derived from the font passed as an argument. Attributes specified by the user via the
standard Font panel or the standard Font menu are applied to the font being converted. For
example, if the Font panel currently has no selected font family, but the size is set to 72.0
pts., and -convertFont: is called passing an NSFont instance that represents
Helvetica-Bold 12.0 pts., the returned NSFont represents Helvetica-Bold 72.0 pts. If,
however, the font panel specifies the Times family with 48.0 pts., the returned NSFont
represents Times-Bold 48.0 pts. Only the font attributes explicitly specified by the user are
changed when converting a font.

The method -convertFont:toFace: returns an NSFont instance with the font face
name specified by a string passed as the second argument. All other attributes of the
returned font are identical to the attributes of the font passed as the first argument. The face

should be a fully specified family-face font name such as Helvetica-BoldOblique. If
NSFontManager is unable return the requested font, nil is returned.

The -convertFont:toFamily: method returns an NSFont belonging to the font
family passed as an NSString name. The returned font has the same size and traits as the
base font passed as the first argument. For example, if the passed NSFont instance
represents Helvetica-BoldOblique, and the requested family is Optima, this method returns
an NSFont representing Optima-BoldItatlic. If no face in the requested family has the
same attributes as the font argument, the NSFont argument is returned unmodified.

The method -convertFont:toHaveTrait: returns an NSFont instance based on
NSFont and the trait passed as the second argument. Only a single trait can be passed as
the toHaveTrait: argument. If NSFontManager is unable to make the conversion,
the NSFont passed as the first argument is returned unchanged. The -convertFont:
toNotHaveTrait: returns an NSFont instance based on the passed NSFont and
returns a variant that does not have the specified trait. Again, if the conversion does not
take place, the passed NSFont argument is returned unchanged.

The -convertFont:toSize: method returns an NSFont instance with the same
family, face, traits, and weight as the first argument and the float size in Postscript
Points specified by the second argument.

The final method in NSFontManager's conversion suite is -convertWeight:
ofFont:. The weight argument, a Boolean, specifies if the returned font should be
visually heavier (by passing a YES value) or lighter (by passing a NO value) than the
supplied NSFont instance. If there is no heavier or lighter face available, the NSFont
instance passed as the second argument is returned unmodified.

Current Font Selection

Applications notify the NSFontManager of changes in the current font using the method
-setSelectedFont:isMultiple:. Graphical applications should call this method
when the user's selection has changed and pass the font used by the current selection as the
first argument. Cocoa's NSText and NSTextView classes already do this. It is only
necessary to call -setSelectedFont:isMultiple: in applications that handle fonts
directly. If the selection uses only a single NSFont instance, the Boolean value NO is
passed as the isMultiple: argument. If there are multiple fonts used by the current
selection, the application should call -setSelectedFont:isMultiple: once for
each font used, passing the NSFont instances as the first argument. For the first font used,
call -setSelectedFont:isMultiple: with NO as the isMultiple: argument.
For each subsequent font, pass YES as the isMultiple: argument.

NSFontManager's -selectedFont method returns the last NSFont instance passed
to -setSelectedFont:isMultiple:. It is possible to determine if there are
multiple fonts selected by calling the method -isMultiple, which returns a Boolean

value.

NOTE

Using NSFontManager's -selectedFont method from within an
implementation of -changeFont: is not a reliable way to obtain the user's
font selection. Font attributes that the user has not explicitly set will have
indeterminate values. Instead use the NSFontManager's -
convertFont: method to convert an existing NSFont instance into one
that corresponds to the user's chosen font attributes.

Triggering -changeFont: Programmatically

NSFontManager sends the -changeFont: up the responder chain when the user
changes a selection in the Font panel or Font menu. The -changeFont: message is the
key to informing the rest of Cocoa's text system that a change has been made. Custom
objects that display editable text need to implement the -changeFont: method to call
NSFontManager's -convertFont: and convert fonts in the user's current selection. It
is possible to cause NSFontManager to send the -changeFont: message as the result
of programmatic changes as well.

NSFontManager's -addFontTrait: specifies a font trait that will be applied the next
time the NSFontManager receives a -convertFont: message. Calling -
addFontTrait: causes the NSFontManager to send a -changeFont: message.
The object that is passed as the argument to -addFontTrait: must respond to the -
tag message by returning NSFontTrait. The -removeFontTrait: operates in a
similar manner. It removes the trait returned by the -tag method of the argument and
sends the -changeFont: message.

The method -modifyFontViaPanel: causes the -changeFont: message to be sent
up the responder chain, and when the NSFontManager receives a subsequent -
convertFont: request, the NSFontManager uses the NSFontPanel's -
panelConvertFont method to return the new NSFont. The NSFontPanel class is
described in the "Using the Font Panel" section of this chapter.

Finally, the method -modifyFont: is used to control how fonts are converted by calls to
-convertFont:. The -modifyFont: method can be used to increase or decrease a
font's size or weight. It triggers a -changeFont: message. The object passed as the
argument to -modifyFont: must implement the -tag method to return one of the
constants in Table 11.5. The constant returned determines which method will be used to
convert fonts and consequently which attributes will change as the result of subsequent -
convertFont: calls.

Table 11.5. Font Modification Actions and Corresponding Conversion Methods

Modification Action Conversion Method

NSNoFontChangeAction The font passed to -convertFont: is not
changed.

NSViaPanelFontAction The font passed to -convertFont: is changed by
NSFontPanel's -panelConvertFont method.

NSAddTraitFontAction The font passed to -convertFont: is changed by
the -convertFont:toHaveTrait: method.

NSRemoveTraitFontAction The font passed to -convertFont: is changed by
the -convertFont:toNotHaveTrait:
method.

NSSizeUpFontAction The font passed to -convertFont: is changed by
increasing its size using the -convertFont:
toSize: method.

NSSizeDownFontAction The font passed to -convertFont: is changed by
reducing its size using the -convertFont:
toSize: method.

NSHeavierFontAction The font passed to -convertFont: is changed by
increasing its weight using the -convertWeight:
ofFont: method.

NSLighterFontAction The font passed to -convertFont: is changed by
decreasing its weight using the -convertWeight:
ofFont: method.

NSFontManager normally sends the -changeFont: up the responder chain to
indicate that a change to a font is needed, but a different message can be specified via

NSFontManager's -setAction: method. Cocoa's text classes expect to receive -
changeFont: messages and will most likely malfunction if it is not sent, but it might
make sense to customize this behavior in some applications. The selector of the message
sent by NSFontManager is returned from the -action method.

Interacting with the User

As a Controller in the Model-View-Controller architecture, NSFontManager is
responsible for communications between the Model and the View layers. NSFont objects
compose the model. NSFontManager methods for interacting with the model have
already been described. NSFontManager doesn't provide any direct visual interaction
with the user, but it does provide access to the two most common View layer objects that
enable font manipulation: the Font panel and the Font menu. In addition,
NSFontManager is used to enable and disable the user's ability to change fonts via an
application's user interface.

A shared instance of the NSFontPanel class is from NSFontManager's -
fontPanel: method. The argument to -fontPanel: is a Boolean that indicates
whether the NSFontPanel instance should be created if it does not already exist. The
NSFontManager method -orderFrontFontPanel: makes the standard Cocoa
Font panel (creating it if necessary) the frontmost window.

The standard Font menu is returned from NSFontManager's -fontMenu: method as
an NSMenu instance. The argument to -fontMenu: is a Boolean value specifying
whether the menu should be created if it does not already exist. It is also possible to set the
current font menu for an application by calling NSFontManager's -setFontMenu:
passing the NSMenu instance to use as the Font menu as the argument.

The user interface objects that control interactive font changes can be disabled or enabled
using the -setEnabled: method and passing a Boolean as the argument. The current
status of the user interface is queried with -isEnabled, which returns a Boolean value.

Finally, the fonts that are shown to the user in the Font Panel are restricted by
implementing the -fontManager:willIncludeFont: method in the
NSFontManager's delegate. This method is called automatically if the delegate responds
to it. The first argument is the shared NSFontManager instance. The second argument is
the fully specified name of a font to be displayed in the Font panel. If -fontManager:
willIncludeFont: returns YES, the font is present in the Font panel. Otherwise, the
font is not shown and is not available for the user to select. The determination of the value
to return can be based on many different criteria. For example, an application might restrict
font selection to only fixed pitch fonts if a particular view that only displays fixed pitch
fonts is the first responder in the main or key windows.

Using the Font Panel and Font Menu

The NSFontPanel class encapsulates the standard Cocoa Font panel. The Font panel
provides a consistent and flexible user interface for selecting and modifying fonts. Figure
11.3 shows the standard Font panel and the standard Font menu.

Figure 11.3. The standard Font panel and Font menu are shown.

NSFontPanel is a subclass of the NSPanel class. NSPanel is briefly described in the
"NSWindow Overview" section of Chapter 8, "The Application Kit Framework
Overview," and more extensively in the "Working with Panels" section of Chapter 9,
"Applications, Windows, and Screens."

Each graphical Cocoa application has a single shared instance of the NSFontPanel class
that is created the first time it is needed. The shared instance is returned by calling
NSFontPanel's +sharedFontPanel method or by calling NSFontManager's -
fontPanel: method. It is made visible to the user by calling the -
makeKeyAndOrderFront: method inherited from the NSWindow class or by using
NSFontManager's -orderFrontFontPanel: method.

As with most standard Cocoa panels, it is possible to add an accessory view through the
use of -setAccessoryView: passing the NSView that should be added to the panel.
The -accessoryView method returns the current accessory view or nil if none has
been set. Accessory views are described in the "Document Actions and the Save Panel"
section of Chapter 9.

NSFontPanel's -worksWhenModal method ignores the -setWorksWhenModal:
flag and always returns YES, enabling users to change fonts even in modal panels. The -
worksWhenModal and -setWorksWhenModal: methods are explained in the "Using
Modal Windows" section of Chapter 9.

The NSFontPanel class uses the -panelConvertFont: method to change an
existing a font according to the Font Panel's current settings. The argument is the NSFont

instance to change. This works similarly to NSFontManager's -convertFont:
method, returning only the changes that are selected in the Font panel. If changes cannot be
made to the specified font, the original font instance is returned.

The method -reloadDefaultFontFamilies reloads the set of fonts displayed in the
Font panel. This in turn calls the NSFontManager's delegate's implementation of -
fontManager:willIncludeFont: for each font allowing the application to filter
the fonts shown to the user. The -reloadDefaultFontFamilies method can be
called to update the Font panel after the filter criteria for -fontManager:
willIncludeFont: has changed, or to detect new fonts added to the system while the
application has been running.

The standard Font menu is available on Interface Builder's Cocoa-Menus palette. Most of
the menu items in the Font menu send action messages up the responder chain. The menu
items are automatically enabled if an object in the responder chain responds to their actions
and disabled otherwise. The action messages are eventually received by a Cocoa text
object, such as an NSTextView instance or a custom object that responds to the action.

Three of the standard menu items in the Font menu are preconfigured to send messages
directly to the application's shared NSFontManager instance. The Font, Show Fonts
menu item sends the -orderFrontFontPanel: message to the font manager. The
Font, Bold and Font, Italic menu items send the -addFontTrait: message to the font
manager.

Book: Cocoa® Programming
Section: Chapter 11. The Cocoa Text System

Text Input

NSTextView uses helper objects called input managers to interpret user input and turn it into text or commands.
NSTextView passes raw character input to an input manager. The input manager determines what the raw input
means and sends messages to the NSTextView. If the input consists of characters to be inserted, the input
manager sends an -insertText: message with the text to insert. If the input consists of commands such as
cursor movement keys, the Enter key, or the Backspace key, the input manager sends a -
doCommandBySelector: message with an appropriate selector as the argument. The selector specifies the
action that the text view should take such as -moveDown:, -deleteBackward:, or -insertNewline:.
The set of actions that input managers can send is documented at http://developer.apple.com/techpubs/macosx/
Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSResponder.html, and in the NSResponder
documentation that comes with Apple's developer tools.

NSTextView gives its delegate an opportunity to intercept actions sent with -doCommandBySelector:. The -
textView:doCommandBySelector: delegate method is described in the "NSTextView Delegate Methods
and Notifications" section of this chapter. If the delegate implements -textView:doCommandBySelector:,
and it returns YES, the text view does nothing further; otherwise, the text view performs the action specified by the
command.

Input managers are encapsulated by the NSInputManager class and communicate with NSTextView instances
via the NSTextInput protocol. Input managers are typically implemented as separate processes, and
communication between the input manager and applications is handled by NSInputManager instances. Input
managers are briefly described in the "Input Managers" section of Chapter 10, "Views and Controls." Apple
provides an NSInputManager example in /Developer/Examples/AppKit/HexInputServer.
Another example is available at http://developer.apple.com/samplecode/Sample_Code/Text/
Inline_Input_for_TextEdit.htm.

Input managers play a small but crucial role in the Cocoa text system. Input managers offer a great degree of
flexibility. For example, many Eastern languages require multiple keystrokes to compose a single Unicode
character. An input manager is able to accept as many keystrokes as necessary, and then call -insertText: only
once with the fully composed Unicode. Apple provides handwriting recognition capabilities that are implemented
as an input manager so that the characters, words, and commands that originate from a stylus and graphics tablet are
sent to an NSTextView. Similarly, speech input can be gathered from a microphone and injected into Cocoa's text
system. Because appropriate input managers exist, every Cocoa text object automatically works seamlessly with a
wide variety of input sources.

Using Delegate Methods

The NSText class sends notifications and communicates with its delegate when changes are made. The delegate is
given substantial control over text-editing behavior. As a subclass of NSText, NSTextView also uses the
delegate. In fact, NSTextView extends the set of messages sent to the delegate to include all NSText's delegate
messages as well as its own.

NOTE

Use the notifications sent by NSTextView objects or implement a delegate to customize text-
handing behavior. Many complex Cocoa classes including NSTextView are extremely difficult to
subclass effectively. Subclassing NSTextView should always be a last resort.

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSResponder.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSResponder.html
http://developer.apple.com/samplecode/Sample_Code/Text/Inline_Input_for_TextEdit.htm
http://developer.apple.com/samplecode/Sample_Code/Text/Inline_Input_for_TextEdit.htm

NSText Delegate Methods and Notifications

The delegate method -textShouldBeginEditing: is called when an action that will change the contents or
format of an NSText instance is about to take place. The argument to -textShouldBeginEditing: is the
text object that sent the message. If the delegate implements -textShouldBeginEditing: and returns the
Boolean value NO, the changes to the NSText object are not allowed. If -textShouldBeginEditing:
returns YES, the text system operates as usual.

When an NSText object is about to stop editing, for example, when another NSText object is about to become
active, the delegate's -textShouldEndEditing: method is called. The argument is the text object that sent the
message. The delegate implementation allows editing to end by returning the Boolean value YES. If NO is returned,
the text object that sent the message refuses to give up its First Responder status. Because the text object remains
the First Responder, no other text object can become active and begin editing. A text object must be the First
Responder to be edited. A text object can be forced to end editing even if -textShouldEndEditing: returns
NO by calling [aWindow endEditingFor:nil] where aWindow is the window that contains the text object.

There are three notifications that can be posted by an NSText object:
NSTextDidBeginEditingNotification, NSTextDidChangeNotification, and
NSTextDidEndEditingNotification. There are corresponding delegate methods for each of these
notifications. The delegate methods are called even if the delegate does not observe the notifications.

An NSTextDidBeginEditingNotification is sent when an action is about to change the contents or
format of an NSText object that was not already being edited. Use NSNotification's -object method to
access to the text object that sent the notification. The delegate method -textDidBeginEditing: is
automatically called when the NSTextDidBeginEditingNotification notification is sent. The argument
to -textDidBeginEditing: is the notification object.

An NSTextDidChangeNotification is sent when the contents or format of an NSText object have just
been changed. The NSNotification that is passed to any registered observers contains the affected NSText
object as its -object value. The delegate method -textDidChange: is automatically called with an
NSNotification argument when the notification is sent.

An NSTextDidEndEditingNotification is sent when a text object has ended editing. The
NSNotification's -object value is the text object that sent the notification. The delegate's -
textDidEndEditing: method is called with the notification as the argument. The NSNotification
instance sent for NSTextDidEndEditingNotification contains a dictionary with a single key,
NSTextMovement. Calling the notification's -userInfo method accesses the dictionary. The value for the
NSTextMovement key is one of the following constants that indicate why the editing ended:
NSReturnTextMovement, NSTabTextMovement, or NSBackTabTextMovement.

NSTextView Delegate Methods and Notifications

The NSTextView extends the delegate methods provided by NSText to handle fine-grained control of
attachments, links, selection changes, keyboard navigation, undo, and formatting.

The -textView:clickedOnCell:inRect:atIndex: delegate method is called after the user clicks an
attachment embedded in an NSTextView instance. The first argument is the NSTextView instance that sent the
message. The second argument is the cell that represents the attachment. The third argument is the rectangle that
encloses the attachment cell in the text view's coordinate system. The fourth argument is the position within the text
view's text storage of the NSAttachmentCharacter for the clicked attachment. The delegate can use this
method to select the attachment or send an action message.

NOTE

The NSTextView object sent as the first argument to NSTextView's delegate messages is usually
the first text view in the ordered collection of text views used by an NSLayoutManager. A single
NSLayoutManager can layout text for multiple views. Because the change that caused a delegate
message to be sent might have occurred in one of the other text views managed by the layout manager,
there is no guarantee that the change happened in the text view passed as the first argument to the
delegate method.

The most reliable way to process text within an NSTextView delegate method is to use the sending
NSTextView's text storage directly, rather than using the NSTextView's methods.

The -textView:clickedOnLink:atIndex: delegate method is called after the user clicks a link embedded
in an NSTextView instance. The first argument is the NSTextView instance that sent the message. The second
argument is the link that was clicked. The third argument is the position within the text view's text storage of the
link. If the delegate does not respond to this message or returns NO, the text view's next responder is given an
opportunity to process the click. If the delegate handles the click, return YES from -textView:
clickedOnLink:atIndex:.

The -textView:doCommandBySelector: delegate message gives delegates an opportunity to intervene in
an NSTextView's command processing. The first argument is the text view that sent the message. The second
argument is a selector that identifies an action to perform. If the delegate does not respond to -textView:
doCommandBySelector: or returns NO, the text view processes the command by performing the action. If the
delegate does handle the command on behalf of the text view, -textView:doCommandBySelector: should
return YES informing the text view that no additional processing is required. Implement this delegate method to
influence selection changes, insertion cursor movement, text insertion, text deletion, and scrolling. Apple provides
an excellent example that uses this method at http://developer.apple.com/samplecode/Sample_Code/Cocoa/
TextViewDelegate.htm.

The -textView:doubleClickedOnCell:inRect:atIndex: method is called after the -textView:
clickedOnCell:inRect:atIndex: method if the user clicks a second time within the default double-click
threshold. The arguments to -textView:doubleClickedOnCell:inRect:atIndex: are the same as the
arguments to -textView:clickedOnCell:inRect:atIndex:. Implement this delegate method to
perform special processing when an attachment is double-clicked.

The -textView:draggedCell:inRect:event:atIndex: message is sent to the delegate when the user
attempts to drag an attachment within an NSTextView. The first argument is the NSTextView that sent the
message. The second argument is the cell that represents the attachment. The third argument is the rectangle that
encloses the attachment cell in the text view's coordinate system. The fourth argument is the NSEvent that started
the drag. The NSEvent class is described in the "Responders" section of Chapter 8. The fifth argument is the
position within the text view's text storage of the NSAttachmentCharacter for the dragged attachment. The
delegate can implement this method to initiate a dragging operation. Drag operations are explained in the "Drag and
Drop in Custom View and Window Objects" section of Chapter 19, "Using Pasteboards."

The -textView:shouldChangeTextInRange:replacementString: method is used to control
whether a particular range of characters can be modified. The first argument is the NSTextView that sent the
message. The second argument is an NSRange structure that identifies the range of characters to be replaced. The
third argument is a string containing the proposed replacement characters. The third argument is nil if only
attributes are being changed. If the delegate implements this method to return YES or the delegate does not
implement this method at all, the text view makes the change. If the delegate implements -textView:
shouldChangeTextInRange:replacementString: to return NO, the change is not made.

http://developer.apple.com/samplecode/Sample_Code/Cocoa/TextViewDelegate.htm
http://developer.apple.com/samplecode/Sample_Code/Cocoa/TextViewDelegate.htm

The -textView:willChangeSelectionFromCharacterRange:toCharacterRange: delegate
method is called before the selection is changed. The first argument is the NSTextView that sent the message. The
second argument is an NSRange structure identify the range of characters currently selected. The third argument is
the proposed range of characters that will be selected. Implement this method to return the range that should be
selected. The delegate can return the proposed range unmodified or substitute any other range as appropriate.

The -textView:writablePasteboardTypesForCell:atIndex: delegate method is used to return an
array of pasteboard types suitable for writing an attachment to the pasteboard. The first argument is the
NSTextView that sent the message. The second argument is the cell that represents the attachment. The third
argument is the position of the character that represents the attachment in the text view's text storage. Do not
implement this method if the delegate implements -textView:draggedCell:inRect:event:atIndex:.

The -textView:writeCell:atIndex:toPasteboard:type: delegate method is used to write an
attachment to a pasteboard. The first argument is the NSTextView that sent the message. The second argument is
the position of the character that represents the attachment in the text view's text storage. The third argument is the
pasteboard. The fourth argument is a pasteboard type. -textView:writeCell:atIndex:toPasteboard:
type: should return YES if the attachment is successfully written to the pasteboard and NO otherwise.

The -undoManagerForTextView: method enables the delegate to control which NSUndoManager instance
is used with a text view. The argument is the NSTextView that sent the message. Return an NSUndoManager
instance. NSUndoManager is described in the "Undo and Redo" section of Chapter 8.

NSTextView posts the following notifications in addition to the ones posted by the NSText class:
NSTextViewDidChangeSelectionNotification and
NSTextViewWillChangeNotifyingTextViewNotification.

The NSTextViewDidChangeSelectionNotification is posted whenever the selection changes in a text
view. This notification is posted once at the end of each selection operation. If the NSTextView's delegate
implements the -textViewDidChangeSelection: method, it is automatically called even if the delegate
does not observe the notification. The argument to -textViewDidChangeSelection: is the
NSNotification instance that was posted. Use NSNotification's -object method to obtain the
NSTextView that posted the notification. The notification's -userInfo dictionary contains a single key,
NSOldSelectedCharacterRange. The value of the key is an NSValue instance containing an NSRange
structure that identifies the previously selected range. The NSTextView that posted the notification can provide
the current selection range.

The NSTextViewWillChangeNotifyingTextViewNotification is posted whenever one
NSTextView is about to stop sending notifications and another is about to start. Observing this notification gives
objects a chance to reregister for notifications from a new NSTextView instance. Calling NSTextView's -
removeTextContainerAtIndex:, -textContainerChangedTextView:, and -
insertTextContainer:atIndex: methods results in this notification being posted. There's no delegate
method that is called automatically when this notification is posted.

The -object of the NSTextViewWillChangeNotifyingTextViewNotification is the old notifying
NSTextView or nil. The notification's -userInfo dictionary might contain zero, one, or two keys. The two
possible keys are NSOldNotifyingTextView and NSNewNotifyingTextView. The value for the
NSOldNotifyingTextView key is the old NSTextView, if it exists. The value for the
NSNewNotifyingTextView is the new NSTextView if it exists.

Using Formatters

Cocoa's text system is very powerful, but also very complex. Many classes cooperate to make a single instance of

NSTextView operate. Almost all text drawn by Cocoa applications is drawn by NSTextView instances, but it
does not make sense to have separate text views for every label, button, or text field that draws text. Instead, each
window has an instance of NSTextView that is shared by most of the other objects that need to draw text. The
shared NSTextView instance is called the window's field editor. The field editor is described in "The Field Editor"
section of Chapter 10.

The objects that use the field editor are usually subclasses of NSControl and NSCell. For example,
NSTextField is a subclass of NSControl, and NSTextField uses an instance of NSTextFieldCell in
its implementation. NSTextFieldCell is a subclass of NSActionCell, which is in turn a subclass of
NSCell.

Controls such as NSTextField, and the corresponding NSCell instance, not only draw text with the aid of the
field editor, they need to accept textual user input as well. Controls and cells optionally use NSFormatter
instances to assist with the display of textual information and to control or validate user input. NSFormatters are
described in the "Validation and Formatters" section of Chapter 10. The remainder of this section is used to explain
the interaction between NSFormatter subclasses and the field editor or another NSTextView.

Formatters convert objects such as NSCalendarDate or NSNumber into instances of NSString or
NSAttributedString, which are then displayed by the field editor. Formatters also accept characters input to
the field editor and convert the characters into other objects.

To convert objects into strings for display, NSFormatter subclasses must implement the -
stringForObjectValue: method. The optional -attributedStringForObjectValue: method can
also be implemented. Both methods accept an arbitrary object argument. They return an NSString and an
NSAttribtedString, respectively. If -attributedStringForObjectValue: is implemented by a
formatter, -stringForObjectValue: will never be called unless -
attributedStringForObjectValue: calls it. Controls and cells prefer attributed strings.

To convert strings into objects, NSFormatter subclasses must implement -getObjectValue:forString:
errorDescription:. The first argument is a pointer to a pointer to an object. This method returns an object by
reference in the first argument. The second argument is the string to convert. The third argument is a pointer to a
pointer to an NSString object. If an error is detected during conversion, a message describing the error can be
returned by reference in the third argument.

The following simple NSFormatter subclass formats 10-digit phone numbers with the standard USA notation.
For example, (800) 555-1234 is a correctly formatted phone number. The first three digits are an area code.
The next three digits are a prefix. The last four digits complete the phone number. Including the parentheses, a
space character, and the dash character between the prefix and the rest of the number, the formatted phone number
requires 14 characters.

Create a new Cocoa Application Project Builder project. A good name for the new project is
MYPhoneNumberFormatterExample. Add the following code for MYPhoneNumberFormatter.h and
MYPhoneNumberFormatter.m to the project.

File MYPhoneNumberFormatter.h:

/* MYPhoneNumberFormatter */

#import <Cocoa/Cocoa.h>

@interface MYPhoneNumberFormatter : NSFormatter
{
}

@end

File MYPhoneNumberFormatter.m:

#import "MYPhoneNumberFormatter.h"

@implementation MYPhoneNumberFormatter
/*" Instances of this class format 10 digit numbers using standard USA phone
 number notation: (XXX) XXX-XXXX. "*/

/*" The number of characters needed to display a formatted 10 digit phone
 number "*/
static const int MYNumberOfCharactersInFormattedPhoneNumber = 14;

- (NSString *)stringForObjectValue:(id)obj
 /*" Returns a string by converting obj into a string formatted with
standard
 USA phone number notation.
 "*/
{
 NSString *result = @"() - "; // default result if obj is
invalid

 if([obj respondsToSelector:@selector(longLongValue)])
 {
 // obj is able to provide a ten digit number to format
 long long phoneNumber = [obj longLongValue];
 long long areaCode = (phoneNumber / 10000000); // first 3 digits
 long long prefix = (phoneNumber / 10000) % 1000; // (digits 5-7)
 long long fourDigitNumber = phoneNumber % 10000; // last 4 digits
 result = [NSString stringWithFormat:@"(%03d) %03d-%04d", (int)areaCode,
 (int)prefix, (int)fourDigitNumber];
 }

 return result;
}

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string
 errorDescription:(NSString **)error
 /*" Returns by reference in obj an NSNumber derived from string. The
 NSNumber stores a ten digit number using the long long type. If
 any errors are detected, this method returns NO and also returns
 an error message by reference in error. If an error is detected,
 the value returned by reference in obj is undefined. If no errors
 are detected, this method returns YES. "*/
{
 long long phoneNumber = 0; // the 10 digit phone number
 long long areaCode = 0; // the 3 digit area code
 long long prefix = 0; // the 3 digit prefix
 long long fourDigitNumber = 0; // the 4 digit number
 BOOL result = NO; // default result

 if(MYNumberOfCharactersInFormattedPhoneNumber == [string length])
 {
 // string has the proper length for a formatted phone number

 // 01234567890123 character position in formatted phone number string
 // (XXX) XXX-XXXX
 areaCode = [[string substringWithRange:NSMakeRange(1, 3)] intValue];
 prefix = [[string substringWithRange:NSMakeRange(6, 3)] intValue];
 fourDigitNumber = [[string substringWithRange:NSMakeRange(10, 4)]
 intValue];
 }

 // combine area code, prefix, and 4 digit number to create a 10 digit
number
 phoneNumber = (areaCode * 10000000) + (prefix * 10000) + fourDigitNumber;
 if(phoneNumber >= 1000000000)
 {
 // the 10 digit phone number must be greater than or equal to 1000000000
 // because the first digit in the area code can not be 0
 if(NULL != obj)
 {
 *obj = [NSNumber numberWithLongLong:phoneNumber]; // return NSNumber
 }
 result = YES;
 }
 else if(NULL != error)
 {
 // There were too few digits in the phone number
 *error = @"Too few digits in phone number"; // return error by reference
 }

 return result;
}

@end

The code so far implements a minimal NSFormatter subclass. Both the -stringForObjectValue: and -
getObjectValue:forString:errorDescription: methods are implemented. Compile the project to
make sure there are no errors.

Double-click the MainMenu.nib file in the Resources folder of the new project. Interface Builder will start and
display the user interface for this example. Drag the MYPhoneNumberFormatter.h file into Interface Builder's
window titled MainMenu.nib. The MainMenu.nib window displays its Classes tab containing a class browser
that shows the MYPhoneNumberFormatter class selected. Ctrl-click the selected
MYPhoneNumberFormatter class in the class browser to display Interface Builder's contextual menu. Click
Instantiate MYPhoneNumberFormatter in the context menu. After an instance of
MYPhoneNumberFormatter is created in Interface Builder, the MainMenu.nib window switches to its
Instances tab, which now contains the new MYPhoneNumberFormatter instance.

Next, drag two editable NSTextField objects from Interface Builder's Cocoa-Views palette into the window
titled Window. The editable NSTextField object on the Cocoa-Views palette is shown in Figure 10.9 within the
"Text Fields" section of Chapter 10. Resize the text fields so that they are wide enough to display 10 digits plus the
formatting characters. Ctrl-drag a connection line from one of the text fields in the window titled Window to the
instance of MYPhoneNumberFormatter in the MainMenu.nib window. Interface Builder's Connections
inspector is automatically shown, if it is not already visible. In the Connections inspector, select the text field's

formatter outlet and click the Connect button.

Save the user interface using Interface Builder's File, Save menu item, and then quit Interface Builder.

Build and run the new application in Project Builder. When the user interface for the new application appears, both
text fields are shown. The text field that does not have a formatter accepts any characters typed into it, but only a
very precise set of characters are accepted by the text field that has the connection to the
MYPhoneNumberFormatter instance. The formatted text field does not allow editing to end until a number
with the correct formatting such as (555) 555-5555 is provided. The single-space character after the)
character is required and there cannot be any spaces or other characters after the last digit. Experiment by entering
different values into the two text fields to see the range of input allowed.

The new formatter is doing its job, but it does not provide a very nice experience for users. Currently, users must
enter the digits using the specific notation; no variations are tolerated. In addition, the formatter is sloppy. If any
three-digit number greater than 100 is typed into the area-code portion of the phone number, the rest of the input
can be random characters as long as the total length of the input is exactly 14 characters.

The next step is to improve the user experience by modifying the formatter. Quit the running example application
and return to Project Builder.

If a text field has a formatter, each time the text in the text field changes because of user input, the formatter's -
isPartialStringValid:newEditingString:errorDescription: method is called. The first
argument is a string containing the characters in the text field. The second argument is a pointer to a pointer to an
NSString instance. The second argument is used to return a replacement for the contents of the text field. The last
argument is a pointer to a pointer to a string used to return an error message by reference. If -
isPartialStringValid:newEditingString:errorDescription: returns NO, the contents of the
text field being formatted are replaced with the string return by reference in the second argument. If the method
returns YES, the text field's content is left alone and continues to show the string passed as the first argument just
the way the user entered it.

Add the following implementation of -isPartialStringValid:newEditingString:
errorDescription: to the implementation of MYPhoneNumberFormatter. Each time a character is
entered into the text field, the contents of the field are replaced with the new string returned by this method. The
basic algorithm is to find each decimal digit typed by the user and insert the characters into a string that already has
the correct formatting. Any characters typed by the user that are not decimal digits are ignored.

#define _MYNUM_VALID_DIGIT_POSITIONS (10)

/*" Array lists valid position for digits in a formatted phone number "*/
static int _MYValidPositionsInPhoneNumber[_MYNUM_VALID_DIGIT_POSITIONS] =
 { 1, 2, 3, 6, 7, 8, 10, 11, 12, 13 };

- (BOOL)isPartialStringValid:(NSString *)partial
 newEditingString:(NSString **)newString
 errorDescription:(NSString **)errorString
/*" This method is implemented to place digits within a formatted phone
number
 string as the digits are typed. This method always returns NO and always
 returns a formatted phone number string by reference in newString. This
 method does no set the value of errorString.
"*/
{
 BOOL result = NO;
 int lengthOfPartial = [partial length];

 NSMutableString *formattedPartialString = [NSMutableString
 stringWithString:@"() - "];
 NSCharacterSet *digits = [NSCharacterSet decimalDigitCharacterSet];
 int positionInPartial = 0;
 int currentDigit = 0;

 // while we have not run out of digits in partial string, place the digits
 // in order in the valid positions within formattedPartialString
 while(positionInPartial < lengthOfPartial &&
 currentDigit < _MYNUM_VALID_DIGIT_POSITIONS)
 {
 NSRange remainingRangeInPartial = NSMakeRange(positionInPartial,
 lengthOfPartial - positionInPartial);
 NSRange rangeOfNextDigit = [partial rangeOfCharacterFromSet:digits
 options:NSLiteralSearch range:remainingRangeInPartial];

 if(rangeOfNextDigit.location != NSNotFound)
 {
 [formattedPartialString replaceCharactersInRange:
 NSMakeRange(_MYValidPositionsInPhoneNumber[currentDigit], 1)
 withString:[partial substringWithRange:rangeOfNextDigit]];
 positionInPartial = rangeOfNextDigit.location + rangeOfNextDigit.
length;
 currentDigit++;
 }
 else
 {
 // terminate the loop because there are no more digits
 positionInPartial = lengthOfPartial;
 }
 }

 *newString = formattedPartialString;

 return result;
}

Build and run the example application. Experiment entering values into the formatted text field. One shortcoming of
this approach is that the text insertion cursor moves to the end of the text field after each character is entered. The
insertion cursor can be moved to any location in the field with the mouse or arrow keys, but it cannot be moved
more than one position with the Backspace or Delete keys. This is an unfortunate side effect of always returning a
full-length formatted string from -isPartialStringValid:newEditingString:
errorDescription:. A better behavior would be to have the formatter move the insertion cursor to the
position just after the last digit entered. Unfortunately, there is no reliable way to do that from within a formatter's -
isPartialStringValid:newEditingString:errorDescription: implementation.

The NSControl class has a delegate method that can be implemented to provide the desired text-insertion cursor
behavior. If the -control:didFailToValidatePartialString:errorDescription: method is
implemented by the control's delegate, the method is called whenever the formatter returns NO from -
isPartialStringValid:newEditingString:errorDescription:. Because
MYPhoneNumberFormatter always returns NO from -isPartialStringValid:newEditingString:
errorDescription:, the control's delegate can implement -control:
didFailToValidatePartialString:errorDescription: to position the insertion cursor just after the
last digit.

Code similar to the following implementation of -control:didFailToValidatePartialString:
errorDescription: can be implemented in a text field's delegate to set the insertion cursor's position.
NSControl's -controlTextDidChange: delegate method is another place where the insertion cursor can be
positioned.

- (void)control:(NSControl *)control
 didFailToValidatePartialString:(NSString *)string
 errorDescription:(NSString *)error
/*" Move the insertion cursor of the field editor used to edit control to the
 location just past the last digit in string "*/
{
 if(0 < [string length])
 {
 id fieldEditor = [[control window] fieldEditor:NO
 forObject:control];
 NSCharacterSet *digits = [NSCharacterSet decimalDigitCharacterSet];
 NSRange rangeOfLastDigit = [string rangeOfCharacterFromSet:digits
 options:NSLiteralSearch|NSBackwardsSearch];

 if(NSNotFound != rangeOfLastDigit.location)
 {
 [fieldEditor setSelectedRange:NSMakeRange(
 rangeOfLastDigit.location+1, 0)];
 }
 }
}

One last modification to the MYPhoneNumberFormatter class enables the display of attributes in the formatted
strings. Add the following method to the implementation of MYPhoneNumberFormatter in
MYPhoneNumberFormatter.h.

- (NSAttributedString *)attributedStringForObjectValue:(id)obj
 withDefaultAttributes:(NSDictionary *)attrs
 /*" Calls [self stringForObjectValue:obj] and returns an attributed string
 containing a formatted string and color attributes. "*/
{
 NSMutableAttributedString *result = [[[NSMutableAttributedString alloc]
 initWithString:[self stringForObjectValue:obj] attributes:attrs]
 autorelease];

 if(MYNumberOfCharactersInFormattedPhoneNumber == [result length])
 {
 // The string to format has the correct length
 // Add color attributes to the various components of the formatted phone
 // number
 NSColor *gray = [NSColor grayColor];
 NSColor *black = [NSColor blackColor];

 [result addAttribute:NSForegroundColorAttributeName value:gray range:
 NSMakeRange(0, 1)];
 [result addAttribute:NSForegroundColorAttributeName value:black range:
 NSMakeRange(1, 3)];
 [result addAttribute:NSForegroundColorAttributeName value:gray range:
 NSMakeRange(4, 2)];
 [result addAttribute:NSForegroundColorAttributeName value:black range:

 NSMakeRange(6, 3)];
 [result addAttribute:NSForegroundColorAttributeName value:gray range:
 NSMakeRange(9, 1)];
 [result addAttribute:NSForegroundColorAttributeName value:black range:
 NSMakeRange(10, 4)];
 }

 return result;
}

Build and run the example to see the effects of the new method. Controls such as NSTextField call the -
attributedStringForObjectValue: method in preference to -stringForObjectValue: if the
attributed string variant is available.

For more examples, an excellent tutorial that explains how to create NSFormatter subclasses is available at http://
www.stepwise.com/Articles/VermontRecipes/recipe05/recipe05.html.

http://www.stepwise.com/Articles/VermontRecipes/recipe05/recipe05.html
http://www.stepwise.com/Articles/VermontRecipes/recipe05/recipe05.html

Book: Cocoa® Programming
Section: Chapter 11. The Cocoa Text System

Summary

Few Cocoa applications need the full range of features and customization options that
Cocoa's text system provides. The objects on Interface Builder palettes are extremely
powerful, even in their default configuration; however, enough information was presented
in this chapter to enable very sophisticated use of Cocoa's text system. The MVC
architecture used to implement the text system makes it possible to customize parts of the
system without affecting other parts. The examples provided show the most common ways
the text classes are used, and the hooks needed to customize the text system.

The next chapter, "Custom Views and Graphics Part I," describes how to create custom
subclasses of NSView and implement custom drawing features. All Cocoa's visible user
interface objects are direct or indirect subclasses of NSView including the NSText and
NSTextView classes explained in this chapter. NSView provides the common features
needed to implement user interface elements as simple as NSBox or as complex as
NSTextView.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 12. Custom Views and Graphics Part I

IN THIS CHAPTER

● The Quartz Graphics Model
● Quartz Graphics Via the Application Kit
● Using the NSBezierPath Class
● Modifying Drawing

The Application Kit contains classes that provide the user interface elements common to
most applications. However, some applications require the use of custom interface
elements and graphics that none of the Application Kit classes provide. For example, the
Application Kit doesn't contain any classes for plotting graphs. Therefore, it is necessary to
subclass NSView, an Application Kit class, to create such graphics.

There are several ways to draw when implementing a subclass of NSView. The first and
most common way is to use Quartz 2D graphics. Another is to use Cocoa's support for
OpenGL 3D graphics. Finally, the Application Kit provides limited support for QuickDraw
graphics from prior Macintosh operating systems.

Quartz 2D graphics are accessed via Application Kit classes or Core Graphics functions. In
this chapter, only the Application Kit classes are discussed in depth. There are, however, a
few things that can be done in Core Graphics that can't be done with Cocoa's Application
Kit, such as capturing the screen and full-screen drawing. Using the Application Kit is as
efficient as using Core Graphics. There is little gained by using Core Graphics directly,
whereas much is lost when leaving behind the object-oriented features that Cocoa provides.
For example, the NSView class provides all the basic logic needed to manage the Quartz
drawing context so all the developer needs to add in a subclass is the minimal drawing
code.

OpenGL 3D graphics are accessed by subclassing the NSOpenGLView class.
NSOpenGLView provides OpenGL context management. This chapter only covers 2D
graphics. 3D graphics and OpenGL are described briefly in Chapter 21.

Book: Cocoa® Programming
Section: Chapter 12. Custom Views and Graphics Part I

The Quartz Graphics Model

To write effective code for 2D drawing in Cocoa, it is necessary to understand the graphics
model that underlies the Quartz 2D graphics layer in Mac OS X. It is beyond the scope of
this book to give every tiny detail of the graphics model, but this section provides, in the
most general terms, a bird's eye view of what is available and the capabilities of those
offerings. Most of the rest of this chapter and the two that follow flesh out the facilities
described in this section.

The Quartz graphics model is fundamentally based on Adobe's PDF standard, which in turn
takes most of its ideas from the PostScript graphics language. The graphics model is
complex, and this book can only touch on the most basic concepts. For more detailed
information, any good book on PostScript or PDF will prove invaluable.

Quartz graphics are designed to be both device and resolution independent. Quartz also
allows for basic color management. It maintains a current drawing state that consists of a
collection of parameters that affect future drawing. Similar to PostScript and PDF, Quartz
uses transformation matrices to alter the base coordinate system for effects such as
translation, rotation, scaling, and more. To actually draw something, a path or outline must
be defined, and then either stroked or filled. All these features and terms are defined in
more depth throughout this chapter.

Resolution Independence

To be resolution independent, the basic units of measurement used when specifying
coordinates are points, as understood by the printing industry. On a high-resolution device
a point still specifies the same distance as on a low-resolution device. As a result, the
graphics drawn will look the same size to the user when they move from one device to
another. The higher the resolution, the more pixels are painted when drawing a given
geometrical object.

The point unit is defined as 1/72 of an inch. Thus, on a 1440 dpi printer, one point would
be 20 dots long. A square one-point high and one-point wide covers an area of 400 dots
total. Apple assumes that all monitors have a resolution of 72 pixels per inch. In other
words, Apple assumes that one pixel on a monitor is one point in size (1/72 of an inch by
1/72 of an inch). Thus, when drawing to the screen, a point could actually be larger or
smaller than a true point that is supposed to be 1/72 inch. The result is that if you specify a
10x10-point square, a 10x10-pixel rectangle, painting 100 pixels total, will be drawn on the
screen. This one-to-one mapping is a direct result of Quartz's assumption that one screen
pixel equals one printer's point. It is dangerous to assume that this will always be the case,
however. Apple could, at some future date, choose to calibrate monitors' dpi ratings. This
might make sense to do as monitors increase in resolution.

Device Independence

To be device independent, it is important that when you specify a color it looks the same
on all devices. Quartz uses ColorSync to achieve this. You can bypass this and specify
device-dependent colors, but usually that is not a good idea. Any serious graphics should
use calibrated colors. Because Quartz itself uses ColorSync, you, as a developer, don't have
to do anything special to support it.

Transparency

One other aspect of color permeates Quartz: transparency. Usually the term alpha or alpha
channel is used to refer to transparency. Both bitmap images and the colors used to render
paths can have varying levels of transparency. Generally, alpha of zero means completely
transparent. Depending on context, alpha might be an integer in the range of 0-255 or,
more commonly, a floating-point value from 0.0-1.0. The highest number in the range (1.0
or 255) denotes fully opaque. In the present implementation of Quartz, transparency is
supported much better on the screen than it is on the printer or when printing to PDF. The
PDF standard, however, is evolving to support transparency better. According to Apple,
improved support for transparency when printing will eventually make its way into Quartz.

Paths

Paths support basic drawing. A path is an outline of a graphical shape. There are several
commands to add line segments, arcs, and more to a given path. While under construction,
a path is completely invisible. When the path is fully defined, the stroke or fill commands
can be used. Stroking a path paints the outline that the path defines. Filling the same path
creates a solid, filled shape instead.

The easiest way to think of a path being created is to envision an inkless pen tracing out the
path, following given commands. For lines and curves, the commands use the pen's current
position as an implied starting point. Note that the pen can be lifted by moving to a new
point instead of tracing out a line to the point. When the pen has traced out the path, a pen
with ink in it can actually follow the predefined path to put something visible onto the
page. Remember, if stroke or fill isn't used after defining a path, nothing will be shown on
your drawing canvas.

In Cocoa, there are a few convenience functions for laying out and drawing or filling
rectangular paths. There is also the NSBezierPath class that is used for most path
creation and manipulation.

Transforms

It is often convenient to define a basic path, and then repeat it multiple times, perhaps at

different locations, sizes, or rotations. This can be accomplished with the current
transformation matrix (CTM). A point can be thought of as a two dimensional vector,
allowing it to be multiplied by a matrix. In doing so, it undergoes a transformation into a
new vector. Depending on the contents of the matrix, the new vector could be at a different
location (such as translated or moved), a different size (scaled), or rotated. Some matrices
can cause shearing and other unusual effects as well.

With Quartz, you can specify an explicit matrix, or you can add a translation, rotation, or
scaling to the current matrix. For most developers, the latter is the easiest way to work with
the CTM. However, developers experienced with the CTM might choose to create and set
their own matrices explicitly.

One of the special properties of transformation matrices is that multiple matrices can be
multiplied together to create a new matrix that performs all the transformations that were
specified by the original matrices. For example, if there are three matrices with the first one
doing a translation, another one doing rotation, and the last one for scaling, by multiplying
the three together a single matrix can be created that performs all three operations. This
process of multiplying matrices together is known as concatenation.

Cocoa's NSAffineTransform class, described in Chapter 13, "Custom Views and
Graphics Part II," helps manage the CTM and provides a simple way to manipulate these
matrices. It can be given raw matrices or asked to concatenate scaling, rotation, or
translation elements to the matrix it represents.

Bitmapped Images

When drawing, sometimes it is necessary to draw bitmapped graphics, as opposed to paths.
Quartz offers several facilities for compositing bitmaps. Compositing combines an image
with the graphics that are already on the drawing canvas. There are 13 different
compositing operators available. In compositing terminology, the source is the image that
is being composited, and the destination is the area of the canvas being drawn.

The simplest compositing operation is clear, which zeroes out the drawing area. Another
simple operation, copy, copies the bitmap into the drawing area, completely replacing
whatever was underneath. One of the most common operations is source over, which
places the opaque parts of the source image on top of the destination, but enables the
destination to show through the transparent parts of the source image. Many other modes
are also available, and will be described more fully later.

The NSImage class described in Chapter 14, "Custom Views and Graphics Part III," can
be used for managing and compositing images. NSImage instances are usually composed
of one or more other objects called image representations. Various different NSImageRep
subclasses are used in conjunction with NSImage to support different image formats.

Graphics Contexts

Quartz uses a graphics context to control what is drawn. The graphics context stores
attributes such as the current line width, the current line end cap style, the current drawing
color, the current transformation matrix, and the current path. All graphics commands are
given to the context, and the context can modify them according to its settings.

There can also be multiple graphics contexts. Typically, each window has its own context.
It is possible for a view object within a window to have its own context. Some contexts
never draw to the screen. A context could be writing graphics commands to a file, a printer,
or even drawing into an offscreen image buffer. Usually, a developer doesn't need to worry
about what the current graphics context is doing. Cocoa's NSGraphicsContext class
described in Chapter 13, is used to query and modify contexts.

Text Rendering

The final big function performed by Quartz is to draw text. Quartz doesn't work entirely
alone because text is such a complex function. It uses Apple's ATSUI (an advanced text
rendering technology) to do most of the hard work. Working with text at this level is very
complex, so Cocoa offers a whole suite of classes for manipulating and displaying text. At
the lowest level there are NSString and NSAttributedString. The Application Kit
adds some categories to these objects for very simple text rendering. Drawing text with
strings is covered in Chapter 14. The NSText object and its associated helper objects
manage more complex rendering. This is complex enough that the text object is covered in
its own chapter. For more information, see Chapter 11, "Text Views."

Book: Cocoa® Programming
Section: Chapter 12. Custom Views and Graphics Part I

Quartz Graphics Via the Application Kit

The Application Kit provides several classes to assist in using Quartz to draw 2D graphics. It also
provides functions that can be used to do some basic, common drawing tasks, such as rapidly
drawing rectangles.

NOTE

Many Application Kit classes support Quartz drawing. For managing and drawing
bitmaps, there is NSImage and several NSImageRep subclasses. To draw lines,
rectangles, arcs, curves, polygons, and more, there is NSBezierPath. To adjust the
parameters of the current graphics context, use the NSGraphicsContext and
NSAffineTransform classes. To draw simple text, use the methods added to
NSString and NSAttributedString by the Application Kit in the
NSStringDrawing categories. If more complex or more efficient text drawing is
required, an NSText object should be used.

New Types and Functions

Before continuing, a few types and structures that the Foundation Kit defines for graphics must be
understood. There are several C functions and macros available for manipulating these types and
structures.

Points, Sizes, and Rectangles

The NSPoint type stores the x and y coordinates of two-dimensional points as floating-point
values. The NSPoint type is a C structure. Its x and y members can be accessed directly. For
example:

NSPoint myPoint;
NSPoint *pointPointer;
myPoint.x = 10.0;
myPoint.y = 25.0;
pointPointer = &myPoint;
pointPointer->x = 6.0;

A similar structure, NSSize, also has two floating-point members. NSSize stores the size of a
two dimensional area. Its two members are called height and width. One important thing to
remember about the NSSize type is that its members should never be negative. The compiler
won't automatically check this, so a developer must be careful with any code that manipulates

NSSize structures. Again, the members are accessed directly. For example:

NSPoint mySize;
NSPoint *sizePointer;
mySize.width = 50.0;
mySize.height = 70.5;
sizePointer = &mySize;
sizePointer->width = 100.0;

A third frequently used type is NSRect. Cocoa defines rectangles as having an origin and a size.
The origin member is an NSPoint structure and specifies the rectangle's lower-left corner. The
size member is an NSSize structure, giving the rectangle's width and height. An NSRect is
therefore a structure made up of two structures. The members are still accessed directly:

NSRect myRect;
NSRect *rectPointer;
myRect.origin.x = 10.0;
myRect.origin.y = 5.5;
myRect.size.width = 40.0;
myRect.size.height = 20.55;
rectPointer = &myRect;
rectPointer->origin.x = 21.43;

Each of these three types also has two companion types, one for a pointer to the structure, and the
other for a pointer to an array of structures. These types are NSPointPointer,
NSPointArray, NSSizePointer, NSSizeArray, NSRectPointer, and NSRectArray.
The following two variable declarations are equivalent:

NSRect *rectPointer;
NSRectPointer rectPointer;

And so on for the other five companion types.

There is one final type, NSRectEdge, which is often used to specify a particular edge of a
rectangle. NSRectEdge is an enumerated type and can have one of the following four values:
NSMinXEdge, NSMinYEdge, NSMaxXEdge, and NSMaxYEdge.

Point, Size and Rectangle Constants, Creation, and Accessors

To help manipulate the point, size, and rectangle structures, Cocoa defines some constants and
inline utility functions. Because these functions are inlined, don't be afraid to use them liberally.
They are well tested and will continue to work even if the Cocoa definitions of these structures
change in the future.

There is a constant zero version of each structure that has each member set to zero. They are named
NSZeroPoint, NSZeroSize, and NSZeroRect. These can be handy for clearing or resetting

the values of a point, size, or rectangle.

In many cases, a point, line, or rectangle structure needs to be provided to Cocoa and yet the
structure in question is not readily available. Perhaps the individual values are available as separate
variables, or need to be calculated. To make it easy to create a structure for Cocoa to use, a creation
function can be used that corresponds to the structure needed: NSMakePoint(), NSMakeSize
(), or NSMakeRect().

The two arguments to NSMakePoint() are the x and y values, in that order. NSMakeSize()
requires the two arguments width and height. To call NSMakeRect(), x, y, width, and height
must be specified. For example, this code creates an NSRect structure and passes it as an
argument to a hypothetical RectFunction() that accepts a single rectangle as its argument:

float x = 5.5;
float y = 10.0;
float w = x * 2.0;
RectFunction(NSMakeRect(x, y, w, y + 5.5));

Several other inline functions can be used to access special values or to obtain commonly
calculated values from NSRect structures. Table 12.1 describes these functions.

Table 12.1. Inline Rectangle Functions

Function Description

NSMinX(NSRect aRect) Returns the leftmost x coordinate in the rectangle (aRect.
origin.x)

NSMinY(NSRect aRect) Returns the lowest y coordinate in the rectangle (aRect.
origin.y)

NSMidX(NSRect aRect) Returns the center x coordinate in aRect

NSMidY(NSRect aRect) Returns the center y coordinate aRect

NSMaxX(NSRect aRect) Returns the right most x coordinate in the rectangle (aRect.
origin.x + aRect.size.width)

NSMaxY(NSRect aRect) Returns the largest y coordinate in the rectangle (aRect.
origin.y + aRect.size.height)

NSWidth(NSRect aRect) Returns the width of the rectangle (aRect.size.width)

NSHeight(NSRect aRect) Returns the height of the rectangle (aRect.size.height)

As an example, calculating the center point of a rectangle is accomplished like this:

NSPoint rectCenter = NSMakePoint(NSMidX(theRect), NSMidY
(theRect));

Rectangle Tests

Several other functions can also be used to test the values of these structures in various ways. For
example, NSEqualPoints(), NSEqualSizes(), and NSEqualRects() each take two
arguments and return a Boolean (BOOL type) YES or NO. The arguments should both be of the
same type, NSPoint, NSSize, or NSRect. Besides simply testing for equality, a single NSRect
can be tested to see if it covers any actual area with NSIsEmptyRect(). A rectangle with zero
width and/or zero height is considered to be empty.

There are also a few slightly more complex tests. To see if a point is inside a given rectangle, use
NSPointInRect(), providing an NSPoint and an NSRect as arguments. To see if a rectangle
is completely contained within another rectangle, use NSContainsRect() with two NSRect
arguments. This function returns true if the first rectangle completely encloses the second
rectangle. If the second rectangle is empty or touches an edge of the first rectangle, it returns NO.
To see if two rectangles share any area between them, use NSIntersectsRect(), again with
two NSRect arguments. If either rectangle is empty, this function returns NO. All these functions
assume that the coordinate system has not been scaled, rotated, or translated. In such cases, some of
the functions might not work exactly as expected.

A final test function, related to NSPointInRect(), is NSMouseInRect(). This function
requires three arguments: an NSPoint, an NSRect, and a BOOL. The first two arguments work
exactly like NSPointInRect(). The third argument, the BOOL, specifies whether or not the
coordinate system has been flipped so that the origin is at the upper left. Use NSMouseInRect()
to test the location of the cursor's hot spot.

NOTE

In a flipped coordinate system, the positive Y axis runs from top to bottom instead of
the normal Quartz orientation that places the origin at the lower left with increasing Y
values moving up the screen. Flipped coordinate systems are seen most commonly in

text based views.

Rectangle Manipulation

There are six functions that produce new rectangles based on manipulation of existing rectangles in
various ways. The first is NSIntegralRect(), which returns a new rectangle that has had its
origin and size massaged so that each value is an integer. If the rectangle doesn't already have
integral bounds, it expands slightly. If it has a zero or negative size, NSZeroRect is returned.

The next function is NSUnionRect(). This function takes two NSRect arguments and returns a
new NSRect that completely encloses both of them. Note that if the two rectangles don't intersect,
this would return a rectangle that is much larger than either of the original two rectangles. If one of
the input rectangles has zero or negative values in their size member, the other rectangle is returned
verbatim. If both input rectangles have invalid sizes, then NSZeroRect is returned.

To find the rectangular area of overlap between two rectangles, use NSIntersectionRect(),
which takes two NSRect values. If the overlap is a point, a line, or there is no overlap at all,
NSZeroRect is returned. Otherwise, a rectangle defining the area of overlap is returned.

To take a rectangle and create a smaller rectangle centered inside the original rectangle, use
NSInsetRect(). This function takes the original rectangle and two floating-point values as
arguments. The first floating-point number is the amount to move the left and right edges of the
rectangle inward. The second number is the distance to move the top and bottom edges. Because
both pairs of edges move inward by the same amount, the new rectangle that is returned is centered
inside the original rectangle.

The NSOffsetRect() function moves a rectangle by a specified amount. For arguments, pass
the original rectangle, a floating-point X offset and a floating-point Y offset. The rectangle's origin
is moved by the specified amount and the size remains unchanged.

The final rectangle manipulation function is the most complex. NSDivideRect() is used to take
a rectangle and split it into two new rectangles. It works by taking a slice off of an edge of the
rectangle, leaving two new rectangles. The first is the slice itself, the second is what remains of the
original rectangle after slicing. (Note that the original NSRect is left unaffected.) The parameters
are input NSRect; a pointer to an NSRect where the slice is put; a pointer to the NSRect in
which the remainder rectangle is placed; a floating-point number to specify how much of a slice to
take; and an NSRectEdge to specify which side of the rectangle should be sliced.

For example, suppose we want to take a slice off the left edge of a rectangle that has a width of
10.0 points. The code would look like this:

NSRect startRect = NSMakeRect(8.0, 8.0, 200.0, 100.0);
NSRect slice, remainder;
NSDivideRect(startRect, &slice, &remainder, 10.0, NSMinXEdge);

After the previous code, startRect's values have not changed, but slice contains a rectangle
made up of the slice we took off the left edge. The remainder variable contains the original
rectangle minus the area sliced off.

Storing Points, Sizes, and Rectangles in the Defaults Database

It is useful to be able to store points, sizes, and rectangles in the user defaults (preferences)
database. However, there is no explicit property list type for these values. To make it easier to store
any of these values in the database, there are six functions that can convert a point, size, or
rectangle into an NSString or vice versa.

To convert an NSPoint, NSSize, or NSRect into a string, use NSStringFromPoint(),
NSStringFromSize(), or NSStringFromRect(), respectively. Each takes a single
argument of the expected type, and returns a pointer to an autoreleased NSString instance.

To go the other direction, use NSPointFromString(), NSSizeFromString(), or
NSRectFromString(). They each take a pointer to a single NSString instance and return an
NSPoint, NSSize, or NSRect, respectively.

In general, these functions are used together. The parsing functions are quite specific about how
they expect the input string to be laid out, and the string-creation routines are designed to produce
the exact output that the parsers want to see.

Subclassing NSView

To do any custom drawing in Cocoa, a subclass of NSView must be created. The easiest way to
learn how to do this is by working through an example. The simplest possible path that can be
drawn is a line segment so that is the example shown here.

The first step to drawing is to create a subclass of NSView and override the inherited -
drawRect: method. This method is called whenever the Application Kit determines that the view
needs to be redrawn. The developer should not call this method. Instead, to redraw the view, call
the -setNeedsDisplay: method. This method can be used to tell the Application Kit that the
view needs to be redisplayed. The Application Kit automatically takes care of redrawing the view
at an appropriate time as well as setting everything up so that the graphics drawn are output to the
correct place.

The most basic skeleton code possible for a view subclass that draws looks like this:

File MYLinesView.h:

#import <Cocoa/Cocoa.h>

@interface MYLinesView : NSView

{
}

- (void)drawRect:(NSRect)aRect;

@end

File MYLinesView.m :

#import "MYLinesView.h"

@implementation MYLinesView

- (void)drawRect:(NSRect)aRect
{
 [[NSColor blackColor] set];
 NSRectFill([self bounds]);
}

@end

Before going further, this example code should be integrated into a project to more easily work
with it. Create a new Cocoa application project called Lines in Project Builder, and add
MYLinesView.h and MYLInesView.m to the new project's Classes folder as shown in Figure
12.1.

Figure 12.1. A new Project Builder project called Lines contains the files MYLinesView.h
and MYLinesView.m in the Classes folder.

Next, open up MainMenu.nib in the new project's Resources folder. When Interface Builder has
launched, select the Classes tab in Interface Builder's MainMenu.nib window and have Interface
Builder read the MYLinesView.h file. Use Read Files from Interface Builder's Classes menu, or
just drag the MYLinesView.h file into the MainMenu.nib window. Now, drag a Custom
View object from Interface Builder's palette and drop it onto the window being edited. The Custom
View object looks like a gray rectangle with the words CustomView on it. It can be found at the
upper-left corner of the Cocoa-Containers palette. This is the palette that also contains the tab view
and box. Figure 12.2 shows a CustomView object being dragged from Interface Builder's palette.

Figure 12.2. A CustomView object is dragged from Interface Builder's palette to a window.

When you have dragged a CustomView object onto your window, select the custom view and open
the Show Info window (Cmd-1). With a custom view selected, the Show Info window contains a
list of all the NSView subclasses known to Interface Builder. Interface Builder has already read the
files defining MYLinesView, and the MYLinesView class appears at the top of the list as shown
in Figure 12.3.

Figure 12.3. Because Interface Builder has already read the files defining MYLinesView, the
MYLinesView class appears in the list.

Select MYLinesView so that the custom view knows what class it should be. Figure 12.4 shows
the custom view configured to be an instance of MYLinesView and filling the entire content area
of a window.

Figure 12.4. The custom view is configured to be an instance of MYLinesView and fills the
entire content area of a window.

Use the Size mode of Interface Builder's Show Info window to configure the MYLinesView
instance to fill all available space when resized. Figure 12.5 shows the MYLinesView instance
selected and the correctly configured resize springs in the Size mode of Interface Builder's Show
Info window.

Figure 12.5. The MYLinesView instance is selected and the resize springs in the Size mode of
Interface Builder's Show Info window are correctly configured.

Save the MainMenu.nib that you have edited in Interface Builder. At this point, the project can
be built and run. Select Build and Run in Project Builder's Build menu. After a brief delay while
the project is compiled, the new Lines application launches, and the window configured in
Interface Builder to contain an instance of MYLinesView is displayed onscreen, as shown in
Figure 12.6. The content of the window is black because the MYLinesView instance covers the
entire area, and MYLinesView has been implemented to fill its bounds with the color black. If the
window is resized, the MYLinesView instance grows and shrinks to fill all available space in the
window's content area.

Figure 12.6. The Lines application displays a window containing a MYLinesView instance
that draws a black-filled area.

The code that implements MYLinesView's -drawRect: method first sets the current color to
black, and then fills the view's bounds rectangle with the current color. See Chapter 17, "Color," for
more information about the NSColor class, and Chapter 8, "The Application Kit Framework
Overview," for the description of a view's bounds. The view's bounds are obtained by calling the -
bounds method inherited from the NSView class. The NSRectFill() function fills a rectangle
with the current color.

This example, simple as it is, provides the basic framework for subclassing a view to perform
custom drawing. It shows the bare minimum that must be done to draw custom graphics. The next
examples expand on this foundation. The next section will add the promised ability to draw line
segments.

Book: Cocoa® Programming
Section: Chapter 12. Custom Views and Graphics Part I

Using the NSBezierPath Class

To draw something more than just colored rectangles, a bitmapped image must be rendered, or a Quartz path must be defined and
subsequently stroked or filled. Because the sample application started in the previous section is supposed to draw random line
segments, the latter option makes the most sense. Cocoa uses the NSBezierPath class to define and manipulate Quartz paths.

There are two ways to create an NSBezierPath instance. If an object is just temporary, using the +bezierPath method returns
an autoreleased object with an empty path. Alternatively, for an object that will be kept around, use the standard Objective-C
+alloc/-init pair to create a brand new, empty object.

After a path object is created, a path must be constructed. This tells the object where drawing takes place, but doesn't actually do any
drawing. Next, the path is rendered. There are several options for how the path might be used in rendering. A single path object can
be rendered multiple times in different ways. The next two sections of this chapter cover defining, and then rendering paths.

To get a jump start before going into these operations in depth, the example program that draws random line segments will be
finished. When a developer has a feel for the basic work involved, the details of all the operations and options available can be
discussed.

The first step is to obtain a path. For that, simply use the +bezierPath class method. The next step is to define the path. Because
this path is a simple line segment, only two methods are needed. The starting point of the line is defined by using -moveToPoint:,
and the end point is defined by using -lineToPoint:. Imagine someone with a pencil in hand. We tell them to lift the pencil off
the paper and move to the start point, and then draw a line to the end point. However, there is still one step left, and that is to actually
render the path. Use the -stroke method to do that. Stroking a path treats it as an outline and paints all the pixels that lay on the
path as it is traced out, which is exactly what should be done to paint a series of line segments.

There is a little other code needed to set the drawing color to white, to create a loop to draw many line segments, and to randomly
choose the coordinates of the start and end points. This code and the path code is displayed in this code listing:

File MYLinesView.m :

#import "MYLinesView.h"

#define NUM_LINES 50

@implementation MYLinesView

- (void)drawRect:(NSRect)aRect
{
 int i;
 NSRect bds = [self bounds];
 [[NSColor blackColor] set];
 NSRectFill(bds);
 [[NSColor whiteColor] set];
 for (i=0; i<NUM_LINES; i++) {
 NSPoint start = NSMakePoint(random() % (int)bds. size. width,
 random() % (int)bds. size. height);
 NSPoint end = NSMakePoint(random() % (int)bds. size. width,
 random() % (int)bds. size. height);
 NSBezierPath *line = [NSBezierPath bezierPath];
 [line moveToPoint:start];
 [line lineToPoint:end];
 [line stroke];
 }
}

@end

Try adding this code and running it. A window with a random collection of white line segments on a black background should be
seen. If the window is resized, triggering a redraw, new line segments are chosen and drawn. (Try it!) This example provides a

functional NSView subclass. The Paths example on www.cocoaprogramming.net contains the previous code as well as the code for
many of the examples found throughout this chapter. Build it, run it, and then select the Simple Lines algorithm from the control
panel, to see the code in action. It should look similar to Figure 12.7.

Figure 12.7. Select the Simple Lines algorithm from the control panel to see the described code in action.

The next section explores more of the details of constructing and rendering paths and NSBezierPath manipulation to gain
familiarity with path objects.

Constructing a Path

After a developer has a path object, a graphics path can be constructed by appending a series of operations. The path object starts out
empty, which means nothing would be drawn. Line, move, curve, and arc segments can be appended to the path to create an outline.
Every operation begins at the current point. To understand the significance of the current point, imagine a pencil on a paper. Where
the point rests at any given moment is the pencil. An operation, such as a line, only provides the destination of the pencil after the line
has been drawn. The destination point becomes the new current point. Therefore, the line operation means "draw a line from the
current point to this new point." Some operations require more than one point to be specified, but all implicity use the current point as
the starting point for that operations segment. Each of the basic available operations that might be appended to a path is described in
Table 12.2.

Table 12.2. Valid Path Operations

Operation Purpose

Move Moves the current point to a new location. ("Lift the pencil and move it to this new location.")

Line Adds a line from the current point to a new location.

Curve Adds a Bezier cubic spline from the current point to a new location. Two control points also need to be defined in
addition to the destination.

Arc Adds a circular arc and, if needed, a line segment.

Oval Adds a complete oval or circle. Developer provides the desired bounding rectangle.

Glyph Adds a glyph from a specified font at the current point.

Path Adds another path.

http://www.cocoaprogramming.net/

Close Adds a line segment from the current point to the starting point.

Inside the actual path object itself, all the different operations are stored as simple move, line, curve, and close operations. All the
others can be built from these basic primitives.

Several of the operations in Table 12.2, namely move, line, and curve, also offer relative versions. The difference between absolute
and relative operations is in how the points provided to the operation should be interpreted. In the absolute version, the points give a
specific location on the drawing canvas. In the relative version, however, the points provided are interpreted to be relative to the
current point. So, if the current point is (15, 35) and a line is drawn to (50, 40), the new current point is the endpoint of the line at (50,
40). If instead, the relative version is used with the same two points, the endpoint would be at (65, 75) instead of (50, 40) because the
endpoint was specified relative to the starting point, which implies adding the new point's coordinates to those of the current point to
calculate the endpoint.

Each of the path construction functions has corresponding methods that can be used with an instance of NSBezierPath. The
following sections are a catalog of the methods and what they do.

Move to Point

There are two methods to change the current point to a new point.

- (void)moveToPoint:(NSPoint)point
- (void)relativeMoveToPoint:(NSPoint)point

Nothing is drawn between the original point and the new point. The result of this operation is analogous to lifting a pencil off the
paper and moving it to a new location. With the relative version of the method, the new point is specified as if the current point were
the origin. In mathematical terms, it is doing a vector addition instead of simply replacing the old value with the new. These methods
correspond to the PostScript commands moveto and rmoveto, respectively.

The previous Lines example shows one way this method can be used. In the example, the first endpoint of each line segment is
specified by moving to that point's location.

Line to Point

There are two methods to add a line segment to a path.

- (void)lineToPoint:(NSPoint)point
- (void)relativeLineToPoint:(NSPoint)point

The line segment starts at the current point and ends with the specified point. As with the move methods, the relative version specifies
the new point relative to the current point, whereas the plain version, -lineToPoint:, does not. The current point is changed to
the line segment's endpoint at the end of this operation. These methods correspond to the PostScript commands lineto and
rlineto.

The Lines example shows one way this method can be used. In the example, several line segments are drawn by first moving to the
start of the line segment with -moveToPoint:, and then using -lineToPoint: to specify the other end of the line segment.

Curve to Point

There are two methods for adding curved line segments to a path.

- (void)curveToPoint:(NSPoint)endPoint controlPoint1:(NSPoint)controlPoint1
 controlPoint2:(NSPoint)controlPoint2
- (void)relativeCurveToPoint:(NSPoint)endPoint controlPoint1:(NSPoint)controlPoint1
 controlPoint2:(NSPoint)controlPoint2

The curve starts at the current point and ends at the point specified by the endPoint parameter. The two controlPoint
parameters specify Bezier control points that define exactly how the line segment curves. In simple terms, the curve starts out tangent
to an invisible line from the start point to control point one and ends up tangent to an invisible line from control point two to the end

point. Figure 12.8 shows this relationship. The exact quadratic equations that are used to calculate the curve can be found in any
computer graphics text.

Figure 12.8. The curve starts out tangent to an invisible line from the start point to control point one and ends up tangent to
an invisible line from control point two to the end point.

As with the line methods, the current point is moved to endPoint when this method is finished. These methods correspond to the
PostScript commands curveto and rcurveto.

The Paths example contains code that draws random Bezier curves. Besides just drawing the curve itself, the code also draws a
rectangle over each point: start, end, and both control points. Additionally, gray dashed lines are drawn between the endpoints of the
curve and their associated control points. The output looks similar to the previous diagram. When running the example, choose the
Bezier curves option from the control panel. Click Redraw several times to see a variety of examples. As more examples are viewed,
the relationship between the points becomes much more clear. The code is as follows:

- (void)drawCurve
{
 NSBezierPath *curve = [NSBezierPath bezierPath];
 NSBezierPath *line1 = [NSBezierPath bezierPath];
 NSBezierPath *line2 = [NSBezierPath bezierPath];
 NSRect bds = [self bounds];
 NSPoint start = NSMakePoint(random() % (int)bds. size. width,
 random() % (int)bds. size. height);
 NSPoint end = NSMakePoint(random() % (int)bds. size. width,
 random() % (int)bds. size. height);
 NSPoint control1 = NSMakePoint(random() % (int)bds. size. width,
 random() % (int)bds. size. height);
 NSPoint control2 = NSMakePoint(random() % (int)bds. size. width,
 random() % (int)bds. size. height);
 float dash[1] = { 5. 0 };
 [[NSColor whiteColor] set];
 NSRectFill(bds);
 [[NSColor grayColor] set];
 // draw lines between the endpoints and their associated control points
 [line1 moveToPoint:start];
 [line1 lineToPoint:control1];
 [line1 setLineDash:dash count:1 phase: 0. 0];
 [line1 setLineWidth:2. 0];
 [line1 stroke];
 [line2 moveToPoint:end];
 [line2 lineToPoint:control2];
 [line2 setLineDash:dash count:1 phase: 0. 0];
 [line2 setLineWidth:2. 0];
 [line2 stroke];
 [[NSColor blackColor] set];
 // draw the curve itself
 [curve moveToPoint:start];
 [curve curveToPoint:end controlPoint1:control1 controlPoint2:control2];
 [curve setLineWidth:4. 0];
 [curve stroke];

 // draw rectangles around each point
 NSRectFill(NSMakeRect(start. x - 5. 0, start. y - 5. 0, 10. 0, 10. 0));
 NSRectFill(NSMakeRect(end. x - 5. 0, end. y - 5. 0, 10. 0, 10. 0));
 NSRectFill(NSMakeRect(control1. x - 5. 0, control1. y - 5. 0, 10. 0, 10. 0));
 NSRectFill(NSMakeRect(control2. x - 5. 0, control2. y - 5. 0, 10. 0, 10. 0));
}

Close Path

There is a special operation for drawing a line segment from the current point to the starting point of the most recent path segment.
This is known as closing a path, so the method is named -closePath. It takes no arguments and returns nothing.

Every time a move operation is performed, a new path segment is started. Thus, the line segment that is added ends at the point
specified by the most recent move operation and changes the current point to the same point. This operation is nearly always used
when working with filled paths, but can also be used to complete the outline of a shape. The corresponding PostScript command is
closepath.

NOTE

There is an important difference between adding a line segment with one of the previous line methods and using -
closePath. For a continuous path, such as a circle, square, polygon, and so on, it is important to be sure that the start/
end point of the loop is considered to be a corner as opposed to two separate line endings. This is accomplished by using
-closePath. If -closePath is not used, an incorrect rendering of two line caps instead of a mitered corner will
occur.

As an example of the difference between a path that uses -closePath and one that does not, consider the following code from the
Paths example:

- (void)drawClosePathExample
{
 NSRect bds = [self bounds];
 NSBezierPath *leftTriangle = [NSBezierPath bezierPath];
 NSBezierPath *rightTriangle = [NSBezierPath bezierPath];
 double center = NSMidX(bds);
 double top = NSMaxY(bds) - 20. 0;

 [[NSColor whiteColor] set];
 NSRectFill(bds);
 [[NSColor blackColor] set];
 // draw left triangle without a closepath
 [leftTriangle moveToPoint:NSMakePoint(20. 0, 20. 0)];
 [leftTriangle lineToPoint:NSMakePoint(center - 20. 0, 20. 0)];
 [leftTriangle lineToPoint:NSMakePoint(center * 0. 5, top)];
 [leftTriangle lineToPoint:NSMakePoint(20. 0, 20. 0)];
 [leftTriangle setLineWidth:10. 0];
 [leftTriangle setLineCapStyle:NSButtLineCapStyle];
 [leftTriangle setLineJoinStyle:NSRoundLineJoinStyle];
 [leftTriangle stroke];
 // draw right triangle with a closepath
 [rightTriangle moveToPoint:NSMakePoint(center + 20. 0, 20. 0)];
 [rightTriangle lineToPoint:NSMakePoint(NSMaxX(bds) - 20. 0, 20. 0)];
 [rightTriangle lineToPoint:NSMakePoint(center * 1. 5, top)];
 [rightTriangle closePath];
 [rightTriangle setLineWidth:10. 0];
 [rightTriangle setLineCapStyle:NSButtLineCapStyle];
 [rightTriangle setLineJoinStyle:NSRoundLineJoinStyle];
 [rightTriangle stroke];
}

When the previous code is run, the output looks like Figure 12.9. Note that the lower-left corner of the left triangle has a notch in it.

Because the left triangle doesn't have a close path at the end, Quartz renders the end caps (square butts) instead of a line join (rounded
corners in this case). This shows why -closePath should normally be used to finish defining the path of a closed polygon.

Figure 12.9. The difference between line cap without -closePath and line join with -closePath is shown.

Remove All Points

Use the -removeAllPoints method to completely erase the path stored inside of an NSBezierPath object and start over. After
calling it, the path is empty. This method is handy when reusing an NSBezierPath to draw several different paths. It is similar, but
not exactly the same as, the PostScript command newpath.

The most common reason to use -removeAllPoints is to avoid instantiating multiple NSBezierPath objects. Instead, the
object can be reused by emptying out all the points, and then defining a new path. In the Paths example, the code for the -
drawClippedLines method uses this technique. Each line is drawn, one at a time, by the same NSBezierPath object. The
code for this method can be found in the rounded rectangle example at the end of the "Appending an Arc" section later in this chapter.

Appending a Rectangle

A convenience method is available to add a rectangular path to the current path.

- (void)appendBezierPathWithRect:(NSRect)rectangle

The effect of this method is the same as the following sequence of operations:

1. move to the origin of rectangle

2. line to the lower-right corner of rectangle

3. line to the upper-right corner of rectangle

4. line to the upper-left corner of rectangle

5. close path

Note that the rectangle is defined in a counterclockwise manner. If a clockwise rectangle is needed, the operations have to be
explicitly performed by the developer instead of using this method. To quickly create a new path object that contains a rectangle, use
the related class method +bezierPathWithRect: as a shortcut. It gives a new autoreleased path object that defines the rectangle
as described previously.

Appending a Series of Lines

Another convenience method adds a continuous series of line segments to a path.

- (void)appendBezierPathWithPoints:(NSPointArray)points count:(int)count

This method adds a line operation to the current path for each point in the points array. If the path started out empty, the very first
operation is a move instead of a line. If there is an array of points that define the corners of a polygon, this method can be used to add
the polygon to the current path. The one caveat is that this method doesn't issue a close operation, so don't forget to close the path if
necessary.

An example of drawing several lines with this method can be found in the Paths example. The Lines using points array option in the
control panel activates this code:

[View full width]

- (void)drawLinesWithArray
{ // Single stroke method with points array
 int i;
 NSBezierPath *lines = [NSBezierPath bezierPath];
 NSRect bds = [self bounds];
 // clear the view to solid black background
 [[NSColor blackColor] set];
 NSRectFill(bds);
 // set up to draw with white
 [[NSColor whiteColor] set];
 // draw a bunch of random connected lines
 [lines moveToPoint:NSMakePoint(random() % (int)bds. size. width, random() % (int)bds.

 size. height)];
 for (i=0; i<numberOfLines; i++) {
 pointsArray[i] = NSMakePoint(random() % (int)bds. size. width, random() % (

int)bds. size. height);
 }
 [lines appendBezierPathWithPoints:pointsArray count:numberOfLines];
 // render the lines all at once
 [lines stroke];
}

When this code is run, multiple random line segments are drawn. The end point of one line segment is the starting point for the next,
so all the line segments are connected together. Figure 12.10 shows an example of the drawing produced by this code.

Figure 12.10. The end point of one line segment is the starting point for the next.

Appending an Oval

Curve to operations can be used to draw ovals and circles, given the right set of points. Rather than calculate all the points, it is easier
to use a convenience function instead.

- (void)appendBezierPathWithOvalInRect:(NSRect)rect

This method adds a move and several curve segments to the path. The added shape is inscribed in the rectangle specified with rect.
An oval is displayed for rectangular shapes and a circle is displayed if a square is specified. The circle or oval starts at the top center
of the specified rectangle and continues counterclockwise around its circumference, finishing where it started.

To quickly create a brand new path object that contains an oval or a circle, use the related class method
+bezierPathWithOvalInRect: as a shortcut. It returns a new autoreleased path object that defines an oval as described in the
previous paragraph.

As an example of this method in action, take a look at the code for the -drawDonuts method in the Paths example. The code can be
found in the "Strokes and Fills" section later in this chapter.

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/&r=noccc&xmlid=0-672-32230-7/ch12lev1sec3#PLID8

Appending an Arc

There are two convenience methods that add a circular arc to the path.

- (void)appendBezierPathWithArcWithCenter:(NSPoint)center radius:(float)radius
 startAngle:(float)startAngle endAngle:(float)endAngle
 clockwise:(BOOL)clockwise
- (void)appendBezierPathWithArcWithCenter:(NSPoint)center radius:(float)radius
 startAngle:(float)startAngle endAngle:(float)endAngle

The only difference between the two is in the clockwise parameter. If using the method that leaves it out, a counterclockwise direction
for the arc is assumed. The arc itself is a portion of a circle with the specified radius and center point. The startAngle parameter
determines, along with the center and radius parameters, the starting point of the arc. The arc will continue around the circle in
the direction specified (clockwise or counterclockwise) until it reaches the point specified by the endAngle parameter. Both angles
should be provided in degrees and not radians. These methods add a move and one or more curve operations to the path, leaving the
current point at the end of the arc.

An example showing a few variations of this method call is found in the Paths example. The -drawArcs method, selected by
choosing Arcs in the control panel, is coded like this:

- (void)drawArcs
{
 NSRect bds = [self bounds];
 NSPoint center = NSMakePoint(NSMidX(bds), NSMidY(bds));
 NSBezierPath *arc1 = [NSBezierPath bezierPath];
 NSBezierPath *arc2 = [NSBezierPath bezierPath];
 NSBezierPath *arc3 = [NSBezierPath bezierPath];
 NSBezierPath *arc4 = [NSBezierPath bezierPath];
 double radius = MIN(center. x, center. y) * 0. 5 - 10. 0;

 [[NSColor whiteColor] set];
 NSRectFill(bds);
 [[NSColor blackColor] set];
 // lower left
 [arc1 appendBezierPathWithArcWithCenter:
 NSMakePoint(center. x * 0. 5, center. y * 0. 5)
 radius:radius startAngle:0. 0 endAngle:90. 0];
 // upper left
 [arc2 appendBezierPathWithArcWithCenter:
 NSMakePoint(center. x * 0. 5, center. y * 1. 5)
 radius:radius startAngle:0. 0 endAngle:90. 0 clockwise:NO];
 // lower right
 [arc3 appendBezierPathWithArcWithCenter:
 NSMakePoint(center. x * 1. 5, center. y * 0. 5)
 radius:radius startAngle:0. 0 endAngle:90. 0 clockwise:YES];
 // upper right
 [arc4 appendBezierPathWithArcWithCenter:
 NSMakePoint(center. x * 1. 5, center. y * 1. 5)
 radius:radius startAngle:0. 0 endAngle:90. 0 clockwise:YES];
 [arc2 closePath];
 [arc4 closePath];
 [arc1 stroke];
 [arc2 stroke];
 [arc3 stroke];
 [arc4 stroke];
}

When this code is run, Figure 12.11 shows the drawing that is produced.

Figure 12.11. When the code described in the text is run, this is the drawing that is produced.

Another convenience method is available for drawing an arc with an attached line segment.

- (void)appendBezierPathWithArcFromPoint:(NSPoint)point1
 toPoint:(NSPoint)point2 radius:(float)radius

This method makes it easier to add rounded corners to a polygon. It adds a line segment and the arc of a circle to the path. Two
tangent lines bound the circle from which the arc is taken-one from the current point to point1 and the other from point1 to
point2. To uniquely specify the circle, it also uses the specified radius.

The line segment that is added to the path runs from the current point to where the tangent line from the current point to point1
intersects the circle. The arc goes from that point to the point where the tangent from point1 to point2 intersects the circle. The
current point is left at the arc's end point. Figure 12.11 should help visualize this; it sounds far more complex than it really is. The
black line in Figure 12.12 shows what is actually added to the path object.

Figure 12.12. The black line shows what is actually added to the path object.

Because this operation relies on the existence of a current point, this method can't be used on an empty path or an exception is raised.
A move operation must be used to set the current point first. This operation is similar to the PostScript arcto operator.

As an example of how you might use this method to build a polygon with rounded corners, draw a rectangle with rounded corners.
Start at the midpoint of the top edge of the rectangle and work around the rectangle in a clockwise direction. Here is some code you
can use for this example:

File RoundedRect. h :

#import <Cocoa/Cocoa. h>

@interface NSBezierPath(RoundedRect)

- (void)appendBezierPathWithRoundedRectangle:(NSRect)aRect
 withRadius:(float)radius;

@end

File RoundedRect. m :

#import "RoundedRect. h"

@implementation NSBezierPath(RoundedRect)

- (void)appendBezierPathWithRoundedRectangle:(NSRect)aRect
 withRadius:(float)radius
{
 NSPoint topMid = NSMakePoint(NSMidX(aRect), NSMaxY(aRect));
 NSPoint topLeft = NSMakePoint(NSMinX(aRect), NSMaxY(aRect));
 NSPoint topRight = NSMakePoint(NSMaxX(aRect), NSMaxY(aRect));
 NSPoint bottomRight = NSMakePoint(NSMaxX(aRect), NSMinY(aRect));
 [self moveToPoint:topMid];
 [self appendBezierPathWithArcFromPoint:topLeft toPoint:aRect.origin
 radius:radius];
 [self appendBezierPathWithArcFromPoint:aRect.origin toPoint:bottomRight
 radius:radius];
 [self appendBezierPathWithArcFromPoint:bottomRight toPoint:topRight
 radius:radius];
 [self appendBezierPathWithArcFromPoint:topRight toPoint:topLeft
 radius:radius];
 [self closePath];
}

@end

The previous method is defined as an Objective-C category of NSBezierPath. It could then be used like any other method of
NSBezierPath. Simply call it with an NSRect defining the bounds of the rectangle and a radius for the curvature of the corners
and it appends an appropriate rounded rectangle to the path. Note that if the rectangle's width or height is less than twice the radius,
visual artifacts in the path are present as the arcs begin to overlap. Don't forget to stroke or fill the path to actually have drawing done;
this sample code simply adds to the path definition.

To see this example code in action, look at the Paths example source code. The clipped lines option uses the rounded rectangle
category to draw the outline of a rectangle with rounded corners and define a clipping area. No drawing takes place outside of the
clipping area outlined by the rounded rectangle. The onscreen drawing is accomplished by calling this method from the NSView's
-drawRect: method:

- (void)drawClippedLines
{ // Draw lots of random line segments, clipped to a rounded rect
 int i;
 NSBezierPath *line = [NSBezierPath bezierPath];
 NSBezierPath *rect = [NSBezierPath bezierPath];
 NSRect bds = [self bounds];
 // clear the view to solid black background
 [[NSColor blackColor] set];
 NSRectFill(bds);
 // set up to draw with white
 [[NSColor whiteColor] set];
 // save the current clipping path
 [[NSGraphicsContext currentContext] saveGraphicsState];
 // set up a new clipping path - a rect with rounded corners
 [rect appendBezierPathWithRoundedRectangle:NSInsetRect(bds, 20. 0, 20. 0)
 withRadius:30. 0];
 [rect addClip];
 // draw a bunch of random lines inside the new clipped area
 for (i=0; i<numberOfLines; i++) {
 // get random start and end points
 NSPoint start = NSMakePoint(random() % (int)bds. size. width,
 random() % (int)bds. size. height);
 NSPoint end = NSMakePoint(random() % (int)bds. size. width,
 random() % (int)bds. size. height);
 [line removeAllPoints];
 // draw a line segment
 [line moveToPoint:start];
 [line lineToPoint:end];
 [line stroke];

 }
 // restore the original clipping path
 [[NSGraphicsContext currentContext] restoreGraphicsState];
 // now take the rect used as the path and draw it with a little
 // bit wider line width so that we have a nice looking frame
 [rect setLineWidth:2. 0];
 [rect stroke];
}

When this code is run, output similar to Figure 12.13 is created.

Figure 12.13. The -drawClippedLines method produces output similar to this.

- (void)appendBezierPath:(NSBezierPath *)path;

This method can be used to append the path defined by one NSBezierPath object to another. This can be used to build up complex
paths by appending several path objects together.

The previous methods are the primary methods used to construct a path using the NSBezierPath class. There are also several other
NSBezierPath methods that enable you to take individual character glyphs from the font of your choice and add them to a path.
Because these methods are somewhat complex, a whole section of this chapter devoted to them. See "NSBezierPath and Glyphs" in
Chapter 14 to learn how to use these methods.

Rendering a Path

When a path has been defined, it is ready to be rendered. Rendering is very easy because there are only a few ways to actually render
the path: stroke, fill, or clip. Clip, the third operation, doesn't actually do drawing, but instead restricts further drawing.

Strokes and Fills

Stroking a path is similar to taking a paintbrush and using it to trace out the path that has been defined. In other words, this renders
the outline of the shape the path defines. The star and donut shapes in Figure 12.14 are examples of stroked paths. To stroke a path,
simply send it a -stroke message. No arguments are required.

Figure 12.14. The star and donut shapes are examples of stroked paths.

Filling is like using the path as a wall, while pouring paint into the area enclosed by the path. A filled path gives a solid shape instead
of an outline. To fill a path, send it a -fill message. There are no arguments.

There is a wrinkle with fills, however. Suppose there is a shape such as a five-pointed star, drawn with the outline at the left in Figure
12.14. Further suppose there are multiple paths defined in a shape that forms something of a donut shape, as in the shape to the right
of the star.

When the star is filled, should the pentagon in the center be filled or not? What about the center of the donut, should it be filled? The
answer depends on application. You would probably want to fill the whole star, but not the center of the donut. This is where the
winding rule comes in. The winding rule determines how these situations should be handled. These situations do happen more often
than you might think, especially when handling text.

Before issuing the fill command, a developer probably wants to specify a winding rule to get the fill behavior required. The
enumerated type NSWindingRule defines two constants to represent the available winding-rule algorithms. The first,
NSNonZeroWindingRule, is the default winding rule and represents the case where the center of the star and donut are filled in.
The second is NSEvenOddWindingRule. With the even/odd rule, the filled star or donut would have a nonfilled hole in the
middle. See Figure 12.15 for examples of each rule.

Figure 12.15. Using different winding rules produces the pictured fill behaviors.

The winding rule for a particular path can be changed by using the -setWindingRule: method. The single parameter should be
one of the constants (NSNonZeroWindingRule or NSEvenOddWindingRule). A developer can find out which rule is used by
an NSBezierPath instance by querying with the -windingRule method, which returns one of these two values. Additionally,
the default winding rule can be queried and changed by using the NSBezierPath class methods +defaultWindingRule and
+setDefaultWindingRule:.

To demonstrate how the different rules can be used, the Paths example contains the code needed to draw the stars and donuts shown
in Figures 12.14 and 12.15.

To define the various ovals the code to draw the donuts uses -appendBezierPathWithOvalInRect:. Each oval is defined
separately and the path object is emptied out after each donut is rendered. (The next chunk of example code, to draw the stars, does a
better job of reusing the path data.) This example shows the results of a stroke, a fill without specifying a particular winding rule (the
default winding rule) and each of the winding rules supported by Quartz (nonzero and even-odd). As in the rounded-rectangle
example shown previously, this method is called from the -drawRect: method of the NSView subclass when it is time to do the
drawing:

- (void)drawDonuts
{
// Draw four different ovals
// 2 non zero 3 even/odd
// 1 stroked 4 default winding
 NSBezierPath *path = [NSBezierPath bezierPath];
 NSRect bds = [self bounds];
 // divide the view into four rectangles
 NSRect r1 = NSMakeRect(bds. origin. x, bds. origin. y,
 bds. size. width / 2. 0, bds. size. height / 2. 0);
 NSRect r2 = NSMakeRect(bds. origin. x, NSMidY(bds),
 bds. size. width / 2. 0, bds. size. height / 2. 0);
 NSRect r3 = NSMakeRect(NSMidX(bds), NSMidY(bds),
 bds. size. width / 2. 0, bds. size. height / 2. 0);
 NSRect r4 = NSMakeRect(NSMidX(bds), bds. origin. y,
 bds. size. width / 2. 0, bds. size. height / 2. 0);
 // clear the view to solid white background

 [[NSColor whiteColor] set];
 NSRectFill(bds);
 // set up drawing parameters - draw black with linewidth of 2. 0
 [[NSColor blackColor] set];
 [path setLineWidth:2. 0];
 // Draw lower left donut (stroked)
 [path appendBezierPathWithOvalInRect:NSInsetRect(r1, 10. 0, 10. 0)];
 [path appendBezierPathWithOvalInRect:NSInsetRect(r1, 25. 0, 25. 0)];
 [path stroke];
 // draw lower right donut (default wind)
 [path removeAllPoints];
 [path setWindingRule:[NSBezierPath defaultWindingRule]];
 [path appendBezierPathWithOvalInRect:NSInsetRect(r4, 10. 0, 10. 0)];
 [path appendBezierPathWithOvalInRect:NSInsetRect(r4, 25. 0, 25. 0)];
 [path fill];
 // draw upper right donut (even/odd)
 [path removeAllPoints];
 [path setWindingRule:NSEvenOddWindingRule];
 [path appendBezierPathWithOvalInRect:NSInsetRect(r3, 10. 0, 10. 0)];
 [path appendBezierPathWithOvalInRect:NSInsetRect(r3, 25. 0, 25. 0)];
 [path fill];
 // draw upper left donut (non-zero)
 [path removeAllPoints];
 [path setWindingRule:NSNonZeroWindingRule];
 [path appendBezierPathWithOvalInRect:NSInsetRect(r2, 10. 0, 10. 0)];
 [path appendBezierPathWithOvalInRect:NSInsetRect(r2, 25. 0, 25. 0)];
 [path fill];
}

The donuts code produces the output shown in Figure 12.16 when the Paths application is run and Donuts is chosen on the control
panel.

Figure 12.16. The pictured output is produced by the Paths example when Donuts is chosen on the control panel.

A similar approach to the one used with the donuts is used to draw the stars. However, rather than defining a new path for each star, a
single NSBezierPath is defined and reused for each star. To accomplish this and cause each star to be drawn at a different
location, the path is translated using an NSAffineTransform object. (This object is discussed in Chapter 13.) The translation
operation causes the path to be drawn at a different location without affecting its size or shape. Except for this difference, the code is
much like the donut drawing code shown previously:

- (void)drawStars
{
// Draw four different stars
// 2 non zero 3 even/odd
// 1 stroked 4 default winding
 NSGraphicsContext *currentContext = [NSGraphicsContext currentContext];
 NSBezierPath *path = [NSBezierPath bezierPath];
 NSAffineTransform *transform = nil;
 NSRect bds = [self bounds];

 // divide the view into four rectangles
 NSRect r1 = NSMakeRect(bds. origin. x, bds. origin. y,
 bds. size. width / 2. 0, bds. size. height / 2. 0);
 NSRect r2 = NSMakeRect(bds. origin. x, NSMidY(bds),
 bds. size. width / 2. 0, bds. size. height / 2. 0);
 NSRect r3 = NSMakeRect(NSMidX(bds), NSMidY(bds),
 bds. size. width / 2. 0, bds. size. height / 2. 0);
 NSRect r4 = NSMakeRect(NSMidX(bds), bds. origin. y,
 bds. size. width / 2. 0, bds. size. height / 2. 0);

 // clear the view to a white background
 [[NSColor whiteColor] set];
 NSRectFill(bds);

 // set the drawing color to black and the line width to 2. 0
 [[NSColor blackColor] set];
 [path setLineWidth:2. 0];
 // define the star's path
 [path moveToPoint:NSMakePoint(NSMinX(r1) + 40. 0, NSMinY(r1) + 20. 0)];
 [path lineToPoint:NSMakePoint(NSMidX(r1), NSMaxY(r1) - 20. 0)];
 [path lineToPoint:NSMakePoint(NSMaxX(r1) - 40. 0, NSMinY(r1) + 20. 0)];
 [path lineToPoint:NSMakePoint(NSMinX(r1) + 20. 0, NSMaxY(r1) - 50. 0)];
 [path lineToPoint:NSMakePoint(NSMaxX(r1) - 20. 0, NSMaxY(r1) - 50. 0)];
 [path closePath];

 // stroke the star in r1.
 [path stroke];

 // do r4 - default winding rule
 [path setWindingRule:[NSBezierPath defaultWindingRule]];
 transform = [NSAffineTransform transform];
 [transform translateXBy:r4. origin. x yBy:r4. origin. y];
 [currentContext saveGraphicsState];
 [transform concat];
 [path fill];
 [currentContext restoreGraphicsState];

 // do r3 - even/odd winding rule
 [path setWindingRule:NSEvenOddWindingRule];
 transform = [NSAffineTransform transform];
 [transform translateXBy:r3. origin. x yBy:r3. origin. y];
 [currentContext saveGraphicsState];
 [transform concat];
 [path fill];
 [currentContext restoreGraphicsState];

 // do r2 - non-zero winding rule
 [path setWindingRule:NSNonZeroWindingRule];
 transform = [NSAffineTransform transform];
 [transform translateXBy:r2. origin. x yBy:r2. origin. y];
 [currentContext saveGraphicsState];
 [transform concat];
 [path fill];
 [currentContext restoreGraphicsState];
}

The output of the stars code is shown in Figure 12.17.

Figure 12.17. The output of the stars code looks like this.

Winding Rules

If a developer isn't familiar with PostScript or 2D graphics algorithms, she might wonder where the winding rule names come from or
even why they are called winding rules. If you look at the paths used in the previous example (star and donut), you will note that the
paths are closed. It could be said that the path winds around the area that it encloses. A winding rule is so named because it uses
information about the path's winding to determine whether a pixel is in a fill area.

To simplify the result, move from outside of the figure toward its center and count how many winds have been passed through,
starting with zero outside of the path. In the nonzero winding rule, whenever this count is nonzero, it is inside the object, therefore the
fill paints the pixels. This is a very inclusive fill, and never has holes in it.

The complete rule for nonzero is slightly more complex than just counting path crossings. If the path section crossed is moving from
left to right, add one to the crossing count. Conversely, subtract one from the count if the path segment moves from right to left. With
the donut graphic, both ovals are drawn in the same direction. If the inner oval was drawn in the opposite direction from the outer
oval, both the nonzero and even-odd rules would produce the same results.

In the even-odd case, note that one is in the filled area after crossing over the path once. Cross over again, to an area with count 2 in
the center of the path, and one is in a nonfilled area. The generalization of this rule is that a section of the enclosed area is filled when
the count is an odd number and not filled when the count is an even number.

NOTE

You might be interested to know that there are other types of winding rules as well, though Quartz and Cocoa only
support the two rules described previously. To learn more about winding rules, consult a standard text on 2D graphics.
OpenGL references might also be of interest because OpenGL supports some other winding rules, too.

Clipping

Now that strokes and fills are covered, there remains one other way to make use of a path-clipping. Clipping is a means of controlling
where on the screen drawing is allowed to take place. For example, when NSView's -drawRects: method is called, Cocoa has
already set up clipping so that all drawing is kept within the boundaries of the view. Any attempt to draw outside the view is simply
thrown away by Quartz. No error is returned; the drawing simply doesn't appear on the screen.

This can be handy because a developer doesn't have to worry about whether he is drawing in a legal area. Just draw and only the parts
that aren't clipped appear on the screen. This makes it easier for the developer when there are paths that are partly inside the clipping
area and partly outside because he don't have to worry about what to draw and what not to draw. Quartz figures it out.

NOTE

If a path is completely outside the clipping area, then there's little point in sending it to Quartz. Some rendering time can
be saved by not attempting to draw it at all. For more techniques to reduce drawing time see the section "Optimizing
Drawing" in Chapter 13.

Quartz is not limited to just clipping by rectangles, however. Any arbitrary path can be used to define a clipping area. By sending the
-addClip message to an NSBezierPath instance, it becomes a new clipping path. This can be used for some interesting special
effects. As an example, small text can be used as a fill pattern for a headline or other large text. Using the large text's outline as the
clipping path, and then rendering the smaller text accomplishes this. Only the smaller text that is actually inside the larger text is
drawn. The parts of the smaller text that fall outside the outline are not drawn. The rounded-rectangle example uses the -addClip
method to restrict drawing to be within the bounds of a rectangle with rounded corners.

The -addClip method actually intersects the path with the current clipping path, as opposed to replacing the clipping path. This
means that using this method either leaves the current clipping unchanged or it makes the clipping more restrictive than it was
already. It will not expand the clipping area.

Because the clipping area can't be expanded, you might wonder what to do to undo clipping changes before doing later drawing that
shouldn't be clipped in the same way. The clipping area itself is a part of the current graphics context. As described in the section
"Using NSGraphicsContext," in Chapter 13, the current context can be saved before changing the clipping area. By later restoring the
context, any clipping changes that happened after the save can be undone. This is the primary approach that should be used to
increase the clipping area back to what it was before clipping was altered.

Using a path for clipping respects the same winding rules as filling the path. After the -addClip operation, all future drawing only
appears in the areas that would have been filled in had the path been sent a -fill message instead. Thus, if the star path were added
to the current context's clipping, the winding rule would determine whether future drawing would be restricted to the whole outline of
the star or just the star's points, excluding the center of the star.

Using a path for clipping does not change the path data in the NSBezierPath object. Therefore, the path can still be used later for
fills or other operations as needed. To have the outline of the larger text drawn boldly, using the text within the earlier text example,
the best approach is to follow these steps:

1. save the graphics context

2. add the large letters to the clipping path

3. draw the small letters

4. restore the graphics context

5. stroke the large letters

This assures that the smaller letters don't overwrite the outlines of the larger letters, and at the same time prevents the larger letter's
outline from being restricted by the clipping path. Saving and restoring the graphics context is done with the
NSGraphicsContext object, which is described in detail in Chapter 13.

A simpler example of this general technique is found in the rounded-rectangle example discussed previously in the "Appending an
arc" section of this chapter. In the example, a rounded rectangle is used as a clip area for many random line segments. When it comes
time to actually stroke the rounded rectangle itself, however, the clipping area needs to be undone. This is because the rounded
rectangle is to be stroked with a line width of 2.0, half of that lies outside of the clipping area. To avoid clipping part of the outline,
the graphics context is restored to its preclip state.

There is one other way to use an NSBezierPath to alter the Quartz graphic context's clipping path, but it is rather dangerous. By
sending the -setClip method to a path instance it replaces the current clipping path with the path defined by the NSBezierPath.
This is dangerous because it throws away the current clipping path entirely. That means the clipping area could be increased to
include area outside the view's bounds. You still can't draw outside the window, but instead could risk scribbling all over inside the
window. Drawing outside the view's bounds has all kinds of nasty side effects and can leave some ugly artifacts, so don't do it! If
using this method, be sure to save the graphics context beforehand and restore the graphics context as soon as possible afterwards.

Drawing Shortcuts: Rectangle Functions and More

The NSBezierPath class object provides a few shortcut methods that can be used to define and render common paths without the
tedium of instantiating a new object and sending all the individual method calls. The following self-explanatory methods can all be
sent to the NSBezierPath class object as shortcuts:

+ (void)fillRect:(NSRect)rect;

+ (void)strokeRect:(NSRect)rect;
+ (void)clipRect:(NSRect)rect;
+ (void)strokeLineFromPoint:(NSPoint)point1 toPoint:(NSPoint)point2;

For example, to draw a filled rectangle:

[NSBezierPath fillRect:NSMakeRect(10. 0, 10. 0, 100. 0, 100. 0)];

This would draw a rectangle of dimensions 100x100 with the lower-left corner at (10.0, 10.0). It would be rendered as a filled
rectangle in the current drawing color. The +strokeRect: method renders a rectangular outline with the line width and other
parameters taken from the current settings in the active graphics context.

There are also several functions that can be used to deal with rectangles. The next three topics discuss these functions. The Rectangles
example on the www.cocoaprogramming.net Web site shows most of the rectangle functions in action.

Basic Rectangle Functions

Because it can be rather tedious to create and use NSBezierPath for all drawing, Cocoa provides several functions that create a
path and render it, all with a single function call. These specialized function calls are generally for drawing and manipulating
rectangles and are highly optimized. In other words, for the best drawing performance, try to use these functions whenever they make
sense. It should be noted that if using Core Graphics calls directly, many of these functions could cause settings within the graphics
context (such as line width) to be changed. If a developer doesn't expect and account for this, seemingly mysterious bugs in rendering
can occur.

The first set of functions is for drawing filled rectangles on the screen. Because rectangular paths can be highly optimized, these
functions typically provide a significant speed boost over using NSBezierPath. With these functions a single rectangle can be
filled in the simplest case, to filling a list of rectangles, each with a different color, using a particular compositing operator in the most
complex case. The name of each function describes what it does well enough that little documentation is required, so the following
descriptions are brief. The first function has already been used quite a bit in this chapter:

void NSRectFill(NSRect aRect);

This function, NSRectFill(), is the simplest of the rectangle rendering functions. Simply pass it an NSRect and that rectangle
will be rendered, filled with whatever color is the current color in the graphics context.

void NSRectFillList(const NSRect *rects, int count);

If there is more than one rectangle to fill, then considerable function call and graphics context setup overhead can be saved by passing
all the rectangles in a single function call. This is done with the NSRectFillList() call. Instead of passing a single NSRect,
pass a pointer to an array of NSRect structures. The second parameter, count, tells the functions how many rectangles are in the
array. It is very important that the count parameter be correct to prevent memory overruns. An example showing how to use this
function is found later in the "Drawing Points and Rectangles" section in Chapter 13.

void NSRectFillListWithGrays(const NSRect *rects, const float *grays, int num);
void NSRectFillListWithColors(const NSRect *rects, NSColor **colors, int num);

By using NSRectFillListWithGrays() or NSRectFillListWithColors() each rectangle is rendered with a different
shade of gray or different color. In the case of grayscale, the grays parameter is a pointer to an array of floating-point numbers in the
range of 0.0 to 1.0. A 0.0 indicates black and a 1.0 indicates white. Numbers in between are varying shades of gray. For color, the
colors parameter is a pointer to an array of pointers to NSColor objects. The remaining parameters, rects and num, are the
same as for NSRectFillList().

void NSRectFillUsingOperation(NSRect aRect, NSCompositingOperation op);
void NSRectFillListUsingOperation(const NSRect *rects, int count,
 NSCompositingOperation op);
void NSRectFillListWithColorsUsingOperation(const NSRect *rects,
 NSColor **colors, int num, NSCompositingOperation op);

The filled rectangle functions described previously in this section all assume the use of a Source Over-compositing operation. If using
a specific operation that is different, use one of the *UsingOperation() functions. Each one works as its previous counterpart,
simply adding the op parameter that specifies a particular compositing operation.

http://www.cocoaprogramming.net/

Three functions are available to draw a rectangular outline instead of a filled rectangle. They are

void NSFrameRect(NSRect aRect);
void NSFrameRectWithWidth(NSRect aRect, float frameWidth);
void NSFrameRectWithWidthUsingOperation(NSRect aRect, float frameWidth,
 NSCompositingOperation op);

The first function, NSFrameRect(), simply draws the specified rectangular frame, using color, line width, and so on as found in
the current graphics context. The second function adds the capability to choose a specific line width, specified in dots per inch. The
last function further adds the capability to choose a specific compositing operation.

Finally, there are two functions for changing the current clipping region:

void NSRectClip(NSRect aRect);
void NSRectClipList(const NSRect *rects, int count);

Both of these functions are called exactly like their NSRectFill() and NSRectFillList() counterparts. The difference, of
course, is that instead of rendering filled rectangles, these functions further tighten the graphic context's existing clipping region.

Other Rectangle Functions

There are two functions for erasing rectangular regions.

void NSEraseRect(NSRect aRect);
void NSDrawWindowBackground(NSRect aRect);

The NSEraseRect() function paints the area defined by the aRect parameter with white, taking into account the current clipping
path. Because a printed page is white, painting with white is akin to erasing the region. This function is functionally equivalent to this
code:

[[NSColor whiteColor] set];
NSRectFill(NSRect aRect);

The NSDrawWindowBackground() function works like NSEraseRect() except that the area is painted with the default
window background color or pattern. In Mac OS X, this is the horizontal striped pattern seen on most Aqua windows. Equivalent
code would be

[[NSColor windowBackgroundColor] set];
NSRectFill(NSRect aRect);

Both NSDrawWindowBackground() and NSEraseRect() are handy shortcuts for filling rectangular areas with commonly
used colors.

NSRect NSDrawTiledRects(NSRect boundsRect, NSRect clipRect,
 const NSRectEdge *sides, const float *grays, int count);
NSRect NSDrawColorTiledRects(NSRect boundsRect, NSRect clipRect,
 const NSRectEdge *sides, NSColor **colors, int count);

Both of these functions are used to paint bordered rectangular areas. Depending on how they are called, the result can look like a
raised button, a recessed bezel, a basic border, or something else entirely. For example, NSDrawColorTiledRects() is used by
the Application Kit to draw everything in NSTextField controls except for the text itself. Both functions are basically the same;
the only difference is that one uses a list of floating point grayscale values (0.0 for black to 1.0 for white) for its drawing and the other
uses a list of NSColor instances.

The tiled rectangle functions work by painting successive 1.0 point slices from the edge of the rectangular area being painted
(remember that 1.0 point equals 1.0 pixel when drawing to the screen). Each time a slice is taken, the next slice is taken from the
remaining area left to be painted. Any number of slices can be taken and it is possible to specify which side of the rectangle should be
used for each slice as well as what color it should be painted. When all the slices have been taken, the remaining unpainted rectangle
is returned. That returned rectangle can be filled if the bezel or border is to have an opaque background. If it is discarded, that area

remains untouched.

The first parameter, aRect, specifies the area to be painted. Because this function is primarily meant to be used to create the border
of an NSView subclass, usually aRect is the bounds rectangle of the view. The second parameter, clipRect, can be used to limit
the actual painting to a particular area of aRect. Most often, it is equal to aRect or covers a larger area so that painting isn't
restricted in any way.

The third and fourth parameters specify how the slices should be taken and whether each should have the same number of elements.
That number of elements should be passed as the fifth parameter, count. The sides parameter is an array of NSRectEdge values.
An NSRectEdge can be one of four predefined values: NSMinXEdge, NSMaxXEdge, NSMinYEdge, and NSMaxYEdge. The
fourth parameter is either an array of floating-point-grayscale values or an array of pointers to NSColor instances. Because most
drawing in Aqua is not grayscale, typically the color version of the tiled-rectangle function is used.

The easiest way to visualize what happens when these functions are called is to actually see an example. It also makes it easier to see
how to set up the parameters. The Rectangles example demonstrates this function with the following code:

NSGraphicsContext *currentContext = [NSGraphicsContext currentContext];
NSAffineTransform *transform = [NSAffineTransform transform];
NSRect newBds = NSMakeRect(0. 0, 0. 0, bds. size. width / 4,
 bds. size. height / 4);
NSRectEdge sides[] = { NSMaxYEdge, NSMaxXEdge, NSMaxYEdge,
 NSMinXEdge, NSMinYEdge, NSMaxXEdge };
NSRect inside;
NSColor *colors[6];
colors[0] = [NSColor blackColor];
colors[1] = [NSColor blueColor];
colors[2] = [NSColor purpleColor];
colors[3] = [NSColor redColor];
colors[4] = [NSColor orangeColor];
colors[5] = [NSColor yellowColor];
NSDrawWindowBackground(bds);
[transform scaleBy:4. 0];
[currentContext saveGraphicsState];
[transform concat];
inside = NSDrawColorTiledRects(NSInsetRect(newBds, 5. 0, 5. 0),
 newBds, sides, colors, 6);
[[NSColor greenColor] set];
NSRectFill(inside);
[currentContext restoreGraphicsState];

Notice that the code uses an NSAffineTransform object to scale the drawing up by a factor of four. This makes it easier to see
what is happening. The NSAffineTransform class and its uses for modifying drawing are described in detail in Chapter 13.
Because different colors are used for each slice, it is easy to determine which slice is which and in what order they were drawn. The
output of this code looks like Figure 12.18.

Figure 12.18. The scaled output of rectangle functions is shown.

The top edge is black, with a purple line below it. The right edge is blue, with yellow to the inside. The bottom edge is orange, the left
edge is red, and the center is filled with green. This correlates with the color and edge values in the parameter arrays.

void NSCopyBitmapFromGState(int srcGState, NSRect srcRect, NSRect destRect);
void NSCopyBits(int srcGState, NSRect srcRect, NSPoint destPoint);

Both of these functions copy bitmap graphics (a rectangular region) from one view to another view or copy them within a single view.
The difference between the functions lie in the final parameter. The destination can be given as a specific rectangular region or as a
single point. In the case of a single point, the bitmap is copied at the same size as the original, with the origin (lower-left corner)
placed at destPoint. A proper srcGState parameter can be obtained from an instance of NSView or one of its subclasses by
using its -gState method. NSNullObject can be used for the srcGState parameter to signify that the source is the currently
focused view. Note that these functions are designed to be used for copying graphics between views in the same application; copying
bitmap images from arbitrary screen locations (as Grab.app does) requires dropping down to Quartz itself.

NSColor *NSReadPixel(NSPoint passedPoint);

This function enables the color of a particular pixel within the current context to be determined. The passedPoint parameter is the
point in question; a pointer to an autoreleased NSColor instance is returned. This function could be used, for example, as part of the
implementation of an eyedropper tool in a drawing program, the tool that allows the current color to be changed to the color of
whatever pixel the user clicks. Note that this function is intended for use within the area owned by a particular NSView and not
arbitrary screen locations. Quartz needs to be used for a more general way of reading pixels from the screen. Also, be aware that this
function is not particularly fast and is therefore not well suited for capturing bitmaps a pixel at a time.

Obsolete Rectangle Functions

There are several rectangle functions that can be found in the Cocoa headers and documentation but are now obsolete. We describe
them briefly here only so that a developer who encounters them in the Cocoa documentation won't be confused by their presence. All
these functions should be ignored and avoided at present.

void NSDottedFrameRect(NSRect aRect);
void NSHighlightRect(NSRect aRect);

The NSDottedFrameRect() and NSHighlightRect() functions are carryovers from Cocoa's OpenStep roots and exist to
allow older OpenStep source code to compile cleanly. The implementation of both functions has been removed from Cocoa. In other
words, both functions do absolutely nothing. Although they are listed in the Cocoa headers and documentation, they should be
ignored and not used.

void NSDrawWhiteBezel(NSRect aRect, NSRect clipRect);
void NSDrawButton(NSRect aRect, NSRect clipRect);
void NSDrawGrayBezel(NSRect aRect, NSRect clipRect);
void NSDrawGroove(NSRect aRect, NSRect clipRect);
void NSDrawDarkBezel(NSRect aRect, NSRect clipRect);
void NSDrawLightBezel(NSRect aRect, NSRect clipRect);

These six functions are also carryovers from Cocoa's OpenStep heritage. The implementations of these functions still exist, which
means that each draw something. However, what they draw is a look and feel that is taken from OPENSTEP and does not look good
on Aqua. Even NSDrawWhiteBezel(), which draws a rectangular area that looks similar to an empty NSTextField with a
white background, isn't quite what Aqua would draw. The vertical sides are drawn too darkly for Aqua. Thus, all six of these
functions should be avoided, even though they do work. Anyone who really wants to see what each does, however, can run the
Rectangles example to see them in action.

The parameters to each function are as they would seem: aRect defines the area to be drawn, and clipRect allows the drawing to
be restricted. Normally, clipRect covers the same area as, or more area than, the aRect argument.

Book: Cocoa® Programming
Section: Chapter 12. Custom Views and Graphics Part I

Modifying Drawing

There are several ways to modify how things are drawn by Quartz. The NSBezierPath object itself allows a
developer to modify several parameters that affect how a given path is rendered. Translating, rotating, scaling, and
shearing a path with the NSAffineTransform class can affect the actual geometry. Finally, the
NSGraphicsContext class allows a developer to modify a few global rendering options and control drawing. The
NSBezierPath options are covered in this section. The other two classes are discussed in Chapter 13.

NSBezierPath Parameters

When a path is rendered, there are several parameters that can be set in the current graphics context that affect the
rendering process. The first and most obvious is the current color. All paths are rendered with the current color. In
Cocoa, the current color is set using the NSColor class. (You can read about this class in Chapter 17.) Besides
setting the color, line width, line cap, line dash, line join, miter limit, and flatness can also be changed.

Examining the respective methods for controlling drawing demonstrates what the parameters do. Each group of
methods follows a simple pattern. There are four methods for each parameter except the line dash. The first method,
a class method, sets the default value for this parameter. This is the value that is used by all paths that aren't explicitly
told to use something else. There is another class method that allows a developer to find out the current default
value's setting. Third is an instance method to set the parameter for a particular NSBezierPath instance. Finally,
the fourth method is an instance method to retrieve the value of the parameter. The line dash parameter only has the
latter two methods, and nothing to control a default setting. Instead, the unchangeable default is to have no line dash
at all.

Line Width

There are four methods for controlling the line width of a path.

+ (void)setDefaultLineWidth:(float)lineWidth;
+ (float)defaultLineWidth;
- (void)setLineWidth:(float)lineWidth;
- (float)lineWidth;

These methods control the width or thickness of all stroked paths. Larger values cause wider lines to be drawn. A
value of zero has a special meaning here. It specifies the thinnest possible line that can be drawn on the current
rendering device. On the screen, such lines are readily visible. On a very high-resolution printer, however, such a line
could be so thin it would be nearly invisible. Many programmers use a value of 0.15 as something that is thin enough
to always draw a 1-pixel wide line on the screen, and a line that is wide enough to be seen on all high-resolution
devices.

Because of the rules Quartz uses to paint pixels, the actual width of the line could vary slightly (+/- 2 device pixels)
from the actual value that is set. (Lines on pixel boundaries are one example where this could happen.) The current
transformation matrix also affects line widths. If rendering into a scaled or otherwise altered graphics context, the
line width could be distorted by the transformation. The end of the section "Using an NSAffineTransform," in
Chapter 13 provides a code example showing how to avoid this distortion.

Line Cap

As with line width, there are four methods for choosing how line caps are drawn.

+ (void)setDefaultLineCapStyle:(NSLineCapStyle)lineCapStyle;
+ (NSLineCapStyle)defaultLineCapStyle;
- (void)setLineCapStyle:(NSLineCapStyle)lineCapStyle;
- (NSLineCapStyle)lineCapStyle;

Line caps are used to determine how the end(s) of a stroked path are rendered. There are three options available:
NSButtLineCapStyle, NSRoundLineCapStyle, and NSSquareLineCapStyle. Use these three
constants with the set methods; the get methods return one of the three constants. These parameters have an obvious
effect on paths stroked with wider line widths. For paths with narrow line widths, there is little to no visual effect.

The first style, a butt end cap, is one where the path is drawn exactly from one point to the next. There is no end cap
whatsoever, and the endpoints have squared-off corners.

The round line cap style produces rounded corners at the path's endpoints. The same effect can be achieved by
rendering with a butt-style cap, and then drawing a circle with a diameter equal to the line width centered on each
endpoint.

The last style, a square cap, looks much like the butt-style cap, but the length of the path is slightly extended. The
same effect can be achieved by rendering with a butt-style cap, and then drawing a square with height and width
equal to the line width centered on each endpoint.

Figure 12.19 shows what each line-cap style looks like. The thick black line is actually rendered by Quartz. The thin
white line shows the location of the path defined before stroking.

Figure 12.19. The results of applying line cap styles to paths are shown.

Line Dash

Two methods will allow control over stroking a path as a dashed line instead of a solid line.

- (void)getLineDash:(float *)pattern count:(int *)count phase:(float *)phase;
- (void)setLineDash:(const float *)pattern count:(int)count phase:(float)
phase;

The line dash tells Quartz how to render stroked paths as dashed lines. There are two aspects to the line dash. First is
the dash pattern, which specifies the sequence of dashes as determined by the rendered and nonrendered parts of the
path. The second aspect is the phase. By altering the phase of the dash pattern, the dashes can be moved along the
path.

The pattern is a list of floating-point values that are specified in typographical points. The dash pattern tells the
renderer when to render the path and when not to. Each value in the pattern alternates between on and off. When the
end of the dash pattern is reached, it starts over again from the beginning. For example, suppose the pattern {10.0,
20.0, 30.0, 40.0} is specified. This means that the path is rendered for the first 10.0 points of distance along the path,
then 20.0 points will not be rendered, followed by 30.0 points rendered and 40.0 points not rendered. The cycle then
repeats with 10.0 points rendered, and so on. Often, it is preferred to render a dash length proportional to the line
width. This can be accomplished by scaling (multiplying) the values of a dash pattern by the line width.

Dash patterns can be as simple as a single value. A dash pattern of {10.0}, for example, draws a line with 10.0 on,
10.0 off, and so on. If a pattern has an odd number of values, then each time through the pattern a particular value
changes whether it specifies off or on. For example, the pattern {10.0, 20.0, 30.0} indicates "10.0 on, 20.0 off, 30.0
on, 10.0 off, 20.0 on, 30.0 off, and repeat." As can be seen, each time through that pattern, the 10.0 alternates
between on and off. In theory a pattern can be infinitely long and complex, but in general patterns with fewer values
tend to look better because of their simplicity.

The pattern and count parameters to these methods are used to specify the dash pattern. The pattern parameter is
a pointer to the first value in the floating-point array. The count parameter indicates how many values are in the
pattern array. It makes little sense to have a value of 0.0 in the pattern array, and it is important that the array have at
least one value.

The other parameter of these methods is the phase. This specifies where to start in the dash pattern when rendering
begins. For example, again consider the simple pattern {10.0}. The 10.0 on, 10.0 off, and so on only truly applies to a
phase of 0.0. If the phase were 5.0, the dash would be 5.0 on, 10.0 off, 10.0 on, 10.0 off, 10.0 on, and so on. The first
dash starts 5.0 into the pattern (as specified by the phase), and then the pattern continues normally. Visually, for a
line segment running left to right, it would appear as if the dashes had moved to the left, toward the starting point of
the path. In this particular example, the value of the phase can range from 0.0 to 20.0. In fact, stroking the path with
phase 20.0, 40.0, 60.0, and so on would appear exactly the same as if a phase of 0.0 had been used.

There is a simple general approach to determine the useful range of the phase value. The phase range always starts at
0.0. To find the maximum value, add up all the values in the line dash array. If there is an odd number of values in
the array, this sum should be multiplied by two. There is no change for an even number of values. The result is the
maximum useful value for the phase.

To offer some visual examples of line-dash patterns, the following method is a part of the Paths example:

- (void)drawLineDashes
{
 int i;
 NSRect bds = [self bounds];
 double spacing = bds. size. height / 10. 0;
 double width = NSMaxX(bds) - 10. 0;
 NSBezierPath *line[9];
 float dash0[] = { 30. 0 };
 float dash1[] = { 30. 0 };
 float dash2[] = { 30. 0 };
 float dash3[] = { 30. 0 };
 float dash4[] = { 30. 0, 15. 0 };
 float dash5[] = { 30. 0, 15. 0 };
 float dash6[] = { 30. 0, 15. 0, 5. 0 };
 float dash7[] = { 30. 0, 15. 0, 30. 0 };
 float dash8[] = { 40. 0, 20. 0, 30. 0, 10. 0 };

 [[NSColor whiteColor] set];
 NSRectFill(bds);
 for (i=0; i<9; i++) {
 double height = bds. origin. y + spacing * (i + 1);
 line[i] = [NSBezierPath bezierPath];
 [line[i] setLineWidth:5. 0];
 [line[i] moveToPoint:NSMakePoint(10. 0, height)];
 [line[i] lineToPoint:NSMakePoint(width, height)];
 }
 [line[0] setLineDash:dash0 count:1 phase: 0. 0];
 [line[1] setLineDash:dash1 count:1 phase:15. 0];

 [line[2] setLineDash:dash2 count:1 phase:30. 0];
 [line[3] setLineDash:dash3 count:1 phase:60. 0];
 [line[4] setLineDash:dash4 count:2 phase: 0. 0];
 [line[5] setLineDash:dash5 count:2 phase:15. 0];
 [line[6] setLineDash:dash6 count:3 phase: 0. 0];
 [line[7] setLineDash:dash7 count:3 phase: 0. 0];
 [line[8] setLineDash:dash8 count:4 phase: 0. 0];
 [[NSColor blackColor] set];
 for (i=0; i<9; i++) {
 [line[i] stroke];
 }
}

When the -drawLineDashes method is called from within the -drawRect: method, the output shown in
Figure 12.20 is produced:

Figure 12.20. The -drawLineDashes method produces the pictured output.

Note that the lower four lines in the window show the exact same dash pattern at increasing phase values. The dash
pattern is {30.0}, and the phases from bottom to top are 0.0, 15.0, 30.0, and 60.0. Because the range of phases for this
pattern is 30.0x2=60.0, the line with a phase of 60.0 looks identical to the line with a phase of 0.0. The other lines in
the example show a variety of different dash patterns, as can be seen in the source code.

Line Join

Four methods control how the joints between line segments of stroked paths are rendered:

+ (void)setDefaultLineJoinStyle:(NSLineJoinStyle)lineJoinStyle;
+ (NSLineJoinStyle)defaultLineJoinStyle;
- (void)setLineJoinStyle:(NSLineJoinStyle)lineJoinStyle;
- (NSLineJoinStyle)lineJoinStyle;

Three options are available: NSMiterLineJoinStyle, NSRoundLineJoinStyle, and
NSBevelLineJoinStyle. Use these three constants with the set methods; the get methods return one of the three
constants. These parameters have an obvious effect on paths stroked with wider line widths. For paths with narrow
line widths, there is little to no visual effect.

The first style, a miter line join, is one in which the edges of the line segments are extended until they intersect. This
gives a pointy or sharp corner. Note that the corner extends farther and farther from the end points of the path
segments as the angle between them approaches zero. (See the miter limit discussion later in this section for more
about this.)

The second style is a rounded corner. In this case, the corners are rounded, just as if the miter were masked by a
circle of a diameter equal to the line width and centered on the path segments' intersection point.

The final style is a beveled line join. If you took the mitered line join, and then lopped off the sharp corner, you
would have a beveled line join. To determine where the corner is cut off, draw a ray that bisects the angle between
the two path line segments. The perpendicular line to that ray, running through the intersection point, is the cut line.

Figure 12.21 shows each line join style. The thick black line is rendered by Quartz. The thin white line shows the
location of the actual path defined before stroking.

Figure 12.21. The -line join styles supported by Cocoa.

Miter Limit

Miter limit is used to keep mitered corners from becoming too long. Four methods control it:

+ (void)setDefaultMiterLimit:(float)limit;
+ (float)defaultMiterLimit;
- (void)setMiterLimit:(float)miterLimit;
- (float)miterLimit;

The miter limit is used as a way to keep mitered corners from becoming too long. As the angle between two path
segments decreases, a mitered corner extends farther and farther from the intersection point. At an angle of zero, the
corner would become an infinitely long spike. Thus, it is necessary to limit the miters so that they don't get out of
hand. The miter limit limits this effect. If the angle between the two path segments becomes too small, the miter limit
changes the corner from a mitered line join to a beveled line join. Note that the miter limit has no effect on rounded
or beveled line joins.

The value of this parameter is somewhat arcane. It isn't just a simple cutoff angle. Instead, take a ratio of the diagonal
length of the miter to the line width. If this ratio is greater than the miter limit, the beveled join is used. According to
Apple's documentation, the default value of ten means angles of less than about 11 degrees become beveled.

Flatness

Flatness is one of the only graphics context parameters that affects both stroked and filled paths. It determines the
accuracy of curved path sections. Whenever your path contains a Bezier curve or other arc, Quartz needs to flatten it
into a series of line segments as part of the rendering process. By altering the flatness attribute you can trade

rendering efficiency (execution time) with rendering accuracy. Four methods manipulate a curve's flatness. They are

+ (void)setDefaultFlatness:(float)flatness;
+ (float)defaultFlatness;
- (void)setFlatness:(float)flatness;
- (float)flatness;

The actual value passed to or returned from these methods is the maximum error tolerance in pixels for a given point
along the curve; hence, it is device dependent.

Larger values of flatness mean less accurate curves, and smaller values give more accurate drawing at the expense of
rendering time. Cocoa limits this parameter to be between 0.2 and 100. If the parameter is set to a value outside of
this range, it is clamped to keep it within these limits. The standard value of 1.0 is fine for most applications.

Querying and Modifying a Path

Besides defining and rendering paths, an NSBezierPath object also enables a developer to query and modify the
details of the path that it defines. There are several methods that can be used to query the points along the path and
the operations acting on them, as well as determining more general information about the entire path such as its
bounding box. There are also a few methods that can be used to alter the path. Some create a new path object and
return that, without modifying the original NSBezierPath, and some modify the path object itself.

To determine if a given NSBezierPath object has any points defined yet, you can use the -isEmpty method. It
returns a BOOL value, YES if there are no points defined yet and NO otherwise.

While a path is being defined, the -currentPoint method returns an NSPoint that indicates the current point in
the path. Remember that all the path defining operations such as lineto and curveto always use the current
point as the first endpoint of the path segment that they define.

Many times, a developer needs to know the bounding box of a given path. A path's bounding box is defined as the
smallest rectangle that encloses the entire path. There are actually two bounding boxes that are significant. The first
is the standard bounding box that encloses the visible path itself. The -bounds method returns an NSRect
containing the standard bounding box. The second is the bounding box that encloses the path and any invisible
control points from Bezier curve sections. Often, the control points of these curves can lie well outside of the bounds
enclosing the visible parts of the path. If a path contains no curveto segments, both bounding boxes are the same.
The -controlPointBounds method return an NSRect containing the bounding box that encloses both the
visible path and the control points.

- (int)elementCount
- (NSBezierPathElement)elementAtIndex:(int)index
 associatedPoints:(NSPointArray)points;
- (NSBezierPathElement)elementAtIndex:(int)index;

Besides the queries that return information about the whole path, there are also several methods that provide specific
information about each element of the path. The -elementCount method returns the number of path elements that
are defined by a particular NSBezierPath instance.

To find out about a particular path element, use the -elementAtIndex:associatedPoints: method. The
first parameter is an integer to specify which element to know about. The second parameter is an array of points. The
actual points associated with the given element are placed into this array. Because a path element can have zero, one,
or three points associated with it, the array you pass to the method should contain at least three points. (The
curveto element has three points, and closing a path has zero points. The others have one point.) It is acceptable to
pass in a pointer that references a portion inside of a larger point array as long as there are at least three points
available to receive the information. In the case of a curveto, the points are returned in this order: control point

one, control point two, and end point.

The return value of -elementAtIndex:associatedPoints: tells the actual type of element, and hence, how
many of the points are filled in. The possible values, corresponding to the basic path elements described previously,
are

NSMoveToBezierPathElement

NSLineToBezierPathElement

NSCurveToBezierPathElement

NSClosePathBezierPathElement

If the developer isn't interested in the values of the actual points associated with a given element, -
elementAtIndex:associatedPoints: can still be used, but with NULL passed in as the points parameter.
Alternatively, the -elementAtIndex: method can be used to do the same thing.

To modify an NSBezierPath object, there is currently only one method available:

- (void)setAssociatedPoints:(NSPointArray)points atIndex:(int)index;

The -setAssociatedPoints:atIndex: method can be used to change the positions of the points associated
with a given path element. The index parameter specifies which element's point(s) should be modified. The points
parameter contains the new data for the points in question. A curveto element would require an array with three
points in it. One point is required for moveto and lineto elements. Because a closepath element has no points
associated with it, this method leaves those elements unaffected.

Unfortunately, there are currently no methods available for removing path elements or for changing an element into
an element of another type. If an NSBezierPath needs to be edited in this way, the only means of accomplishing
this right now is to create a new path object. After instantiating the object, walk through all the elements in the
original object, copying them to the new object while changing or deleting them as needed. When the new object has
been built, it can replace the old path object.

There are two other methods of interest, both of which create new NSBezierPath objects. The first, -
bezierPathByFlatteningPath, is for flattening a path. A flattened path is a path without any curve elements.
Instead, it has only straight line segments. When paths are rendered to the screen or other output device, they must
first be flattened; by obtaining a flattened path the previous element inspection methods can be used to find out how
the curves will be approximated when rendered. Using the various flatness methods described earlier in this chapter
under "Flatness" can control how curves are flattened.

The other method, also returning a new NSBezierPath object, is -bezierPathByReversingPath. Because
the new path renders identically, it might not be immediately obvious why this would be useful. However, refer to
the previous discussion of fills and recall that the direction a path is drawn is significant in determining how it is
filled. By reversing a subpath, it is possible to change the fill behavior. It is possible to create a library of basic path
shapes, each a different NSBezierPath instance, and then append them together to create a complete object. How
each subpath is filled can be controlled by reversing it or not before appending it to the final path. This type of
situation is where this method is most likely to be used.

Book: Cocoa® Programming
Section: Chapter 12. Custom Views and Graphics Part I

Summary

This chapter introduced the techniques used to draw paths with a variety of attributes and
styles. Custom drawing is implemented by subclassing the NSView class. A variety of
Cocoa classes exist to aid the implementation of view subclasses. The NSBezierPath
class is used to define paths that are stroked or filled. The built-in 2D graphics capabilities
provided by Quartz and accessible using Cocoa rival those of expensive graphics
applications. Complex and powerful graphics can be produced with the techniques
described, but this chapter has only scratched the surface of Cocoa capabilities. Chapter 13
and Chapter 14 expand on the information already presented. The next chapter introduces
more classes that enable drawing and delves into optimization issues.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 13. Custom Views and Graphics Part II

IN THIS CHAPTER

● Using NSGraphicsContext
● Coordinate System Transformations
● Drawing Points and Rectangles
● Optimizing Drawing

This chapter extends the path drawing techniques described in Chapter 12, "Custom Views
and Graphics Part I." Modifying the coordinate system used to draw paths enables the
production of complex and powerful effects. Techniques for fast point and rectangle
drawing are presented with examples, and the issues that impact drawing performance are
described. This chapter presents methods of optimizing drawing and tools that help identify
drawing inefficiencies. The combination of this chapter and Chapter 12 provide a firm
grounding in the art of vector drawing with Cocoa.

Book: Cocoa® Programming
Section: Chapter 13. Custom Views and Graphics Part II

Using NSGraphicsContext

The NSGraphicsContext class provides extra control over drawing. It is the main entity through which drawing
commands flow, so it has a global control over all drawing sent to it. Seasoned Macintosh developers will find it useful
to consider a graphics context to be analogous to a graphics port. Although there might be many graphics contexts in a
given program, more often than not the current graphics context is the one of interest. The current context is the one
that is being drawn right now, and generally represents the drawing surface of an NSWindow. All NSView instances
in a given window will use that window's graphics context for their actual drawing unless previously instructed to
create their own private context. To get a pointer to the instance of NSGraphicsContext object that is the current
context, use the +currentContext method, like this:

NSGraphicsContext *currentContext = [NSGraphicsContext
currentContext];

There are several tasks that can be performed with an instance of NSGraphicsContext. It can be queried to find
out information about the context, set some parameters that will affect drawing, and perform some basic actions.

Where Am I Drawing?

In Cocoa, it is generally not necessary to write different code for drawing to the screen versus printing. The
Application Kit will use the NSView's -drawRect: method to perform both operations. To know whether the
current drawing operations are going to the screen or being printed, send the -isDrawingToScreen method:

BOOL drawingToScreen = [currentContext isDrawingToScreen];

If a context is not drawing to the screen, then its output is being collected and stored as PDF, and could be saved to a
file on disk or sent to a printer or fax. In other words, if this method returns YES the drawing is immediate, otherwise
it will be deferred for later, stored as PDF data. This method is very handy if something in a drawing needs to be done
differently when printing than when drawing to the screen. For example, a drawing program might display a grid in the
onscreen document, and suppress drawing the grid when printing. This query would be used to control that decision.

To obtain the answer to this query without further use of the instance of NSGraphicsContext, do this:

BOOL drawingToScreen = [[NSGraphicsContext currentContext] isDrawingToScreen];

However, because this is done so frequently, Apple has provided the +currentContextDrawingToScreen
method to simplify code slightly. This code does exactly the same thing as the previous code:

BOOL drawingToScreen = [NSGraphicsContext currentContextDrawingToScreen];

If it is necessary to use the current NSGraphicsContext instance further, don't use this shortcut. It is more
efficient to obtain a copy of the current context and store it in a local variable than to send multiple
+currentContext calls.

Flushing a Context

Although it was suggested in Chapter 12, "Custom Views and Graphics Part I," that drawing to the screen with Quartz
is immediate, there are cases where drawing code is called, but nothing appears on the screen. This is particularly
common when the drawing code is called as a result of an NSTimer firing, which would likely be the case for
animation. This can be puzzling; it is clear that the drawing isn't quite as immediate as you might think. Cocoa tries to

make drawing as efficient as possible. To this end, it stores up drawing commands until it is told to actually make them
all appear onscreen at once, a process known as flushing. If the Application Kit invokes a -drawRect: method
through the normal window and view display mechanism, it will take care of the flushing. In other cases, a developer
must make sure that the flushing happens.

There are two ways to force drawing to be flushed to the screen, and which one to use will depend on how the code has
been structured. Suppose that all drawing is done exclusively in the -drawRect: method. Instead of doing some
drawing, and then flushing it to the screen, it might be easier to coerce the Application Kit into invoking its view
redisplay mechanism. This forces the -drawRect: to be called, with all appropriate flushing done by the
Application Kit. To do this, simply tell an NSView or NSWindow that it needs to be redrawn by sending a -
setNeedsDisplay: message to it.

For example, suppose there is an NSView that displays an animation. Each frame is to be drawn at a certain time, and
an NSTimer created to invoke the code that will set up the next frame. The code would look something like this, if the
method were an instance method of the animated NSView:

- (void)timerPing:(NSTimer *)theTimer
{
 // the code or a call to the code to update the
 // internal model to the next frame goes here
 [self setNeedsDisplay:YES];
}

If this method were implemented in a controller object, the -setNeedsDisplay: method would go to any and all
pertinent NSView objects and display the data that was updated for this frame of animation. The Application Kit, at
the end of the event loop, will notice that the view needs to be redisplayed and will cause it to be redrawn at that time,
flushing all drawing to the screen before starting another pass through the event loop. A display message could also be
sent to the NSView to get it to redraw immediately, instead of waiting for the event loop to finish. This is not
necessarily a good idea, however. If something else in the code also causes the same NSView instance to redraw, then
it might get redrawn multiple times, possibly with the exact same frame contents being drawn each time. Obviously,
coalescing all the redraw requests into one, and doing it just once, is the most efficient approach. This is what -
setNeedsDisplay: attempts to do.

NOTE

The current version of Cocoa has a performance bug in it that affects the display methods. At present, -
display is actually faster than -setNeedsDisplay:. Rather than using the methods incorrectly, it
is best to use -setNeedsDisplay: anyway. To work around the problem, a category on NSView can
be created to override -setNeedsDisplay: so that it calls -display. Anyone implementing such a
workaround should check each release of Mac OS X and remove it as soon as Apple fixes the problem.

Sometimes finer granularity is needed to control when graphics are actually rendered on the screen. In that case, all
pending drawing can be forced to be immediately rendered by using the NSGraphicsContext instance
corresponding to the current context. Send it the -flushGraphics message, such as this:

[[NSGraphicsContext currentContext] flushGraphics];

If the drawing takes quite a while to render, put a few flushes into the code, so that the user sees the drawing take place
in steps instead waiting for all the drawing commands to be issued. Sometimes a method might simply send -
lockFocus to an NSView, scribble a bit, and then send -unlockFocus. It is legal to draw in an NSView outside
of -drawRect: as long as the focus has been set to the view in question. For this drawing to actually be seen on the
screen, however, flush the current graphics context before unlocking the focus. Although this does work, any drawing
that isn't a part of the -drawRect: method can potentially be erased the next time the Application Kit decides to

redraw the entire view, and most certainly won't appear when the view is printed. For temporary drawing, such as
markers and guides, this might be preferred because it short circuits the more complex Application Kit redraw
mechanism and the negative effects aren't undesirable. In most situations, though, it is best to stick with -drawRect:
and -setNeedsDisplay:.

Controlling the Drawing

Drawing parameters can vary and a developer might want to restore them to their original state. Rather than querying,
storing, and resetting the entire state of a graphics context, instruct the context to do this via the -
saveGraphicsState and -restoreGraphicsState methods. Each save must be balanced by exactly one
restore. The parameters are saved on a stack. If multiple saves are performed before issuing a restore, the settings will
restore in the reverse order in which they were saved. For example:

NSGraphicsContext *currentContext = [NSGraphicsContext currentContext];
// initial settings, settings #1 in effect
[currentContext saveGraphicsState];
// change some settings
// settings #2 in effect
[currentContext saveGraphicsState];
// change some settings
// settings #3 in effect
[currentContext restoreGraphicsState];
// settings #2 in effect
[currentContext restoreGraphicsState];
// settings #1 in effect

This saving and restoring is very fast-much faster than trying to track all the parameters yourself. The stack size is
limited only by available memory, but excessive saving and restoring could negatively impact performance. Only save
when needed. Don't forget to match each save with a restore. Matching saves and restores ensures that the context is
back to its original state at the end of drawing. Matching also makes sense because unmatched save operations waste
memory and CPU cycles by saving something that is never intended to be restored.

There are two other ways to control drawing with the NSGraphicsContext class. The first is to turn antialiasing
on or off. The second is to control image interpolation.

By default, all Quartz graphics are antialiased. This generally makes them look much nicer onscreen. However, in
some situations, antialiasing might not be desirable. NSGraphicsContext implements two methods to deal with
antialiasing. The first checks to see if antialiasing is on or off and the second sets the antialiasing to on or off:

- (void)setShouldAntialias:(BOOL)antialias;
- (BOOL)shouldAntialias;

The most common place to turn off antialiasing is with screensavers. Often, a screensaver will not redraw the entire
view because it is such a large area of the screen. Instead, it will erase a line or other object by redrawing it in black.
When drawing is antialiased, however, the black paint won't necessarily touch every pixel that was affected by the
antialiasing. Other pixels along curves and lines will have been painted faintly in the antialiasing process. Because
drawing in black won't erase these, there are two choices to not leave behind artifacts. The first is to paint a wider line,
larger circle, and so on, so that the black paint covers some extra area. Although this works, it might make the
screensaver look less appealing. Turning off antialiasing is the way to go. Any time drawing is leaving artifacts, check
the antialiasing setting and make sure it is doing what is desired.

The other parameter that can be controlled via NSGraphicsContext is image interpolation. When Quartz scales an
image up or down, it uses image interpolation to make the scaling look good. But interpolation is an expensive
operation in terms of CPU cycles. It is possible to squeeze out that last bit of performance by lowering the image
interpolation quality or turning it off all together. Just like antialiasing, there are two associated

NSGraphicsContext methods, one for querying and one to alter the setting:

- (NSImageInterpolation)imageInterpolation;
- (void)setImageInterpolation:(NSImageInterpolation)interpolation;

Note that these methods use a special type. NSImageInterpolation is an enumerated type and there are currently
four self-explanatory options available: NSImageInterpolationDefault, NSImageInterpolationNone,
NSImageInterpolationLow, and NSImageInterpolationHigh. Remember that changing this value from
the default trades performance for quality. Because of this, use low quality or no image interpolation when drawing to
the screen, but use full quality when printing. Additionally, if images are drawn without any scaling or rotation, and
the image resolution matches exactly with the output-device resolution this setting will have no effect on actual output
quality.

NSGraphicsContext Advanced Methods

So far, drawing into an NSGraphicsContext, which represents the drawing area of an NSWindow has been
discussed. It is also possible to create an NSGraphicsContext that saves future drawing to an NSData instance or
to a file on disk. It is important to understand that drawing code doesn't need to change when drawing to a different
kind of NSGraphicsContext. In other words, the drawing that is done to the screen by an NSView can be sent to
a different NSGraphicsContext without any need to change the drawing commands. What is captured on disk or
sent to a printer will be identical to what is drawn on the screen.

The Application Kit NSView machinery, for example, already supports printing implicitly, without requiring a
developer to write any code to support printing. The standard print panel will come up and, once the Preview or Print
buttons are clicked, the NSView will create a special NSGraphicsContext, and then call its -drawRect:
method to draw to the printer or to a file for the Previewer to open. A developer doesn't need to do any of this because
the Application Kit takes care of it. If drawing code needs to know the drawing destination, it can find out by obtaining
the current context and querying its attributes.

Some rare instances might occur where it makes sense to set up an NSGraphicsContext manually and use it, for
example, writing to a PDF file. To create a specialized NSGraphicsContext object, the
+graphicsContextWithAttributes: method is used. The method is defined like this:

+ (NSGraphicsContext *)graphicsContextWithAttributes:(NSDictionary *)
attributes;

This method will return a new context and requires an NSDictionary as its only parameter. To describe the type of
graphics context desired, an NSDictionary instance with specific key and value pairs is required.

The first key/value pair uses the special Application Kit defined key
NSGraphicsContextDestinationAttributeName. This key/value pair is required for this method to be
called correctly. The value of this key in the NSDictionary should be an instance of NSWindow, NSData, or
NSURL. The present implementation requires that the value be an instance of one of those three classes, or an instance
of a subclass of one of those three classes. No other classes are accepted.

If an instance of NSMutableData or NSURL is chosen for the context destination, another key/value pair is possible.
The key is NSGraphicsContextRepresentationFormatAttributeName, and it is used to define the file
format for the graphics context's output. The two possible values for this key are NSGraphicsContextPSFormat
and NSGraphicsContextPDFFormat. The first value will cause the output to be produced as PostScript data.
The second value will cause PDF output.

As a shortcut to obtaining an NSGraphicsContext for a particular NSWindow, the
+graphicsContextWithWindow: method can be used. This method takes an instance of NSWindow, or one of
its subclasses, as an argument and returns an appropriate NSGraphicsContext. Therefore, the following two

method calls are identical in functionality:

myContext = [NSGraphicsContext graphicsContextWithAttributes:
 [NSDictionary dictionaryWithObject:myWindow
 forKey:NSGraphicsContextDestinationAttributeName]];
myContext = [NSGraphicsContext graphicsContextWithWindow:myWindow];

Given an instance of NSGraphicsContext, it is possible to find out the specific attributes that were used to create
it. The -attributes method will return an NSDictionary with the same key/value pairs as the dictionary used
to create the instance.

To activate an instance of NSGraphicsContext, the NSGraphicsContext class needs to be sent the
+setCurrentContext: method. Sending this method with an instance of NSGraphicsContext as the
argument will cause that context to become active in the thread that sent the message. Until the current context is
changed, all drawing in the thread will go through that context.

Although a discussion of low-level Quartz functions has been avoided, there are times when access to an
NSGraphicsContext's underlying Quartz context is required for use in calling Quartz functions. The -
graphicsPort method will return a CGContextRef that can be used in this way. Because the method's return type
is void *, it must be cast as a CGContextRef pointer to be able to use it.

CGContextRef *cgContext = (CGContextRef *)
 [[NSGraphicsContext currentContext] graphicsPort];

The -graphicsPort method's return value is platform dependent, so in the future it might have a different
semantic. This will be true especially if Cocoa is ever ported by Apple, or another party, to run atop other operating
systems. For the time being, Mac OS X is the only operating system that fully supports Cocoa, so this point is not yet
critical, but could become so in the future.

Book: Cocoa® Programming
Section: Chapter 13. Custom Views and Graphics Part II

Coordinate System Transformations

The NSAffineTransform class can warp the drawing canvas. The main purpose of this is to enable a single
NSBezierPath object to define a path that can be used multiple times. In the star example in Chapter 12, four different
stars are drawn at four different locations. They are all drawn using the same NSBezierPath object, without changing
the object's path or the location of its points. Moving the canvas, or translation, is one of the ways that
NSAffineTransform can alter drawing. It can also perform scaling (changing the size) and rotation. Other effects such
as skew are also possible. Slanting is an example of skewing. After skewing, what was once a right angle is no longer a
right angle.

Defining an NSAffineTransform

To get a new NSAffineTransform object, two approaches are possible-create an identity transform from scratch, or
create one based on another instance. To obtain an identity transform, use the +transform method in this manner:

newTransform = [NSAffineTransform transform];

This method returns a brand new transform object that contains the identity transform. The identity transform is like a
blank slate because it will cause no change in the drawing when it is applied. If a transform based on another existing
transform is needed, then a different method, -initWithTransform:, should be used:

newTransform = [[NSAffineTransform alloc] initWithTransform:existingTransform];

This code will return a new transform object that is identical to the existingTransform object that was used as a parameter
to the initialization method.

Translation

When you have a transform object, it can be instructed to translate, scale, or rotate. Translation causes drawing to be moved
to a new location. Translation is added to a transform with the following method:

- (void)translateXBy:(float)deltaX yBy:(float)deltaY;

This method, -translateXBy:yBy:, causes drawing to take place at a new location. For example, suppose a circle is
drawn with radius 10.0 with the origin (0.0, 0.0) as its center. After translation by (50.0, 40.0), the same path would
actually be drawn with the point (50.0, 40.0) as its center, even though the path itself specifies the origin as its center point.
In other words, translation moves the origin of the coordinate system to a new location. The star drawing example, shown
in Chapter 12, uses translation to draw the same star, defined by a single NSBezierPath object in four different
locations. This drawing is accomplished by using the -translateXBy:yBy: method. Many of the other algorithms in
the Paths example code also demonstrate the use of this method, including the following scaling example.

Scaling

Two methods are used for scaling drawing. Scaling allows drawing to be expanded or shrunk.

- (void)scaleBy:(float)scale;
- (void)scaleXBy:(float)scaleX yBy:(float)scaleY;

The first, -scaleBy:, scales all drawing equally in both the X and Y directions. This is the most common case. However,
the X and Y axes can be scaled by different amounts. This causes an effect where the drawing will appear to be stretched or
squashed in one direction. For example, if the X axis was scaled by a larger number than the Y axis, a circle would become
an oval that is wider than it is tall. Note that the following two lines of code are equivalent:

[transform scaleBy:scaleAmount];
[transform scaleXBy:scaleAmount yBy:scaleAmount];

A scaling value of 1.0 causes no change to the axis. A value greater than 1.0 will cause the axis to be stretched out. If a
view's drawing area starts 100.0x100.0 it will be reduced to 50.0x50.0 after scaling both axes by 2.0. The view would still
be the same size on the screen, but the drawing inside it would be twice as large. If the scaling value is between 0.0 and 1.0,
then the affected axes will be shrunk. A view with a 100.0x100.0 drawing area scaled by 0.5 would display coordinates
within a 200.0x200.0 area. Again, the view is still the same size on screen, but the drawing would be half as large as for an
unscaled view.

As an example of scaling, the Paths example uses the -drawScaling method to draw four circles, each scaled
differently. Here is the code:

- (void)drawScaling
{
 NSRect bds = [self bounds];
 NSPoint center = NSMakePoint(NSMidX(bds), NSMidY(bds));
 double radius = MIN(center.x, center.y) * 0.25 - 10.0;
 NSBezierPath *circle = [NSBezierPath bezierPath];
 NSAffineTransform *transform;
 NSGraphicsContext *currentContext = [NSGraphicsContext currentContext];
 [circle appendBezierPathWithArcWithCenter:NSZeroPoint
 radius:radius startAngle:0.0 endAngle:360.0];
 [circle closePath];
 [circle setLineWidth:4.0];
 [[NSColor whiteColor] set];
 NSRectFill(bds);
 [[NSColor blackColor] set];
 // lower left: normal size
 transform = [NSAffineTransform transform];
 [transform translateXBy:center.x * 0.5 yBy:center.y * 0.5];
 [currentContext saveGraphicsState];
 [transform concat];
 [circle stroke];
 [currentContext restoreGraphicsState];
 // upper left: x and y scaled by 2 (twice the size)
 transform = [NSAffineTransform transform];
 [transform translateXBy:center.x * 0.5 yBy:center.y * 1.5];
 [transform scaleBy:2.0];
 [currentContext saveGraphicsState];
 [transform concat];
 [circle stroke];
 [currentContext restoreGraphicsState];
 // lower right: x and y scaled by 0.5 (half the size)
 transform = [NSAffineTransform transform];
 [transform translateXBy:center.x * 1.5 yBy:center.y * 0.5];
 [transform scaleXBy:0.5 yBy:0.5];
 [currentContext saveGraphicsState];
 [transform concat];
 [circle stroke];
 [currentContext restoreGraphicsState];
 // upper right: x scaled by 2 and y scaled by 0.5
 // (distorted into a wide oval)
 transform = [NSAffineTransform transform];
 [transform translateXBy:center.x * 1.5 yBy:center.y * 1.5];
 [transform scaleXBy:2.0 yBy:0.5];
 [currentContext saveGraphicsState];
 [transform concat];

 [circle stroke];
 [currentContext restoreGraphicsState];
}

Figure 13.1 illustrates the output produced when the -drawScaling method is executed.

Figure 13.1. The output of the -drawScaling method is shown here.

Each circle is drawn with the same NSBezierPath object. The path object itself is not modified between strokes; the
only difference between the circles is a change in the transformation matrix. Because the path is defined to be centered
about the origin, there is a translation before each circle is rendered. In Figure 13.1, the circle at the lower left is the natural
size. The circle at the lower right is scaled by 0.5, which results in it being half the normal size. The circle at the upper left
is scaled by 2.0, a doubling in size. The circle at the upper right is scaled by 2.0 in the X axis and 0.5 in the Y axis. The
resultant scaling reduces the height of the circle and widens it, causing it to be distorted into an oval shape.

Note also how the scaling affects the rendered line width as well as the path itself. It is possible to alternatively render the
circles so the line width is not affected by the scaling. The -drawDistortion method, shown in the "Using an
NSAffineTransform" section later in this chapter, demonstrates how to accomplish this.

Rotation

There are two ways to accomplish rotation, differing only in how the rotation angle is specified.

- (void)rotateByDegrees:(float)angle;
- (void)rotateByRadians:(float)angle;

Use the -rotateByDegrees: method if the angle is available in degrees. Use -rotateByRadians: if the angle is in
radians.

Changing the rotation causes a rotation around the origin. This means that a path centered on the origin rotates in place. An
object drawn some distance away from the origin is both rotated and translated similar to the square to the right in Figure
13.2.

Figure 13.2. An object drawn some distance away from the origin is both rotated and translated, as with the square
on the right.

The Paths example contains a sample of rotation in the -drawRotation method. The code draws two ovals (created as
scaled circles) that have been rotated and two rotated squares:

- (void)drawRotation
{
 NSRect bds = [self bounds];
 NSPoint center = NSMakePoint(NSMidX(bds), NSMidY(bds));
 double radius = MIN(center.x, center.y) * 0.25 - 10.0;
 NSBezierPath *circle = [NSBezierPath bezierPath];
 NSBezierPath *rectangle = [NSBezierPath bezierPathWithRect:
 NSMakeRect(-radius, -radius, radius * 2.0, radius * 2.0)];
 NSAffineTransform *transform;
 NSGraphicsContext *currentContext = [NSGraphicsContext currentContext];
 [circle appendBezierPathWithArcWithCenter:NSZeroPoint
 radius:radius startAngle:0.0 endAngle:360.0];
 [circle closePath];
 [circle setLineWidth:4.0];
 [rectangle setLineWidth:4.0];
 [[NSColor whiteColor] set];
 NSRectFill(bds);
 [[NSColor blackColor] set];
 // lower left and upper right: squares normal size, rotated 45 degrees
 transform = [NSAffineTransform transform];
 [transform translateXBy:center.x * 0.5 yBy:center.y * 0.5];
 [transform rotateByDegrees:45]; // Counter Clockwise
 [currentContext saveGraphicsState];
 [transform concat];
 [rectangle stroke];
 transform = [NSAffineTransform transform];
 [transform translateXBy:center.x yBy:0.0];
 [transform concat];
 [rectangle stroke];
 [currentContext restoreGraphicsState];
 // upper left: scaled and rotated circle
 transform = [NSAffineTransform transform];
 [transform translateXBy:center.x * 0.5 yBy:center.y * 1.5];
 [transform rotateByDegrees:-30]; // Clockwise
 [transform scaleXBy:2.0 yBy:0.5];
 [currentContext saveGraphicsState];
 [transform concat];
 [circle stroke];
 [currentContext restoreGraphicsState];
 // lower right: x and y scaled by 0.5 (half the size)
 transform = [NSAffineTransform transform];
 [transform translateXBy:center.x * 1.5 yBy:center.y * 0.5];
 [transform rotateByRadians:M_PI / 6.0]; // Counter Clockwise
 [transform scaleXBy:2.0 yBy:0.5];
 [currentContext saveGraphicsState];
 [transform concat];

 [circle stroke];
 [currentContext restoreGraphicsState];
}

The previous code can be executed by choosing the Rotation Example option on the control panel of the Paths example. A
sample of this method's output can be seen in Figure 13.3.

Figure 13.3. The output of the Rotation Example option is shown.

Reverse Transforms

At times it is useful to create a transform that does the opposite of an existing transform. The -invert method can be
used to produce just that. An example of this follows:

reverseTransform = [[NSAffineTransform alloc] initWithTransform:
existingTransform];
[reverseTransform invert];

After the invert message, reverseTransform would have the reverse effect on drawing that existingTransform has.

Combining Transforms

Multiple transforms can be combined into a single transform. The NSAffineTransform object can be thought of as a
sequence of transformations that can be applied to drawing. The order of operations in the sequence is important (consider
the previous combination of rotation and translation). Because order is important, there are two methods that can be used to
build up a sequence of transformations:

- (void)appendTransform:(NSAffineTransform *)transform;
- (void)prependTransform:(NSAffineTransform *)transform;

The names of these methods are highly counterintuitive, so be very careful with them! The names match up with the math
that is going on inside the NSAffineTransform object, as described in the "Expert Transforms" section later in this
chapter. The effect the methods have is the opposite of what would be expected. To explain what will happen, consider the
translation with rotation example shown in Figure 13.3. Suppose there are two objects, translateTransform and
rotateTransform, and you want to create a third object that combines the two. Here are two of several possible ways
to obtain the new objects:

NSAffineTransform *combinedTransform1;
NSAffineTransform *combinedTransform2;
combinedTransform1 = [[NSAffineTransform alloc]
 initWithTransform: translateTransform];
[combinedTransform1 prependTransform:rotateTransform];
combinedTransform2 = [[NSAffineTransform alloc]

 initWithTransform: translateTransform];
[combinedTransform2 appendTransform:rotateTransform];

The object combinedTransform1 will perform a translation followed by a rotation. The other object,
combinedTransform2, will be the reverse-a rotation followed by a translation. It might be expected that appending a
transform would cause it to happen after what is already there, but that's not the case. If the transforms are listed from left
to right, with prepend operation adding a transform to the left and an append operation adding a transform to the right, then
the right-most transform is the one that takes effect first. The order of the transform operations will occur from right to left,
with the left-most being the last transform applied. All the previous methods for scaling, rotation, and translation actually
prepend their operation to the NSAffineTransform instance so they will take place after what is already there.

Although this is slightly confusing at first, the rule is simple and can easily be memorized: If a transform is to happen
before what is there, use append. If it is to happen after, use prepend. Remember also that these terms are describing the
underlying math rather than the expected effect. Although they might seem odd, they are actually following a common
naming standard.

Prepending and appending transformations can offer a huge performance boost. This is because the cost of applying a
transformation is constant no matter how many transform operations are aggregated together into a single
NSAffineTransform. The reason for this becomes clearer in the "Expert Transforms" section later in this chapter. If a
particular set of transformations occurs often, combining them into a single transformation with prepend and/or append
operations will provide a performance boost. Rather than applying each transformation one by one, which can become time
consuming, a single transform is applied that performs them all at once.

Using an NSAffineTransform

Defining a transform, as shown in the previous section, is not enough to actually alter drawing. For an
NSAffineTransform to have any effect, it needs to be applied. It can be applied to an NSPoint or NSSize structure
or to an NSBezierPath object. Doing so will return a new structure or object that represents the original entity after
transformation. The transform can be applied to a graphic context, and after that it will affect all drawing.

To transform an NSPoint, use the -transformPoint: method. The method will return a new NSPoint, leaving the
original NSPoint unaffected. For example:

NSPoint transformedPoint = [myTransform transformPoint:originalPoint];

To transform an NSSize, use the -transformSize: method. It works in a way similar to the -transformPoint:
method. The -transformSize: method will return a new NSSize, leaving the original NSSize unaffected. For
example:

NSSize transformedSize = [myTransform transformSize:originalSize];

There are two ways to transform an NSBezierPath object. If a new object, a transformed NSBezierPath, is required,
the NSAffineTransform method -transformBezierPath: should be used, like this:

NSBezierPath *newPath = [myTransform transformBezierPath:originalPath];

Alternatively, if a new object is not desired, it is possible to transform an NSBezierPath object in place by sending it
the -transformUsingAffineTransform: message like this:

[myPath transformUsingAffineTransform:myTransform];

In each of the previous methods, the effect of the transform is restricted to the structure or object upon which the message
acts. More often, a transform is used to alter all subsequent drawing within a particular graphics context. To apply a
transform to the current graphics context, send it a -concat message such as this:

[myTransform concat];

Note that this will always affect the current graphics context. Furthermore, the context's current transformation matrix (also
called the CTM) is one of the things saved or restored when a graphics context is saved or restored as described in the
"Using NSGraphicsContext" section later in this chapter. Just as with clipping areas, saving and restoring the graphics
context can be used to undo changes to the CTM made with the -concat method.

The -set method can be used instead of -concat. Just as with clipping paths, the -set method is dangerous because it
completely replaces the CTM rather than simply modifying it. This is important because when an NSView's drawRect: is
called, the CTM is already set to account for the view's location, scaling, and rotation. By using -concat, the basic
coordinate system of the view itself is being used as a starting point for any subsequent transformations. Using -set starts
with the NSWindow's coordinate system instead. If all the specifics of the NSView's positioning are not taken into account
within the window, -set will most likely not work as expected, and should therefore be avoided unless absolutely
necessary. Similar to working with clipping areas, saving and restoring the graphic context is the preferred way to back out
of a transformation.

When a transform has been applied to a graphics context, everything is affected. The path itself is altered by the transform.
But line widths, dash patterns, fill patterns, and so on, are also all affected by the CTM. This can lead to unwanted
distortion. The problem is that both the path and the rendering are being affected by the transformation. To affect only the
path, and not the rendering, the NSAffineTransform's -transformBezierPath: method should be used instead
of setting the transform as the graphics context's CTM. Here is some code to demonstrate this technique by drawing
rectangles that have been stretched vertically and horizontally:

- (void)drawDistortion
{
// Draw four sheared rectangles
// 2 horiz stretch, correct 3 vert stretch, correct
// 1 horiz stretch, distorted 4 vert stretch, distorted
 NSGraphicsContext *currentContext = [NSGraphicsContext currentContext];
 NSBezierPath *path = [NSBezierPath bezierPath];
 NSAffineTransform *transform = nil;
 NSRect bds = [self bounds];
 // divide the view into four rectangles
 NSRect r1 = NSMakeRect(bds.origin.x, bds.origin.y,
 bds.size.width / 4.0 - 20.0, bds.size.height / 4.0 - 20.0);
 NSRect r2 = NSMakeRect(bds.origin.x, NSMidY(bds),
 bds.size.width / 2.0, bds.size.height / 2.0);
 NSRect r3 = NSMakeRect(NSMidX(bds), NSMidY(bds),
 bds.size.width / 2.0, bds.size.height / 2.0);
 NSRect r4 = NSMakeRect(NSMidX(bds), bds.origin.y,
 bds.size.width / 2.0, bds.size.height / 2.0);
 // clear the view to a white background
 [[NSColor whiteColor] set];
 NSRectFill(bds);

 // set the drawing color to black and the line width to 2.0
 [[NSColor blackColor] set];
 [path setLineWidth:10.0];

 // define the star's path
 [path appendBezierPathWithRect:r1];
 //[path closePath];

 // do r1 - horiz stretch, with distortion
 transform = [NSAffineTransform transform];
 [transform translateXBy:10.0 yBy:10.0];
 [transform scaleXBy:2.0 yBy:1.0];
 [currentContext saveGraphicsState];
 [transform concat];

 [path stroke];
 [currentContext restoreGraphicsState];

 // do r4 - vert stretch, with distortion
 transform = [NSAffineTransform transform];
 [transform translateXBy:r4.origin.x + 10.0 yBy:r4.origin.y + 10.0];
 [transform scaleXBy:1.0 yBy:2.0];
 [currentContext saveGraphicsState];
 [transform concat];
 [path stroke];
 [currentContext restoreGraphicsState];

 // do r3 - vert stretch, no distortion
 transform = [NSAffineTransform transform];
 [transform translateXBy:r3.origin.x + 10.0 yBy:r3.origin.y + 10.0];
 [transform scaleXBy:1.0 yBy:2.0];
 [currentContext saveGraphicsState];
 [[transform transformBezierPath:path] stroke];
 [currentContext restoreGraphicsState];

 // do r2 - horiz stretch, no distortion
 transform = [NSAffineTransform transform];
 [transform translateXBy:r2.origin.x + 10.0 yBy:r2.origin.y + 10.0];
 [transform scaleXBy:2.0 yBy:1.0];
 [currentContext saveGraphicsState];
 [[transform transformBezierPath:path] stroke];
 [currentContext restoreGraphicsState];
}

Figure 13.4 shows what this code's output looks like:

Figure 13.4. Output using NSAffineTransform's -transformBezierPath: method is shown here.

Expert Transforms

There is another way to define an NSAffineTransform, but it is more complex than simple translation, scale, and
rotation methods described in the "Defining an NSAffineTransform" section earlier in this chapter. Transforms are
sometimes referred to as matrices because the underlying implementation uses a 3x3 matrix to define an affine transform.
Matrix multiplication is used to get the new coordinates for a point from the original coordinates. By treating the input
point as a vector, the matrix and vector can be multiplied to produce a new vector. The resultant vector is the new,
transformed point.

By multiplying two 3x3 transformation matrices together, it is possible to create a new matrix. The new matrix, when used
to transform a point, will perform both the transformations that the original matrices would have performed had they been

applied individually. Several transforms can be multiplied together to create a single transform matrix that will perform all
the operations of the original multiplicands. Matrix multiplication is not commutative like other more common types of
multiplication. This means that order is important because the order the operations are applied changes the results, often
dramatically. When a series of multiplications is written out, it might look like this (capital letters represent the matrices):

result = A x B x C x point

The order of the transforms actually affects the input point starting with the matrix closest to the point and ending with the
matrix farthest from the point. Thus, transform C, then B, and finally A will be applied to the point to produce the result. If
the matrix Z were defined to be the multiplication of the other matrices (A x B x C), then this equation would produce the
same result:

result = Z x point

Note that if a matrix is prepended, or added to the beginning of the multiplications, then that matrix's transformation will be
applied last. Conversely, if a matrix is appended (such as inserting a matrix D between C and point in the previous
example), that transformation will occur before the others. This demonstrates why the prepend and append operations as
described earlier do make sense according to the underlying mathematics.

The -concat method described previously works inside the current graphics context by performing a prepended
multiplication with the CTM. The prepend and append methods do a matrix multiply inside the NSAffineTransform
instance instead of inside the current graphics context.

There are several standard forms for defining matrices for translation, scaling, rotation, and shearing. The Cocoa
documentation gives a good description of each kind of matrix, so they aren't repeated here. Refer to this page for the
details:

/Developer/Documentation/Cocoa/TasksAndConcepts/ProgrammingTopics/DrawBasic/
Concepts/transforms.html

One of the types of transformations mentioned at the start of the "Modifying Drawing" section of Chapter 12 was shearing.
However, there is no NSAffineTransform method to explicitly do shearing.With that in mind, the next example will
use direct manipulation of transform matrices to create a method for doing shearing.

First, code to actually modify an NSAffineTransform's internal matrix is needed. For working with
NSAffineTransform objects at this level, the Application Kit defines a special structure,
NSAffineTransformStruct. This structure holds the six values required to specify a transformation matrix. It is
defined as follows:

typedef struct _NSAffineTransformStruct {
 float m11, m12, m21, m22;
 float tX, tY;
} NSAffineTransformStruct;

Note that the structure members' names correspond exactly to the matrix and equations shown in the Apple documentation
referenced previously. The NSAffineTransformStruct for a given NSAffineTransform object can be obtained
using the -transformStruct method as follows:

NSAffineTransformStruct myTransformStruct = [aTransform transformStruct];

This allows the actual matrix values of a given NSAffineTransform to be examined.

An NSAffineTransformStruct can alter the members in an arbitrary way. To change the entire matrix of an
NSAffineTransform all at once, perhaps in a way that is not a typical translation, scaling, or rotation, the -
setTransformStruct: method would be used:

[aTransform setTransformStruct: myTransformStruct];

Calling this method will remove any existing transforms the object has previously defined, and replace it with whatever
transform is defined by myTransformStruct.

As an example of how to use these methods, a new transformation will be created. Because there is no
NSAffineTransform method for shearing, one can be created as an NSAffineTransform category. To add a shear
to the current transform, do the following:

1. Create a new transform object to hold just a shear transformation.

2. Set the new object's matrix coefficients to match a shear matrix.

3. Prepend the new shear transform to self.

The new matrix is prepended and not appended. Remember that order is important (consider rotation and translation, as in
Figure 13.2). By prepending the shear, it is the operation that will affect the drawing last. The existing translation, scaling,
and rotation methods are also all performing a prepend operation.

The code required to implement this algorithm looks like this:

File Shearing.h:

#import <Cocoa/Cocoa.h>

@interface NSAffineTransform(Shearing)
- (void)shearXBy:(float)shX yBy:(float)shY;
@end

File Shearing.m:

#import "Shearing.h"

@implementation NSAffineTransform(Shearing)

- (void)shearXBy:(float)shX yBy:(float)shY
{
 NSAffineTransform *shear = [NSAffineTransform transform];
 NSAffineTransformStruct shearStruct;
 shearStruct.m11 = 1.0;
 shearStruct.m12 = shY;
 shearStruct.m21 = shX;
 shearStruct.m22 = 1.0;
 shearStruct.tX = 0.0;
 shearStruct.tY = 0.0;
 [shear setTransformStruct:shearStruct];
 [self prependTransform:shear];
}

@end

The Paths example contains a method that will draw four sheared rectangles using the previous code. The complete
implementation code is as follows:

- (void)drawShears
{

// Draw four sheared rectangles
// 2 y shear 3 x and y shear
// 1 no shear 4 x shear
 NSGraphicsContext *currentContext = [NSGraphicsContext currentContext];
 NSBezierPath *path = [NSBezierPath bezierPath];
 NSAffineTransform *transform = nil;
 NSRect bds = [self bounds];
 // divide the view into four rectangles
 NSRect r1 = NSMakeRect(bds.origin.x, bds.origin.y,
 bds.size.width / 4.0 - 20.0, bds.size.height / 4.0 - 20.0);
 NSRect r2 = NSMakeRect(bds.origin.x, NSMidY(bds),
 bds.size.width / 2.0, bds.size.height / 2.0);
 NSRect r3 = NSMakeRect(NSMidX(bds), NSMidY(bds),
 bds.size.width / 2.0, bds.size.height / 2.0);
 NSRect r4 = NSMakeRect(NSMidX(bds), bds.origin.y,
 bds.size.width / 2.0, bds.size.height / 2.0);
 // clear the view to a white background
 [[NSColor whiteColor] set];
 NSRectFill(bds);

 // set the drawing color to black and the line width to 2.0
 [[NSColor blackColor] set];
 [path setLineWidth:2.0];

 // define the star's path
 [path appendBezierPathWithRect:r1];
 //[path closePath];

 // stroke the rectangle in r1.
 transform = [NSAffineTransform transform];
 [transform translateXBy:10.0 yBy:10.0];
 [currentContext saveGraphicsState];
 [transform concat];
 [path stroke];
 [currentContext restoreGraphicsState];

 // do r4 - x shear
 transform = [NSAffineTransform transform];
 [transform translateXBy:r4.origin.x + 10.0 yBy:r4.origin.y + 10.0];
 [transform shearXBy:0.5 yBy:0.0];
 [currentContext saveGraphicsState];
 [transform concat];
 [path stroke];
 [currentContext restoreGraphicsState];

 // do r3 - both shears
 transform = [NSAffineTransform transform];
 [transform translateXBy:r3.origin.x + 10.0 yBy:r3.origin.y + 10.0];
 [transform shearXBy:0.5 yBy:0.5];
 [currentContext saveGraphicsState];
 [transform concat];
 [path stroke];
 [currentContext restoreGraphicsState];

 // do r2 - y shear
 transform = [NSAffineTransform transform];
 [transform translateXBy:r2.origin.x + 10.0 yBy:r2.origin.y + 10.0];
 [transform shearXBy:0.0 yBy:0.5];
 [currentContext saveGraphicsState];

 [transform concat];
 [path stroke];
 [currentContext restoreGraphicsState];
}

Figure 13.5 illustrates the output that results when the previous method is called from within the -drawRect: method in
the Paths example.

Figure 13.5. This is the output from the -drawRect: method in the Paths example.

A few things should be noted about this new -shearXBy:yBy: method. First, the values for shX and shY are not angles.
In fact, values of 1.0 will produce 45° angles. Second, as the X-axis shear value increases the X axis rotates counter
clockwise, but as the Y-axis shear value increases the Y axis rotates clockwise. This is opposite from what might at first be
expected, but is amply illustrated in the output shown previously. A final important point is that when both the X- and Y-
axis shear values are equal to 1.0, both axes are rotated towards each other 45°. This means they will have collapsed into a
single axis running at a 45° angle. Because the axes are collapsed, attempts at drawing will not come out as expected. In
fact, this line is mathematically infinitely narrow. That is why no drawing will appear whatsoever if a transform is used that
shears both X and Y by 1.0.

NOTE

Direct manipulation of a transformation matrix's coefficients makes it possible to create a singular matrix.
Such a matrix cannot be inverted; it is a mathematical impossibility. Therefore, be forewarned that code that
strays from using the basic transform, scale, and rotation operations could produce an
NSAffineTransform for which the -invert method cannot be called.

Book: Cocoa® Programming
Section: Chapter 13. Custom Views and Graphics Part II

Drawing Points and Rectangles

Cocoa does not provide any methods, objects, or functions specifically intended for drawing points. Cocoa
provides the NSPoint structure, yet there is no means of rendering an NSPoint onscreen. The reason has to
do with the graphics model employed by Cocoa and Quartz. Apple describes the graphics model as being the
same model as PDF and PostScript. This implies that all drawing should be considered to be both device and
resolution independent. As a result, drawing a point is meaningless. In this graphics model, the term point is used
to refer to a very precise, infinitely small point in the mathematical sense. If such a point was marked with ink, it
still wouldn't be seen because it is infinitely small.

When drawing or plotting a point, the intent is to paint a single pixel. A single pixel on a display is much larger
than a single dot on a high-resolution laser printer. To enable painting of pixels when it makes sense, the
implementation of Quartz is not completely resolution independent when it comes to video devices. As a
simplification, Quartz treats all video devices as if they are 72 dpi (dots per inch). When a coordinate is
specified, the units used are typographical points, defined as 1/72 of an inch. If a square is drawn that is 1.0 in
width and height, Quartz will paint a single pixel.

It seems inefficient to paint a filled rectangle every time a developer wants to draw a point on the screen.
However, Quartz works very hard to notice things such as a 1.0x1.0 rectangle and optimize the NSRectFill
() call. If there is more than one point of the same color to draw, using NSRectFillList() to draw multiple
rectangles at once will offer reasonable performance for most applications. The advantage to using this approach
is that when printed the drawing will still look right on the page. Extra pixels will be painted on the higher
resolution devices so that the point plotted will truly be 1/72 of an inch on the page.

There is still a speed hit when rectangles are drawn. Another approach can be used to paint individual pixels. An
NSBitmapImageRep can be used as a cover to raw pixel data. Because the pointer to the image data can be
accessed directly, a function can be created to plot a point into the raw data and then copy the image onto the
screen. Using raw image data is complex, and a complete description of the technique is not provided until
Chapter 14, "Custom Views and Graphics Part III."

Drawing into a cache only provides a performance improvement when there are large batches of points to plot
because it takes quite a bit of time to composite an image. Furthermore, in taking this approach any benefits of
ColorSync and device resolution independence are lost unless extra effort is made to engage these features. One
of the special tricks that can be used in conjunction with this caching method is to add it to an NSImage, and
then ask Quartz to draw into the image, so drawing primitives don't necessarily have to be created by the
developer.

Drawing Individual Rectangles

The following code segments implement each of these three techniques. The first segment draws individual
rectangles. This is the easiest method.

File PointView.h :

#import <Cocoa/Cocoa.h>

#define NUM_POINTS 40000

@interface MYPointView : NSView

{
}

- (void)drawRect:(NSRect)aRect;

@end

File PointView.m :

#import "PointView.h"

@implementation MYPointView

- (void)drawRect:(NSRect)aRect
{
 int i;
 NSRect bds = [self bounds];
 [[NSColor blackColor] set];
 NSRectFill(bds);
 [[NSColor whiteColor] set];
 for (i=0; i<NUM_POINTS; i++) {
 NSRectFill(NSMakeRect(random() % bds.size.width,
 random() % bds.size.height, 1.0, 1.0));
 }
}

@end

This sample class needs no instance variables and no special initialization. The -drawRect: method simply
has a loop to draw 1.0x1.0 rectangles at random locations inside the view's bounds. The NSRectFill()
function is used to paint the rectangle defined by the NSMakeRect() function. The rectangles will be drawn
with the color most recently -set, white in this example. Although simple to implement, the downside to this
approach is that it is extremely slow. Unless all the points are different colors or there aren't many points to plot,
this method is probably not the best choice.

Drawing Lists of Rectangles

The next method is to use lists of rectangles. Instead of using NSRectFill() to plot a single rectangle, use
NSRectFillList() to fill several rectangles at once. It requires two parameters. The first is a pointer to a C
array of NSRect structures. The second is an integer specifying how many rectangles are in the array. The array
could be longer than the count specifies, but the extra rectangles won't be drawn in that case. The following code
modifies the PointView object to use this technique.

File PointView.h :

#import <Cocoa/Cocoa.h>

#define NUM_PASSES 40
#define NUM_PER_PASS 1000
#define NUM_POINTS (NUM_PASSES * NUM_PER_PASS)

@interface MYPointView : NSView
{

NSRect _myRectList[NUM_PER_PASS];
}

- (id)initWithFrame:(NSRect)frameRect;
- (void)drawRect:(NSRect)aRect;

@end

File PointView.m :

#import "PointView.h"

@implementation MYPointView

- (id)initWithFrame:(NSRect)frameRect
{
 int i;
 id ret = [super initWithFrame:frameRect];
 if (!ret) return nil;
 for (i=0; i<NUM_PER_PASS; i++) {
 myRectList[i].origin.x = 0.0;
 myRectList[i].origin.y = 0.0;
 myRectList[i].size.width = 1.0;
 myRectList[i].size.height = 1.0;
 }
 return ret;
}

- (void)drawRect:(NSRect)aRect
{
 int i, j;
 NSRect bds = [self bounds];
 [[NSColor blackColor] set];
 NSRectFill(bds);
 [[NSColor whiteColor] set];
 for (j=0; j<NUM_PASSES; j++) {
 for (i=0; i<NUM_PER_PASS; i++) {
 myRectList[i].origin.x = random() % bds.size.width;
 myRectList[i].origin.y = random() % bds.size.height;
 }
 NSRectFillList(myRectList, NUM_PER_PASS);
 }
}

@end

This approach is more complex because an array of rectangles and some special initialization is required. This
rectangle array was filled with reasonable values as part of the view's initialization. The reason for this is that the
width and height of each rectangle is known and constant. It makes sense to set it only once, and the
initialization of the view is an excellent place for setting these values.

When it comes time to draw, use the loop with i as the loop variable to load the rectangle values into the list.
When that is done, call NSRectFillList(). This is repeated for each batch of rectangles, using the j loop.

The previous code is rather simple. It assumes that the total number of points to plot is exactly the number of
passes (batches) multiplied by the number of rectangles per pass. In a more realistic implementation, the last call
to NSRectFillList() might send something less than NUM_PER_PASS as the number of rectangles to
draw.

It turns out that this approach, lists of rectangles, is about ten times faster than the single-rectangle approach. If
you have many rectangles of the same color, this is a very efficient way to get them drawn. The added
complexity is not ten times worse to deal with, so in most cases this will probably be the preferred approach. If
the rectangles vary in color, NSRectFillList() can't be used. Sort them by color into batches. If every
rectangle's color is different, though, use NSRectFillListWithColors() instead. This function doesn't
offer as much speed as NSRectFillList(), but it is faster than a sequence of NSColor -set and
NSRectFill() calls.

Drawing with Bitmaps

The final technique is to use a bitmap cache and draw the points directly into it, as shown in the following code.
This method is a bit more involved. First, set up the bitmap cache itself; then, the code must determine the
location of the desired pixel(s), which requires a little math. When the bytes are altered, copy the bitmap to the
view's onscreen area. The following code is one way to accomplish all of that.

File PointView.h :

#import <Cocoa/Cocoa.h>

#define NUM_POINTS 40000

@interface MYPointView : NSView
{
 NSBitmapImageRep *_myImageCache;
 unsigned char *_myDataPtr;
 int _myRowBytes;
}

- (id)initWithFrame:(NSRect)frameRect;
- (void)drawRect:(NSRect)aRect;

@end

File PointView.m :

#import "PointView.h"

@implementation MYPointView
- (id)initWithFrame:(NSRect)frameRect
{
 int i;
 id ret = [super initWithFrame:frameRect];
 if (!ret) return nil;
 myRowBytes = (((int)(frameRect.size.width / 4) + 1) * 4) * 4;
 myDataPtr = (unsigned char *)malloc(myRowBytes * frameRect.size.
height);
 myImageCache = [[NSBitmapImageRep alloc]

 initWithBitmapDataPlanes:&myDataPtr
 pixelsWide:frameRect.size.width
 pixelsHigh:frameRect.size.height
 bitsPerSample:8 samplesPerPixel:4
 hasAlpha:YES isPlanar:NO
 colorSpaceName:NSDeviceRGBColorSpace
 bytesPerRow:myRowBytes bitsPerPixel:(8 * 4)];
 return ret;
}

- (void)drawRect:(NSRect)aRect
{
 int i, j;
 NSRect bds = [self bounds];
 for (i=0; i<myRowBytes*bds.size.height/4; i++) {
 ((unsigned int *)myDataPtr)[i] = 0;
 }
 for (i=0; i<NUM_POINTS; i++) {
 int x = random() % bds.size.width;
 int y = random() % bds.size.height;
 int baseIndex = ((bds.size.height - y - 1) * myRowBytes) + (x * 4);
 unsigned int *basePtr = (unsigned int *)&(myDataPtr[baseIndex]);
 *basePtr = 0xffffffff; // 0xrrggbbaa one whole pixel
 }
 [myImageCache draw];
}

- (void)dealloc
{
 free(myDataPtr);
 [myImageCache release];
 [super dealloc];
}

@end

The code for this third approach is more complex. It uses three new instance variables: dataPtr,
imageCache, and rowBytes. The first of these, dataPtr, is a standard-C pointer that points to a chunk of
bytes that will store the raw data for the image cache. The imageCache variable points to an
NSBitmapImageRep object that will wrap around the data stored in dataPtr. This class will provide the
ability to get the raw data onto the screen easily.

The third instance variable, rowBytes, is not strictly necessary. It is used to gain a little bit of efficiency.
Normally, the number of bytes per image row is the number of bytes per pixel multiplied by the width of the
image in pixels. However, it turns out that if this value is a multiple of 16, Quartz will kick in Altivec to draw the
image. On a G4 Mac, this means a significant speedup. This example will be laying out our data as 32 bits per
pixel (8 each for red, green, blue, and alpha). This means that the number of bytes per row will always be a
multiple of four, but not necessarily a multiple of 16. Only images that have widths that are multiples of four
would be able to take advantage of Altivec. Instead, adding a few wasted bytes to the end of each row will pad
this number out to a multiple of 16. Because this calculation is more complex than just multiplying the number
of pixels per row by four, cache the number of bytes per row in the rowBytes instance variable once the value is
calculated.

Now initialize the variables in the -initWithFrame: method. Begin by calculating rowBytes. This

calculation will always give a value that is divisible by 16. Next, use the standard malloc() function to
allocate a pointer to a chunk of bytes large enough to store the raw image data. The number of bytes per row,
multiplied by the number of rows provides the total number of bytes required by malloc().

Finally, create an NSBitmapImageRep object to wrap around the data pointer. To create this object, tell it
exactly how the image data is laid out, and provide it with a pointer to the raw image data. Instances can be
created that wrap around TIFF or other image types, in this case a different initializer would be used to read and
decode the image from an NSData object. Because an image cache is being used and there is no preexisting
image data to decode, use the raw interface.

With the instance variables set up, implement the actual drawing code. The first thing to do is to clear the raw
image data to all black. Rather than set each byte individually, treat the data pointer as a pointer to C's int type,
which allows four bytes to be set simultaneously. For more speed, on G4 systems use Altivec and clear 16 bytes
at once.

Next, draw all the points, one at a time, into the buffer by setting the raw bytes to the rgb color desired. Again,
use the int shortcut to set four bytes at once. The for loop starts by randomly choosing a point's coordinates.
Next, the location inside the raw data is calculated for the randomly chosen pixel. Note that the cached
rowBytes value is being used, so that the padding at the end of each row is correctly taken into account.

Unlike the standard OS X coordinate system, which places the origin at the lower left, the image data is assumed
to have its origin at the upper-left corner. Increasing y coordinates moves down the image, because it is flipped
from the screen's coordinate system. This is why, in calculating the pixel's address, y is subtracted from the
image's height. If this isn't done, the image cache will be drawn upside down.

After calculating the pixel's address, set the four bytes at that address to the new pixel values. The values are
specified as hexadecimal numbers to make it easier to see what the r, g, b, and a values are. In this case white
pixels will be drawn, so setting them all to 255, or hex 0xFF, is what is needed.

After the loop is complete and all the pixels have been drawn, send the image cache to the screen. Note that the
NSBitmapImageRep object has only very rudimentary drawing facilities. The -draw method behaves like a
copy operation, so the image will completely replace anything that was on the screen before it was drawn. To
use more complex drawing, such as compositing operators, then use an NSImage object that contains the
NSBitmapImageRep instance. A copy operation is what is desired in this example, so a -draw message is
sufficient.

The final part of the code frees the image cache when deallocating. This is done with a straightforward override
of the -dealloc method. Forgetting to do this would cause a memory leak.

The image cache technique is now implemented. Although the previous code works, one thing is missing. If the
NSView subclass changes its size, the buffer doesn't change with it. This could create some problems. Because
the calculations for buffer address use the view's current size, an incorrect address could be calculated. If the
view becomes bigger, a buffer overrun could occur. The solution to this problem is to create a new image cache
whenever the view is resized. One possible implementation of that would be to override the NSView method -
setFrame: using this method:

- (void)setFrame:(NSRect)frameRect
{
 free(myDataPtr);
 [myImageCache release];
 [super setFrame:frameRect];
 myRowBytes = (((int)(frameRect.size.width / 4) + 1) * 4) * 4;

 myDataPtr = (unsigned char *)malloc(myRowBytes * frameRect.size.
height);
 myImageCache = [[NSBitmapImageRep alloc]
 initWithBitmapDataPlanes:&myDataPtr
 pixelsWide:frameRect.size.width
 pixelsHigh:frameRect.size.height
 bitsPerSample:8 samplesPerPixel:4
 hasAlpha:YES isPlanar:NO
 colorSpaceName:NSDeviceRGBColorSpace
 bytesPerRow:myRowBytes bitsPerPixel:(8 * 4)];
}

First destroy the old buffer, and then allow super to set the new frame size. Finish up by creating a new buffer. It
would be more efficient to first check and see if the new frame is a different size, and only destroy and recreate
the buffer in cases where it really changes. Additionally, from a design perspective, the code is now poorly
organized because there is duplicate code. Ideally, break the buffer creation and destruction out into their own
private methods, and then use those throughout the code. The following code shows this change.

File PointView.h :

#import <Cocoa/Cocoa.h>

#define NUM_POINTS 40000

@interface MYPointView : NSView
{
 NSBitmapImageRep *_myImageCache;
 unsigned char *_myDataPtr;
 int _myRowBytes;
}

- (id)initWithFrame:(NSRect)frameRect;
- (void)drawRect:(NSRect)aRect;
- (void)setFrame:(NSRect)frameRect;

@end

File PointView.m :

#import "PointView.h"

@interface MYPointView(_private_methods)
- (void)_createCache;
- (void)_destroyCache;
@end

@implementation MYPointView
- (id)initWithFrame:(NSRect)frameRect
{
 int i;
 id ret = [super initWithFrame:frameRect];
 if (!ret) return nil;
 [self _createCache];

 return ret;
}

- (void)_createCache
{
 NSRect frameRect = [self bounds];
 if (myDataPtr || myImageCache) {
 [self _destroyCache];
 }
 myRowBytes = (((int)(frameRect.size.width / 4) + 1) * 4) * 4;
 myDataPtr = (unsigned char *)malloc(myRowBytes * frameRect.size.
height);
 myImageCache = [[NSBitmapImageRep alloc]
 initWithBitmapDataPlanes:&myDataPtr
 pixelsWide:frameRect.size.width
 pixelsHigh:frameRect.size.height
 bitsPerSample:8 samplesPerPixel:4
 hasAlpha:YES isPlanar:NO
 colorSpaceName:NSDeviceRGBColorSpace
 bytesPerRow:myRowBytes bitsPerPixel:(8 * 4)];
}

- (void)_destroyCache
{
 free(myDataPtr);
 myDataPtr = NULL;
 [myImageCache release];
 myImageCache = nil;
}

- (void)setFrame:(NSRect)frameRect
{
 [self _destroyCache];
 [super setFrame:frameRect];
 [self _createCache];
}
- (void)drawRect:(NSRect)aRect
{
 int i, j;
 NSRect bds = [self bounds];
 for (i=0; i<myRowBytes*bds.size.height/4; i++) {
 ((unsigned int *)myDataPtr)[i] = 0;
 }
 for (i=0; i<NUM_POINTS; i++) {
 int x = random() % bds.size.width;
 int y = random() % bds.size.height;
 int baseIndex = ((bds.size.height - y - 1) * myRowBytes) + (x * 4);
 unsigned int *basePtr = (unsigned int *)&(myDataPtr[baseIndex]);
 *basePtr = 0xffffffff; // 0xrrggbbaa one whole pixel
 }
 [myImageCache draw];
}

- (void)dealloc

{
 [self _destroyCache];
 [super dealloc];
}

@end

Although this is better, there are still some issues remaining. For example, when setting the pixels to a particular
color value, raw hex bytes are being used. This completely bypasses ColorSync. It would be better to find out
what the RGB values should be, based on how the user has calibrated their computer's ColorSync profile for
their monitor. Use an NSColor object to find out the proper RGB values; see Chapter 17, which concentrates
on color, for how to do this.

Another problem is that this approach is not device independent. It makes assumptions about the size of a pixel.
When doing the drawing, it would be better to find out whether it was destined for the screen, a file, printer, or
some other medium. In Chapter 25, on printing, it is demonstrated how to determine where the view's drawing
will end up. (The section "Using NSGraphicsContext" earlier in this chapter also discusses this.) Use the image
cache method when the drawing is going to the screen, but use the list of rectangles method for all other types of
drawing to retain device independence.

The Points example on the www.cocoaprogramming.net Web site provides sample code, which implements all
three of these methods for drawing points in one single object. All the code shown previously has been
combined into this one single example. It also can time the drawing to give a feel for each approach's
performance. Try building it and experimenting with it. On a Pismo PowerBook, drawing 40,000 points takes
approximately 2.2 seconds for individual rectangles, 0.22 seconds for rectangle lists, and 0.10 seconds with the
bitmap cache.

Remember, however, that although the cache is faster, it is effectively bypassing most of Quartz, and in a real-
world application, the speed up in drawing time might be insignificant compared to the rest of the application's
calculations. Using the list of rectangles approach will make the most sense for the majority of applications.
Very few will gain more than they lose when using image caches.

http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Chapter 13. Custom Views and Graphics Part II

Optimizing Drawing

The documentation included with the Mac OS X Developer Tools includes an "Inside Mac OS X: Performance."
This document talks about the tools for improving performance and how to use them. The file is found at /
Developer/Documentation/ Essentials/Performance/Performance.pdf.

Although all the techniques described in this document are useful for speeding up an application, there is not a
lot of information about how to speed up drawing performance. It is worth reading this document because it will
help with more general optimization and performance improvement.

There are many techniques that can be used to improve drawing performance. Most of this information is
scattered throughout the Cocoa class references and other Mac OS X developer documentation.

When discussing drawing performance, there are some key rules throughout:

Rule #1: The fastest drawing is the drawing you don't do

The first rule suggests that unnecessary drawing should be avoided at all costs. Drawing is an
inherently costly process because even a modestly sized drawing area can require huge amounts
of data to be manipulated by the CPU and system bus. Consider, for example, a 128x128 pixel
area. This is the size of an Aqua icon when at its largest. If this area is stored in a 32-bit RGBA
buffer (8 bits each for red, green, blue, and alpha), the buffer would represent a total of 128 x128
x4 = 65536 bytes. This can add up quickly. Therefore, don't ever draw more than what is needed,
and be careful that the same things aren't drawn multiple times. More will be discussed about
what this means and how to do it as specific optimization techniques are covered.

The rest of the optimization rules don't specifically apply to drawing, but they are critical to
success.

Rule #2: Speed doesn't come for free

As with all optimizations, improved speed usually comes with an associated cost. Sometimes
there is an up-front setup cost, so an optimization might only benefit an operation that is repeated
many times. Other times the cost is in code complexity, and hence future maintainability and
extensibility. Usually the cost is extra memory. For example, a chunk of complex drawing code
might take quite a while to execute. It could be rendered once into an offscreen NSImage, and
then composited whenever the drawing is needed onscreen. If the compositing operation is faster
than the original drawing-which would be true for extremely complex drawing-then this results in
a performance improvement. The downside is the extra memory required for the cache.

Because Mac OS X has a virtual-memory system, if there isn't enough RAM available, swapping
will begin to occur. An application with too many offscreen buffers could cause swapping.
Unless the drawing complexity is extreme, it is safe to assume that swapping in an image buffer
from virtual memory will be a lot slower than just drawing everything to begin with. Therefore, it
is critical to watch an application's memory usage both within the application and within the
Quartz window server to make sure that won't cause a lower end, RAM-starved computer to
swap too much. This leads right into the next rule:

Rule #3: Measure performance often

A given optimization might only be a true improvement in performance under certain
circumstances. Because the parameters might be quite complex, it can often be easy to apply an
optimization in a situation or in such a way that it actually reduces performance. A classic
example is the one presented previously with Rule #2. If a set of optimizations uses so much
memory that the computer begins to swap, performance will drop off very quickly. Therefore,
every time an optimization, or set of optimizations, is applied, it is critical to measure the actual
impact on real and perceived performance.

Experimentation is the key to getting things perfect. Try everything, measure it, and keep what
works best. Don't forget to test on the lowest-end piece of hardware that the application will be
targeting. Sometimes, optimizations need to be dynamically engaged and only turned on for
machines that can use them to full advantage.

Measuring performance through profiling will expose the areas that will most impact an
application's speed. It is more important to optimize code that is used thousands of times a minute
than code that is used only once. Intuition commonly leads programmers astray here: Measure
the execution so the true hot spots are known and receive attention, as opposed to the presumed
hot spots.

As various optimizations are discussed later, they can only be presented in general terms, with
the various tradeoffs highlighted. Because each situation differs slightly, there's no guarantee that
a particular optimization approach will work or not. Performance measurement of actual code is
often the best way to decide whether to use a given approach or not. Thus, it is up to the
individual developer to take the optimization approaches, apply them both to a given situation,
and determine if it is appropriate to do so.

Rule #4: Don't try to outsmart the Application Kit

More often than not, the Application Kit is already doing things as efficiently as possible. Even
though this might not always be exactly what a given developer wants, trying to change the
behavior in a dramatic way usually causes a lot of grief for little or no benefit. The Application
Kit has certain ways it likes to do things, and going with the flow generally gives the most
enjoyable development experience. The Application Kit provides plenty of hooks to enable a
developer to do things their own way, of course. A more accurate way of stating this is to say that
the Application Kit gives the developer plenty of rope to hang himself. The optimizations
discussed generally center on how to do things so that they best fit what the Application Kit
expects. When written with this in mind, code tends to run much faster in most cases.

Rule #5: Don't optimize too soon

The last rule is one of the most difficult, but it can also cause the most grief when not followed.
Because increased code complexity and loss of flexibility is one of the hallmarks of
optimizations, optimizing too soon can back a developer into a corner. Conversely, choosing a
good algorithm over a poor one often makes a huge difference. A well-designed program, with
good algorithms chosen up front, has a much better chance of success. So although good
planning and efficient designs are very important, digging too deep into detailed optimizations
early on can often negate the benefits of a good design.

These are good rules of thumb, and might seem like common sense. Yet over and over, not following these rules
is the most common cause of slow code. It is possible to write Cocoa programs that use Quartz graphics and are

absolutely blazing fast. It is also possible to create a real pig that will never fly. Being aware of what approaches
tend to work best will make it much easier to create the former.

Finding Drawing Trouble Spots

Mac OS X comes with some special tools to help a developer diagnose performance problems, the most
important of which for drawing is QuartzDebug. QuartzDebug is found in /Developer/Applications.
When run, it opens the very simple control panel shown in Figure 13.6.

Figure 13.6. The QuartzDebug control panel looks like this.

The first check box, Autoflush drawing, will cause Quartz to flush drawing to the screen after each drawing
operation. This slows things down a little bit, but it also helps make repeat drawing stand out. Because redraws
are seen as they happen, it becomes clearer when something is being drawn more than once. Watching the Finder
redraw on early versions of Mac OS X was a real eye-opener, for example.

The next check box is Flash screen updates. Turning this on causes a yellow rectangle to be drawn over an area
that is about to be flushed to the screen. There is a slight delay before the flush, so that there is time to see the
yellow rectangle. Turning this on is like putting the computer into slow motion. For some applications, this can
become excruciating! Of course, wasted drawing effort will stand out like a sore thumb, making this one of the
most valuable diagnostic techniques available to a Mac OS X developer.

If the delay after the flash is slowing things down too much, then the delay can be turned off with the third check
box, No delay after flash. Quartz is really fast, though, so if this is turned off there's a good chance that some of
the yellow flashes will escape perception.

One of the first things any developer should do before embarking on drawing-performance optimization is to
start up QuartzDebug and turn on the check boxes. Many inefficiencies will simply jump out. When all the
glaring problems have been fixed, the application's performance might even be good enough that no further
optimization is required. If not, it is possible to dig much deeper.

Clicking the button labeled Show Window List will open a window that lists all the windows Quartz is
maintaining. A sample of the Window List window is shown in Figure 13.7.

Figure 13.7. A window listing all the windows Quartz is maintaining.

The Window List window contains a snapshot of Quartz's internal window list. Clicking the button again will
append another snapshot to the end of the list already in the window. The window can be cleared by selecting
Clear Window List (Cmd-Shift-C) from the Tools menu. The list contains quite a bit of data. A short description
of each column's data is given in Table 13.1:

Table 13.1. Properties of Quartz Windows

Property Description

CID The Connection ID. In general, each application, or thread, has a connection to Quartz. Windows
with the same CID are being controlled through the same connection.

WID This is Quartz's internal Window ID. Each window will have a unique ID.

kBytes The amount of memory, in kilobytes, that the window is using. The larger the window, the more
memory will be used. The letter I is appended to the size if the buffer is invalid, awaiting a redraw.

Type The type will be Buffered, Retained, or NonRetained. The meanings of these are the same as with
the NSWindow class.

Visible Tells the status of the window. It will be OffScreen if it is not at all visible; Obscured if any portion
of it is underneath another window; and OnScreen if it is on screen and no portion of the window is
obscured.

Backing This will be Meshed, Planar, Opaque, or None. These are slightly different from their Application
Kit counterparts. Meshed means that each pixel in the buffer is stored as an RGBA quad. The
Planar configuration is a buffer with meshed color data (RGB triplets for each pixel) and alpha
channel stored in a separate array. An opaque window has no associated alpha data. A window with
no backing store, such as a nonretained window, will have None.

Shared Most windows will be listed as Private, meaning they can only be modified by the application that
owns them (see the Name column). Windows that are Shared allow other applications to draw in
them.

Fade The window's overall transparency percentage. All the pixels in the window's buffer, even the fully
opaque ones, will pass through this fade percentage when being put onto the screen. A 0% window
is completely transparent and 100% is fully opaque. However, even an opaque window can have
transparent holes or translucent sections if its backing store has a fractional alpha value for a given
pixel.

Bps Stands for "bits per sample". This will usually match the screen's depth and is the sum of the bits
per component values for all color components. Thus, this will be 32 for windows that have 8 bits
each for their red, green, blue, and alpha components.

Level The window's tier or level. Windows on a given level can obscure each other and windows on the
levels below them, but they can never obscure a window on a higher level. The valid range of
window levels is from LONG_MIN+1 to LONG_MAX-16.

Rect This provides the onscreen location and size of each window. Offscreen windows that never appear
onscreen will usually have an origin of (0.0, 0.0). These coordinates are given in screen pixels.

Name The name of the application that owns the window. For private windows, it is the only application
allowed to draw in the window.

The information about the Quartz window list can be used to see how an application impacts the window server.
Each offscreen buffer and window will cause Quartz to use up more memory. This is one of the most important
measurements available to a developer. It can be used to spot buffers that are no longer needed and can be
released. It can also be used to determine how much memory is being used for buffering. In many cases this will
encourage a developer to be more judicious about what is buffered and what is not.

QuartzDebug offers a lot of information that will quickly lead a developer to areas that need optimization.
Sometimes, more information is required. The Application Kit supports several command-line options that can
be used when an application is launched to turn on various debugging features. To engage these options, it is
necessary to open a window in Terminal.app and use the Unix command line to launch the application.

To launch an application from the command line, follow these steps:

1. Launch Terminal.app. It can be found in the /Applications/Utilities folder.

2. Type cd in the terminal window, but do not press Return yet.

3. Switch to the finder and locate the application to run from the command line. Drag it to the terminal
window and drop it there.

4. Switch to the Terminal window and press Return. The current working directory should now be the
application's bundle wrapper.

5. Type cd Contents/MacOS to switch to the directory that contains the application's executable file.

6. Type ./< application_name > < options > & and press Return to start the application. The
<application_name > should be replaced with the application's name, without the .app extension.
The <options > should be replaced with any options that are desired, or nothing if no options are
wanted.

For example, to start up TextEdit this way, the commands would be as follows:

cd /Applications/TextEdit.app/Contents/MacOS
./TextEdit &

Note that this example uses no options. There are three debugging options that might be useful for investigating
drawing performance. The first is -NSShowAllDrawing. This option, when turned on, will perform yellow
flashes before NSViews are redrawn, similar to QuartzDebug. The key difference is that there will be a lot
fewer flashes because not everything will be shown. In most cases, QuartzDebug provides better feedback. To
use this option, the application is launched with a new command, including the option:

./TextEdit -NSShowAllDrawing YES &

Another option is -NSShowAllViews. This option will draw borders to highlight the bounds of every single
NSView. This is useful for debugging the layout of views and to see if there are any unwanted overlaps. It is
turned on like the previous option:

./TextEdit -NSShowAllViews YES &

The last option is -NSShowAllWindows. It permits all offscreen windows (buffers), including the caches for
all NSImages, to be seen on the screen. All windows are also shown in retained mode instead of buffered
mode, so there are no transparent or translucent windows. It is invoked like this:

./TextEdit -NSShowAllWindows YES &

It is possible to combine these options as well; they are not mutually exclusive. So, for example, to see all three
options in action simultaneously, the application would be invoked like this:

./TextEdit -NSShowAllWindows YES -NSShowAllViews YES -NSShowAllDrawing YES
&

The order of the options is not significant. Note that these options, when enabled, will tend to slow an
application down quite a bit. They might also make it flaky, so they should only be used for testing and
observation of the application's drawing behavior. The data collected with these options turned on can help the
bug-hunting process, so it is worth experimenting with them.

A final means of collecting data about drawing performance is to actually instrument the drawing code, so that

timing information can be extracted. Profiling tools can be used to see how long a particular subroutine takes to
run, and they are often the simplest way to do this. Sometimes it is helpful to actually have even more detailed
timing for only a particular algorithm or subsection of code. As an example of how to obtain this timing
information, look at the Points example in the "Drawing Points and Rectangles" section. It uses three different
algorithms for drawing points, and when run, determines how long it takes to use each algorithm for drawing. A
similar technique can be used whenever optimized and nonoptimized code need to be run side by side for
comparison. It can help determine which algorithm is the best choice.

Easy Optimizations

The first several optimizations are very simple. Many of the Application Kit classes have optimizations built into
them that can be used by simply turning them on. Why aren't they turned on by default? Because they either
have an undesirable side effect, or they can require significant memory resources when turned on. Therefore, it is
beneficial to turn them on when it is known that their side effects won't be detrimental. The NSBezierPath,
NSView, and NSWindow classes all have some of these simpler optimizations.

The NSBezierPath class can create a cache of its path inside Quartz. By caching the path data, a slightly
faster rendering of the path is possible. The downside is that caching paths can have an impact on memory
usage. Furthermore, there is an up-front cost to create the cache in the first place. This means that only paths that
are used over and over should be cached. Paths that are used just once or twice, and then discarded, will see little
or no benefit to caching. There are two methods that can be sent to an instance of NSBezierPath to control
caching.

- (BOOL)cachesBezierPath
- (void)setCachesBezierPath:(BOOL)flag

The -cachesBezierPath method will report whether or not the path is cached. The -
setCachesBezierPath: will actually turn caching on or off. The cache itself is created the first time the
path is rendered, not when caching is turned on. The cache will be deleted from memory immediately upon
turning it off, however. The impact of this optimization should be watched closely through careful measurement.
It can be as harmful as it is helpful when misapplied or overused.

There are several ways that the basic NSView class can be speeded up. The first thing to understand is that
locking and unlocking focus is a somewhat expensive operation. Therefore, it should be performed as
infrequently as possible. There is no reason to unlock, do some calculations, and then relock. It is better to avoid
locking and unlocking, and use them only when absolutely necessary.

That said, there is a way to slightly improve the performance of locking. To lock focus, an NSView will set up
several parameters inside its graphics context. Every time focus is locked, these parameters need to be set up. A
graphics context allows its current state to be stored as a graphics state, or gstate for short. The NSView class
can allocate a private gstate object for itself and use that to set things up when focus is locked. Although this is
certainly much faster than resending all the setup commands to Quartz, it does cost memory. In general, the
faster the CPU, the less advantage this will offer. There are three NSView methods that can be used to manage a
private gstate.

The -allocateGState method will allocate a private gstate for the view. This gstate will be used every time
the view's focus is locked. If some of the view's basic parameters have changed, the gstate will need to be
recreated with the new settings. The -renewGState method will invalidate the gstate and cause it to be
recreated from scratch the next time it is needed. The -releaseGState method will invalidate the gstate and
immediately free up the memory it has been using, turning off this optimization.

A few guidelines emerge once this behavior is understood. If a view doesn't get drawn very often, there won't be

many -lockFocus operations and this optimization will be of minimal value. Most windows have many
controls that don't change too often. For these views, there's little point to allocating a gstate. It would just take
up space and provide little benefit. On the other hand, a view that is displaying animation and gets redrawn 30 or
more times per second could probably benefit from a gstate because it is having focus locked on it quite often.

Also, if a view's settings are changing quite often, the gstate will need to be invalidated and recreated just as
often. Because creating a gstate for the first time costs more than a simple focus lock, regular invalidation of
gstates could make this optimization actually cause a slowdown. As usual, the key is to try it out, measure the
performance change, and keep it helpful.

It should also go without saying that because it is expensive to lock focus, the following construct is an absolute
no-no:

while (loop) {
 [self lockFocus];
 // do some drawing
 [self unlockFocus];
}

It is much better to move the focusing outside of the loop if at all possible, like this:

[self lockFocus];
while (loop) {
 // do some drawing
}
[self unlockFocus];

Another optimization offered by NSView is overlooked surprisingly often. When a view is asked to draw, there
is a parameter that is usually ignored. Look at the method prototype:

- (void)drawRect:(NSRect)rect

The rect parameter is provided to tell the view which portion needs to be redrawn. It is true that there is nothing
wrong with redrawing the entire view. This will work and it is certainly the easiest thing to do. However,
drawing things that will never be seen is clearly inefficient. The rect parameter is a good place to look for an
optimization. In most cases, simply using NSIntersectionRect() with the bounding box of a graphics
object and the rect parameter as arguments will make it clear whether or not the object should be drawn. Of
course, more complex schemes can also be employed. One popular technique is to sort graphical objects by their
locations, so that only a handful of the view's objects even need to be considered at all for an intersection test.
Remember that finding and eliminating work that can be avoided generally means a speedup.

There is a final optimization that an NSView subclass can use to gain more speed. Subclasses can override the -
isOpaque method to return YES, instead of the default NO. Recall that views are generally nested within each
other. When a view is redrawn, it will pass the redraw up the chain until it finds a 100% opaque view. That view
will be drawn, then each of its nonopaque children, until finally the view in question is redrawn. Clearly, a view
that is indeed opaque would be wasting time asking its ancestor views to redraw something that it only intends to
cover up anyway. To eliminate that extra drawing, the view must declare itself to be opaque. It is a bad idea to
declare a semitransparent view to be opaque because the views behind it will not be properly redrawn.

Finally, there is an optimization available in the NSWindow class. When a window redraws its views, it locks
focus on them in a specific order. This order is especially important when views overlap. Unfortunately,
algorithms for correctly drawing overlapping views can be somewhat more expensive than available alternates.

The Application Kit can do it both ways, it just needs to know whether or not there are overlapping views. If
there aren't, then it can safely kick in some optimizations that are essentially free. To engage these optimizations,
send this message to an NSWindow instance:

- (void)useOptimizedDrawing:(BOOL)flag

If there are no overlapping views, the window will still render correctly and it will render more rapidly. The
downside of turning it on is that overlapping views may or may not be drawn correctly. Precise behavior is
unpredictable, so this should only be turned on when it is known that the views will not overlap each other.

Controlling Display and Flushing

When a window or a portion of a window is redisplayed, the Application Kit attempts to do so in the most
efficient manner possible. Because it is aware of everything that needs to be redisplayed, it is usually most
efficient to allow the Application Kit to decide when to update the graphics. Thus, although it is possible to ask a
view to redisplay itself immediately, it is often better to only tell the view that it needs to be redisplayed. The
Application Kit will take care of actually invoking the redisplay at the optimal time. To allow the Application
Kit to make this choice, the view should be marked as needing redisplay by using one of these two methods:

- (void)setNeedsDisplay:(BOOL)flag
- (void)setNeedsDisplayInRect:(NSRect)invalidRect

With -setNeedsDisplay:, passing a YES will tell the view that its entire bounds need to be redisplayed. If
the data model that the view is displaying has changed, then it would send this message to the view so that the
onscreen information would be updated at an appropriate time. If only a part of the view has changed and it is
known exactly what part of the view is out of date, then -setNeedsDisplayInRect: can be used to
specify a particular rectangular region of the view to be redisplayed. When the actual redisplay eventually
occurs, these rectangles will usually be merged so that only one redisplay occurs, covering all the dirty parts of
the view.

In general, the Application Kit will do all requested redisplays at the end of the event loop after handling a user
event. This makes the application feel more responsive to the user because the events will be handled as
expeditiously as possible. Sometimes it is important to have redisplays happen at an exact moment in time and
not wait for the Application Kit to decide that the time is right. A host of methods are available in the NSView
class to force an immediate redraw:

- (void)display
- (void)displayRect:(NSRect)rect
- (void)displayRectIgnoringOpacity:(NSRect)rect
- (void)displayIfNeeded
- (void)displayIfNeededIgnoringOpacity
- (void)displayIfNeededInRect:(NSRect)rect
- (void)displayIfNeededInRectIgnoringOpacity:(NSRect)rect

Each of the -displayIfNeeded methods will only cause a redisplay if the view thinks it needs to do so. The
others force an immediate display of the requested area. The methods that take a rectangular argument attempt
only to redisplay those specified portions of the view (but how much is actually sent to Quartz to be rendered is
determined by how well the implementation of -drawRect: handles its rect parameter). The methods that
have IgnoringOpacity in their name allow for a rapid redraw that automatically assumes the view is opaque.
Although such a display is certainly faster, it might not provide the desired result for semitransparent views. It
might be good enough, though, when used for temporary drawing within a modal loop. Experimentation is the
key here.

Because multiple objects might invalidate a view by telling it that it needs to be redrawn, it is generally
advantageous to wait until the end of the event loop before invoking another display. If displays are done
immediately, it is likely that a view will get redisplayed more than once in a given event loop. For animation,
this might be acceptable and desirable, but in most cases it just wastes CPU cycles. Letting the Application Kit
take over where possible usually yields the best results.

When views are redisplayed, that is not necessarily enough to actually get something on the screen. Even if the
view is redrawn, the new graphics that were drawn into the window's backing store need to be flushed out to the
screen. When the Application Kit is handling redisplay, the graphics context and the window are properly
flushed. When a developer decides to force drawing early, all this needs to be done manually. Like redrawing a
view, there are two ways to flush a window. The first is to flush the window whether it needs to be flushed or
not. The second is to only flush the window if it needs to be flushed. The window itself is smart enough to keep
track of what parts actually need to be flushed and only flushes those parts where something changed, so there is
no way to request that only a particular portion of the window be flushed. Here are the NSWindow flushing
methods:

- (void)flushWindow
- (void)flushWindowIfNeeded

Sometimes it is advantageous to flush more often than is actually needed. If a particular drawing operation takes
a long time, the user will see no updates to the screen until the operation finishes. Waiting for this to happen
might make the application feel slow to the user. By flushing occasionally throughout the drawing process, the
user will see things happening on the screen. This makes the overall drawing take longer, but the user perceives
it to be faster because their mind is being kept occupied by the changes being flushed to the screen. In other
words, sometimes it actually pays to do something that is known to be inefficient. What the user perceives is far
more important than what is actually happening because that perception will shape a user's opinion of the
application far more than the facts.

It is also possible to disable and enable window flushing. Because a flush can be an expensive operation, it is
usually counterproductive to flush a window over and over. If an operation is about to be performed that will
likely cause a flush, this method can be used to temporarily disable flushing before all drawing is completed:

- (void)disableFlushWindow

When everything is ready, flushing should be enabled with this method:

- (void)enableFlushWindow

It is possible to detect whether a window has flushing disabled with this method:

- (BOOL)isFlushWindowDisabled

It is important that any code that disables window flushing not to forget to enable flushing after it is done. If
flushing is not enabled, the window will be unable to update its contents on the screen.

The redraw of views and windows is automatic when the management is done by the Application Kit, thus no
need to worry about any of it. However, it is possible to change the timing of when things get updated if so
desired. The key here is that any developer who does this should be very careful to measure the effects of their
changes. It is rare that a developer can use these methods in a way that significantly beats the Application Kit's
built-in mechanisms. Remember, the Application Kit has been refined and optimized over more than a decade of
use to be as fast as possible for the widest variety of situations. There will be specific cases where it is possible

to do better, so it is sometimes worth the experimentation. Usually more benefit for the time spent will be
achieved by concentrating on the best possible algorithms.

Caching Complex Drawing

A common technique for optimizing manipulation of complex graphics is to use an NSImage as an offscreen
graphics cache. (See Chapter 14 for a complete description of the NSImage class.) To better understand what
this is and why it is used, consider an example. In a drawing program, a common user operation is to select a
group of graphics, and move them to a new location on the virtual canvas. In Aqua, solid user feedback is
preferred. This means that the program should move the actual objects instead of moving an outline of the
graphics. Because Aqua uses pervasive translucency, even better would be to redraw the canvas itself without
the objects, and then redraw the objects as translucent ghosts. This would enable the user to see the area
underneath the objects as they are moved. When released, the objects would become solid again, redrawn with
the rest of the canvas.

The problem with implementing something like this is performance. If many graphics have been selected, the
cost to redraw them all every time the mouse is moved can become prohibitive. The response to mouse
movement could become choppy, making the application feel unresponsive. Furthermore, altering the drawing
so it can or cannot conditionally draw translucently could make the code less maintainable because of the
complexity added.

The solution is to cache the selected graphics in an NSImage. When a drag to move the objects commences, the
affected areas of the canvas would be redrawn without the selected graphics. The selected graphics would be
drawn into an NSImage. Then, the image would be composited repeatedly as the drag continues. By using a
value less than one for the delta parameter after fraction: in the -drawInRect:fromRect:operation:
fraction: method, the graphics appear translucent as they are dragged onscreen. At the same time, the
graphics can be drawn using the normal, full-opacity rendering code when they are being drawn into the buffer.
This removes the need for the rendering code to be able to draw both with and without translucency. When the
drag completes, the graphics are redrawn as a part of the canvas. This method is effective when the selected
graphics, or the graphics underneath them, are complex because in either, or both, cases it will be faster to do a
single composite operation rather than redraw everything.

As usual, the downside is that this technique can use quite a bit of memory. If memory is tight, the extra memory
usage could cause swapping. Therefore, it is important to do performance measurement to make sure that this
optimization is actually helping more than hindering. For simpler applications, the memory requirements might
make this method less useful. NSBezierPath and friends can potentially be very fast. For example, the old
NeXTSTEP/OPENSTEP example application Draw used this caching technique extensively. On Mac OS X, the
Draw.app example was renamed to Sketch. In the process, the code was rewritten from scratch to make better
use of Cocoa's newest features. The new Sketch example no longer uses this technique, so at least in that case
this optimization was not considered to be worth the implementation effort.

There is one more positive aspect of this approach. If the graphics program wants to allow the user to drag an
object from one window to another, the Cocoa drag-and-drop system would normally be used. If the selected
graphics have already been captured into their own image, that image can then be handed off to the drag-and-
drop system. Instead of the graphics turning into a tiny icon the moment the mouse leaves the confines of the
canvas's window, the solid graphics can be dragged right off the canvas and dropped onto another document.
This will feel quite natural to the user and is definitely more Aqua-like. An example of this is the OmniWeb
application. When images are dragged from it, even large images are dragged across the screen in their entirety,
and not as icons. The Cocoa mechanisms for drag-and-drop text also redraw the text into an NSImage so that
the text, in rendered form, is what is dragged as the mouse moves.

The NSWindow class supports some methods that are closely related to this approach. It can temporarily cache a
portion of its raster image to be restored later.

Call the -cacheImageInRect: method to save a portion of the window in a cache. Remember that because
this is an NSWindow method, the rectangle is in window coordinates, not view or screen coordinates. If this
method is being called from an NSView, the NSView method -convertRect:toView: using nil for the
argument after toView: will convert a rectangle from the view's coordinate system to the window's coordinate
system.

When a portion of the window has been cached, temporary drawing can be done in that area. When it is time to
remove the temporary drawing and restore the original window contents, the -restoreCachedImage
method should be sent to the window. When the cached area is no longer needed, the -
discardCachedImage method should be called to free up the resources consumed by the cache.

These methods would be ideal to use, for example, with rubber-banded lines, such as the user dragging out a
selection rectangle in a graphics program. It is typically faster to quickly restore a window region from a cache
than to redraw it through the NSView hierarchy. In general, the algorithm, in pseudocode, would look like this:

cache the applicable window region (perhaps the view's bounds)
while (mouse moves) {
 draw the rubber band
 flush graphics context
 restore the cached window region
}
discard cache

This works well as long as the view isn't moved or scrolled while the dragging continues. If the view scrolls, its
contents change and need to be redrawn. In that case, it might be faster to just perform the necessary redrawing.
Continually invalidating and recaching the window region might prove to be move expensive.

Custom Buffering

It is common, especially with animation, to carefully control cache-flushing behavior in an attempt to reduce the
time required to flush the cache. Although this works well on most platforms, it should be avoided on Mac OS
X. To understand why, it's best to understand what is commonly done as well as why it won't work on Mac OS
X.

When a window is flushed on Mac OS X, the current algorithm will take a list of all the dirty regions and merge
them into a single rectangular region. The resultant rectangle is the smallest rectangle that encloses all the areas
that need to be flushed. That region is what will be flushed, in a single operation. The individual rectangles will
not be flushed separately. To visualize this, consider Figure 13.8. The dashed rectangles are the areas that need
to be redrawn. The flushing algorithm actually causes the area enclosed by the larger, solid rectangle to be
redrawn. The areas in the upper-right and lower-left corners doesn't really need to be redrawn, but when
rectangles overlap it is typically much faster to just redraw the whole area rather than to go through all the setup
to do two separate redraws. Additionally, with two separate redraws, it is likely that the overlap area in the
middle would be drawn twice.

Figure 13.8. The dashed rectangles are the areas that need to be redrawn. The flushing algorithm causes
the area enclosed by the larger, solid rectangle to be redrawn.

NOTE

Dirty region is a term commonly used to refer to areas in a buffer that have changed since the last
update. A region becomes dirty when drawing is performed in the buffer. The drawing is not
visible because it is not on the screen yet. Flushing the dirty region to the screen makes the drawing
visible and causes the region to become clean.

In many cases, this is a reasonable approach. Often, there are few regions that need updates, and they will
usually be fairly close together. However, in a game, screensaver, or other animated view, it is common to have
small dirty regions that are far apart. Imagine a classic arcade game where the object is to shoot and destroy
rocks floating through space. The rocks move with each frame and are spread sparsely across the screen. The
area that gets flushed will contain a lot of area that hasn't been modified at all. Another case where this might
happen is when two scrollbars, or rulers, change at once. Consider the two cases illustrated in Figures 13.9 and
13.10.

Figure 13.9. Many small areas that are far apart can result in large unmodified areas being flushed.

Figure 13.10. Long narrow areas like the areas used to display rulers or scrollbars can result in large
unmodified areas being flushed.

In these cases, it is more efficient to do several flushes of just the smaller regions that have been affected.
Theoretically, this could be done in Cocoa. The standard flushing algorithm should, in theory, be turned off
when a nonretained or retained window is used instead of a buffered window. Furthermore, it is possible to use
an NSImage which is the exact same size of the NSView subclass as a buffer for offscreen drawing. To do the
flushes, first all the overlapping rectangles would be combined. Next, the remaining list of rectangles would be

used to do several composites. The composites would copy only the changed areas of the offscreen NSImage
onto the screen.

This sounds great in theory and worked extremely well on NeXTSTEP, OPENSTEP, and the early Display
PostScript (DPS) based versions of Mac OS X Server. It works well for many other platforms as well. On Mac
OS X, and the newer Mac OS X Server platforms, DPS has been replaced by Quartz. It turns out that Quartz
effectively buffers its drawing, even with nonbuffered windows. Flushes of the graphics context are still required
to make drawing appear onscreen, even for nonbuffered windows. In the current implementation of Quartz, these
flushes use the first, potentially less-efficient buffering algorithm. Therefore, any developer who attempts to
bypass the flushing and manage it herself will discover that doing so actually slows down her drawing. The
slowdown can be as much as two to five times slower!

Quartz tries to synchronize its flushing with the vertical blanking signal on devices that have one, such as a CRT.
On a CRT, the flush will take place after the beam has passed the area to be flushed. Hopefully the flush will
complete before the beam reaches the area being flushed. This prevents flicker and tearing effects, making
screen updates feel very clean. Moving from one flush to multiple flushes could cause flushing to be paused
while it waits for the beam to pass. Trying to take control over flushing risks creating a huge performance
problem.

So why discuss this algorithm if is should be avoided? So that other developers don't have to go down that path
just to discover that it is a dead end. Without understanding what the algorithm is, it is more difficult to avoid it.
Because many texts on game development describe this technique and recommend using it, great importance
needs to be placed on the fact that for the Mac OS X/Quartz platform this approach will do far more harm than
good. Don't use it!

This might seem like bleak, depressing news. Quartz already has the information it needs to be able to do a better
job. It just has a simple-minded flushing implementation at the moment. This should be considered an
optimization that Apple just hasn't done yet, but might in the future. When Quartz Debug is turned on, it is
quickly realized that many of Apple's own applications modify areas that are small and far apart, so there is a
huge incentive to make flushing more intelligent. There are no specific promises, however, so it is important for
developers to focus on what works well now. Unfortunately there is no API for modifying Quartz's flushing
behavior.

NOTE

One minor caveat here is that Quartz is only storing a path's bounding box. The information it
stores is not as specific as knowing which actual pixels were touched. This is significant because it
implies that flushing diagonal lines might never be done at maximum efficiency.

So this optimization should be avoided on Mac OS X. Let Cocoa and Quartz choose what to flush. The
environment is such that developers cannot actually implement it correctly. The OS itself needs to change to
support it. There is the possibility that Apple will implement this optimization as part of Quartz. If that happens,
it will be transparent to the developer, which equates to a performance enhancement from which all applications
will benefit without any additional developer effort required. For the time being, this is reason enough to follow
Apple's recommendations and avoid attempts to further optimize flushing.

Other Optimizations

Many methods and functions perform a single operation, and many have a counterpart that performs multiple
operations at once. A great example of this would be the contrast between NSRectFill() and

NSRectFillList(). It can be demonstrated by running the Points example from earlier in this chapter, that
the list version is approximately ten times faster when enough rectangles are drawn. It has limitations, but it will
provide huge performance boosts for situations where it can be used. Throughout the Cocoa classes, look for and
use methods like this that allow for groups of operations to be performed at once.

Reusing NSBezierPath Objects

In the same vein, it is often worth retaining an NSBezierPath instance and reusing it, instead of recreating it
from scratch every time the path needs to be drawn. If the path never changes, this is an especially good idea. Of
course, this means some increased memory usage, especially if the path is being cached. Performance testing and
evaluation is the key to determining when an instance should be saved as opposed to being recreated from
scratch.

Because NSBezierPath objects can be specified in relative terms, a subpath can be stored that is defined as
being completely relative to the current point. This usually makes it easier to create path objects that are indeed
reusable and worth retaining. A path that can't be specified in relative terms can still be reused by doing a
coordinate system transformation before rendering the path. Transformations can translate, scale, rotate, and
otherwise warp a path, increasing the number of ways a given path can be reused. Looking for ways to reuse
NSBezierPath objects is usually worth the effort. It is also important to make sure that the cost of using the
transformations isn't greater than the cost of not reusing the paths. Again, performance measurement is valuable
here.

Bit Depth Matching

The bit depth used for drawing is important. Drawing buffers should be created with bit depths that match the
output device (usually the screen), unless there is a good reason for not doing so. If the screen is using 16-bit
color, then 16-bit buffers are much more efficient than 32bit buffers. It might be easier to write code that always
uses one particular bit depth. But doing so causes bit depth conversions and other time consuming operations to
be performed. These operations would not need to be performed if the buffer and output device bit depths were
an exact match. Not to mention that a 32-bit buffer requires twice the memory of a 16-bit buffer. Normally,
Quartz will default to creating suitable buffers automatically. It is possible to override this behavior, especially
when creating NSImage instances. Before doing such an override, make sure that the performance hit is
worthwhile.

Using 16-bit buffers when the output device is 32 bit might be more efficient as far as memory usage goes, and
therefore worth doing to conserve memory. There is still some depth conversion taking place as the image is
rendered to the output device, and that might increase drawing time. Again, performance measurement is
paramount in determining which approach is best.

Transparency

A topic related to bit depth is transparency. Many buffers are created without transparency by default. For a
color buffer, one quarter of the buffer is usually dealing with transparency. If one quarter of the buffer can be
omitted and doesn't need to be used for any rendering calculations, both memory and CPU time will be saved. It
is best to use transparency only when it is needed and to avoid it otherwise. The trick is that transparency is
infectious. When Cocoa tries to perform a rendering operation that will leave behind a nonopaque pixel in a
buffer that has no transparency, the buffer will be promoted to contain transparency. With one single, seemingly
innocuous rendering command, the buffer's size expands and future rendering will take longer.

In other words, a developer shouldn't just create an opaque buffer without alpha channel. It is also important that
extreme care be taken ensure that the buffer won't be accidentally promoted to contain an alpha channel. Painting
with an NSColor that isn't fully opaque is an obvious culprit that can easily be avoided. Most compositing

operations will not promote the destination to contain alpha, either. But the Clear operation will always promote
the destination to contain alpha information, and the copy operation will do so if there is transparency in the
source image. To avoid this promotion NSEraseRect() or NSRectFill() with a solid color should be
used in place of a composite Clear operation. The composite copy can be replaced with a Source Over operation
or a Source Over preceded with an NSRectFill(), depending upon the desired result.

Another reason to be careful about using transparency in the current implementation of Quartz is that
transparency is not yet supported for printing. PDF files created from captured drawing and printed output do not
yet take advantage of transparency information. This means that when transparency is being used, WYSIWYG
(What You See Is What You Get) is broken between screen and printer. Not using transparency is one way to
avoid this problem. At WWDC 2001, Apple engineers suggested that this would be fixed in a future version of
Mac OS X, but no promises were made as to when that would be. If Apple continues to track the PDF
specification, however, it is safe to assume that this will indeed be the case because the latest emerging PDF
specs support transparency.

Buffer Widths

Another optimization opportunity concerns a buffer's width. If a buffer is created with exactly the right width,
Quartz can use Altivec to speed up compositing on G4 based Macintoshes. The magic width is any width that
results in the number of bytes per image row being 16. For example, consider a 32-bit RGBA buffer. There are
four bytes per pixel in such a buffer. Therefore, if this particular buffer's width is a multiple of four, then the
Altivec optimization will be triggered. The Points example from earlier in this chapter makes use of this
optimization in one of its algorithms when creating a buffer.

Drawing Text

Several text drawing functions in Cocoa are convenient to use, but will slow performance. All the NSString
methods described in Chapter 14 for drawing text should generally be avoided when actual drawing performance
is of any importance. The problem is that each time these methods are called they need to set up the current
graphics context with fonts and other text attribute parameters. Because this is very expensive, these methods are
by far the most inefficient way to render text. There are at least two alternative approaches to drawing text that
might work well depending on the situation.

The first approach, and the easiest to implement, is to use the text-drawing methods to render the text into an
NSImage buffer. When the text is needed, the image can be composited where it is required. This works well
for any text that is unlikely to change, such as labels. The code to do this is still relatively simple to write.
Chapter 14 discusses using images for offscreen drawing. Although the string rendering methods are slow, if
they are used infrequently they won't have a significant impact on overall application performance.

Alternatively, an NSText object can be used as a helper to actually render the text. If the text is at all complex,
this is by far the preferred approach. NSText is designed to be extremely efficient at rendering complex text and
it transparently provides most of the benefits of Apple's advanced-type technologies. By inserting an NSText
object as a subview, it is possible to use the NSText to render text inside of an arbitrary NSView subclass. The
downside is that NSText is a complex object that can be difficult to use.

Despite the complexity, this technique is usually the best approach for achieving speed in text rendering. Even
Cocoa itself uses it. All the NSTextField objects in any given application share a single NSText object,
known as the field editor. The field editor is used to perform the fields' functionality. It is shared between the
field objects because NSText is a very heavyweight object. Rather than waste resources instantiating an
NSText object for every field, the same instance is shared between them. Refer to Chapter 11, "Text Views,"
for more information about NSText and how to use it.

Dashed Lines

Rendering dashed lines is also a relatively slow operation. Unfortunately, there is no good workaround for
making this faster. Complex paths that are repeatedly rendered without being changed might benefit from some
of the rendering techniques already described. One choice is to render the path into an NSImage cache, and then
composite it when needed. If the path changes often or isn't very complex, however, using an image cache might
be detrimental to performance. As usual, timing the application's performance is the only way to be sure which is
the best approach. Either way, rendering dashed lines is an expensive process. If dashed lines are needed,
however, there's simply no way to avoid this fact. If dashes can be avoided, doing so can lead to a performance
improvement.

Context Saves

Another expensive operation is saving and restoring graphics contexts. It is important to limit context save/
restore pairs to situations that truly require them. A common mistake is to save the context at the start of a -
drawRect: implementation and restore it at the end. The NSView machinery already does this automatically,
so doing it again would be superfluous. Furthermore, unless there is a demonstrable need to restore a graphics
context to a previous state, there is little point in doing a save/restore.

Superfluous Drawing

Finally, when running with the -NSShowAllWindows command-line flag turned on, watch for panels that
update themselves unnecessarily. There is no point in redrawing a control that is on an offscreen window. If it
can't be seen, don't redraw it. Wait until it is brought on screen before asking it to be redrawn. Under normal
circumstances, the Application Kit will update controls automatically before bringing them onscreen. When a
developer tries to bypass or outsmart this machinery, the most common result is to cause this unnecessary
updating. Therefore, it is worth watching for it when attempting to control display updates in a manner that is
better than the Application Kit. The obvious danger is that such meddling can make things worse if the proper
care isn't taken.

Path Intersections

When Quartz renders a path, it must perform special calculations to render antialiased path intersections
correctly. This requires it to check every path segment against every other path segment to see if they intersect.
Since this is a problem of n-squared complexity, paths with many elements will be drawn much more slowly
than paths with just a few elements. If you don't care about correct rendering of intersections or you know that
the segments in your path don't intersect, you can speed up rendering by splitting the path into several separate
paths to be rendered one at a time. Be aware, however, that doing so could also cause rendering options such as
end caps, corners, and line dash patterns to be rendered differently. When breaking up a path, care must be taken
to preserve sections of the path where these rendering options matter.

Book: Cocoa® Programming
Section: Chapter 13. Custom Views and Graphics Part II

Summary

This chapter described modifying the graphics context used for vector drawing to produce
powerful and complex effects. The techniques for fast rectangle and point drawing enable
applications such as scatter charts and control points. The optimization techniques
presented can be used to speed up almost any Cocoa application. A lot of details of vector
drawing have been covered, but techniques for drawing images and text have not yet been
covered. Chapter 14, "Custom Views and Graphics Part III," dives into descriptions of
Cocoa image and text support. Image manipulation and sophisticated text rendering are two
of Cocoa's strongest attributes.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 14. Custom Views and Graphics Part III

IN THIS CHAPTER

● Images and Bitmaps
● Drawing Text

This chapter continues the discussion of drawing with subclasses of NSView to detail the
use of images and text. Cocoa provides powerful tools for drawing images with rotation,
transparency, and other effects. Cocoa's text-drawing capabilities are state of the art, and in
many cases, the built-in text-drawing capabilities of Cocoa exceed the features available in
expensive desktop publishing applications. This chapter provides an overview of image
and text drawing with examples.

Book: Cocoa® Programming
Section: Chapter 14. Custom Views and Graphics Part III

Images and Bitmaps

Cocoa offers a suite of classes for managing bitmap images. This suite includes the NSImage and NSImageRep classes as well
as several different NSImageRep subclasses. This group of classes can be used to decode many common bitmap image file
formats (such as TIFF, GIF, JPG, and so on), and load them into memory for further manipulation. There are also facilities for
manipulating vector-based images such as PDF. Support can be added for new image file formats, which makes them
transparently available to all Cocoa programs via OS X's Services mechanism. An image can be created from raw byte data or
even a drawing subroutine. Images can be further modified and drawn to the screen, or saved to a file or NSData object.

Compositing

When Cocoa renders images, the rendering is done by using a process called compositing. Compositing is a way to mix two
images (a source and a destination) to produce a third image. There is more than one way to mix the two images. Each rendering
approach is known as a compositing mode. Cocoa supports several compositing modes, described in Table 14.1. When
compositing, the source image object is the one asked to render itself. The destination is the graphics context, the place where the
result can be found after the operation is complete. The destination could be the screen, printed page, or another image object.
Compositing behavior can be affected by what is already at the drawing destination. Table 14.1 provides the names of the
available compositing modes, the constants used by Cocoa to identify them, and their rendering behavior.

Table 14.1. Cocoa Constants and Rendering Behaviors for Compositing Modes

Example Compositing Mode Constant Rendered Behavior

Clear NSCompositeClear Resultant image is made up of
completely transparent (clear)
pixels. Effectively, the source
data is ignored and destination
is erased.

Copy NSCompositeCopy Destination image is replaced
by the source image, pixel for
pixel. The destination data is
completely lost.

Destination Atop NSCompositeDestinationAtop Where both images are opaque,
the destination remains
unchanged. Result uses source
image in areas where
destination is transparent, but
source is not. Result is
transparent everywhere source
is transparent.

Destination In NSCompositeDestinationIn Destination remains unchanged
where both images are opaque.
Result is transparent elsewhere.

Destination Out NSCompositeDestinationOut Destination remains unchanged
where destination is opaque and
source is transparent. Result is
transparent elsewhere.

Destination Over NSCompositeDestinationOver Destination is unchanged where
destination is opaque. Where
destination is transparent, result
is the source image.

Source Atop NSCompositeSourceAtop Destination is unchanged where
source is transparent and
destination is opaque. Source is
used where source and
destination are opaque. Result is
transparent elsewhere.

Source In NSCompositeSourceIn Source is used where
destination and source are
opaque. Result is transparent
elsewhere.

Source Out NSCompositeSourceOut Source is used where source is
opaque and destination is
transparent. Result is
transparent elsewhere.

Source Over NSCompositeSourceOver Source is used where source is
opaque. Destination is
unchanged where source is
transparent.

Exclusive-Or NSCompositeXOR Result pixels are determined by
the exclusive-or of the
corresponding source and
destination pixels. Where
source and destination are both
opaque or both transparent, the
result is transparent. Where
either source or destination is
opaque and the other is
transparent, the result is opaque.

Plus Darker NSCompositePlusDarker Pixels are added together in
such a way that the sum
approaches a limit of zero
(black).

Plus Lighter NSCompositePlusLighter Pixels are added together in
such a way that the sum
approaches a limit of one
(white).

 Highlight NSCompositeHighlight This mode is no longer
supported, but still exists for
backward compatibility. It now
behaves like Source Over.

It might be difficult to imagine exactly what each of these modes does. The best way to visualize these operations is to actually
manipulate some images to see what results are achieved when they are composited. Mac OS X Developer comes with an
example application that allows just that. The example program, CompositeLab, can be found in /Developer/Examples/
AppKit/CompositeLab. Try building and running it. For those who do not have this example program readily available, refer to
Table 14.1. The leftmost column shows examples of each compositing mode. For each thumbnail, the source image is at the left,
the destination in the center, and the result after compositing is on the right.

Two of the most common compositing modes are Copy and Source Over. Copy makes an exact copy of the source in the
destination. The Source Over mode also copies the source to the destination, but it allows the alpha channel (transparency) of the
source image to be taken into account as if it were a mask for the copy operation. When rendering an image, Source Over enables
the source image to be added to the foreground of what is already in the destination.

The Source Over mode can be described mathematically. The following equation can be used per component to determine the
resulting component values:

result = source * (source alpha) + destination * (1.0 - source alpha)

Each compositing mode can be described with a different, unique equation. Providing the mathematical details of each
compositing mode is beyond the scope of this book. Any good computer graphics reference book should contain a complete
discussion of all the mathematical details of compositing.

Returning to the operations themselves, usually the Atop, In, and Out modes are used for various masking operations. A mask
image can be supplied as the source image. The various modes allow the mask to be used like a cookie cutter to punch holes in
the destination image. Masks can also be used for cropping and framing. A semitransparent cropping mask can be used to feather
the edges of an image, giving it a soft edge that fades out.

The Plus compositing modes are a bit more difficult to understand. Both can be used to aggregate images together and create a
mask of the result. The resultant mask could then be used with the other modes for various effects. To better describe these two
modes, look at the math behind calculating the result. In the case of Plus Lighter, imagine each color component being added
together, and then clamped to the range [0.0, 1.0]. (That is, the result is kept within that range). For example, suppose the images
being composited use the RGBA-color model. Focusing on one pixel, further suppose that the source pixel is the tuple (1.0, 0.5,
0.5, 1.0), and the destination pixel is the tuple (1.0, 0.5, 0.0, 1.0). Adding the two tuples and clamping the result gives the
resultant tuple (1.0, 1.0, 0.5, 1.0) for the pixel in question.

Plus Darker is slightly more complex mathematically. First, each component is forced to be in the range from 0.0 to 1.0. Next,
the result is determined per component by using this equation:

result = 1.0 - ((1.0 - source) + (1.0 - destination))

With a little algebra, this equation can be simplified to the following:

result = source + destination - 1.0

As with Plus Lighter, the result is clamped to the range [0.0, 1.0] to produce the final result. As an example, the same pair of
tuples used for the Plus Lighter example will produce this tuple for Plus Darker: (1.0, 0.0, 0.0, 1.0).

The NSImage Class

The NSImage class is the most commonly used interface for dealing with images. It can load images from disk or memory, and
save images to disk or memory. It can render images to the screen, and even allow an image to be modified. The NSImage class
can also supply some basic information about an image, such as its size.

The NSImage class does not, however, contain any of the image's actual data. Instead, it maintains a list of instances of
NSImageRep (image representation) subclasses. This allows an NSImage to have more than one set of image data. For
example, one image might contain a low-resolution representation that is 72 dpi, meant for use on the screen, and a high-
resolution 1200 dpi representation for use with printing. Perhaps there are color and monochrome (black and white) versions as
well. When an NSImage instance is rendered, it will go through its internal list of image representations and choose the one that
best matches the current graphics context's output device. If an image has more than one representation, a different representation
is often used for printing than is used for drawing to the screen.

Creating an NSImage

There are a few ways to obtain an NSImage instance. With most of the methods described in this section, there is the chance that
an image will not actually be created. For example, image creation can fail because of corrupted files or data, missing files, stale
URLs, undecipherable pasteboard data, and so on. If creation or initialization fails for some reason, nil will be returned.
Therefore, it is wise to check the return values of these methods to make sure that the desired image was actually created.

If the image data of interest is stored on disk within an application's main bundle or one of the standard system images is desired,
then the NSImage +imageNamed: method is the easiest way to obtain an NSImage object. The name passed to this method
is provided without a file extension. For example, if an image file named Grid.tiff was added to the application's project in
Project Builder, the file will be inside the application's bundle when the application is built. To obtain an NSImage capable of
rendering this image file, the following code would be used:

NSImage *gridImage = [NSImage imageNamed:@"Grid"];

It is important to remember to retain this image if it will be used beyond the current execution scope. If this object will be
archived at some point, it is important to know that an image created with this method will be archived without saving the image
data. Instead, only the image's name will be archived. If the image isn't available within the bundle of the application that later
unarchives the image, the original image will have been lost.

To avoid losing the image data when archiving an image object, the NSImage must be created differently. When loading an
NSImage from a file, use the -initWithContentsOfFile: method. NSImage objects created this way will store image
data when archived. In this case, the full path, including the filename extension, is required. Because NSImage can handle
images of many different types and can be extended to handle new types, it is desirable to not provide the image's extension. The
Application Kit adds the -pathForImageResource: method to NSBundle to make it easy to search for an image without
knowing what type of image or what filename extension is being used. Put these two methods together to load the Grid.tiff
image like this:

NSString *imagePath = [[NSBundle mainBundle] pathForImageResource:@"Grid"];
NSImage *gridImage = [[NSImage alloc] initWithContentsOfFile:imagePath];

This time the image was allocated, so it is the developer's responsibility to release the image when he is finished with it. Note that
the archiving behavior of +imageNamed: can also be achieved by using -initByReferencingFile: instead of -
initWithContentsOfFile:. If the full path to the image in question is known, that can be used instead of the NSBundle
-pathForImageResource: method.

An instance of NSImage can also be obtained given a URL. Simply pass an NSURL instance to the -
initWithContentsOfURL: method. The URL contents will be obtained and, if an image can be created from the data at
that URL, a new NSImage instance will be returned.

An instance of NSData can also be used to initialize an NSImage object. The -initWithData: method can initialize an
NSImage from an NSDATA object containing image data. The NSData should be a valid, recognizable image file format
supported by the Application Kit. For example, TIFF, JPG, and GIF data are all legal. Using the Grid.tiff image example, it
could be done this way instead:

NSString *imagePath = [[NSBundle mainBundle] pathForImageResource:@"Grid"];
NSData * imageData = [[NSData alloc] initWithContentsOfFile:imagePath];
NSImage *gridImage = [[NSImage alloc] initWithData:imageData];

Usually this wouldn't be done because it is less efficient than just initializing the image from the file directly. However, if there is
already an NSData object available, the -initWithData: method could be helpful. Also, NSImages initialized with this

method will save the image contents when archived.

When permitting a user to choose an image to open using the standard Open panel, Cocoa expects the allowable file types to be
specified. Rather than specifying a particular file type, and including code for decoding that type in an application, use NSImage
to load an image of any type that can be dealt with by the system. Because services can be installed to decode new types of image
files, the types that can be accepted could change at any moment.

The NSImage class provides two methods that return an NSArray containing the allowable image types. The first method is
+imageFileTypes, and the second is +imageUnfilteredFileTypes. Both methods return an NSArray populated
with NSStrings. Each string is either a file extension as it would appear in a filename (tiff, gif, and so on) or a four character
HFS file type enclosed in single quotes ('TIFF', 'GIFF', and so on). The array that is returned is usually used with open and save
panels. It can, for example, be used directly as the argument to NSOpenPanel's -runModalForTypes: method. The array
should never be cached. Because new filter services could be added to the system at any time, call NSImage every time this data
is required.

These two methods differ in only one respect: The list returned by +imageUnfilteredFileTypes is a subset of the list
returned by +imageFileTypes. The unfiltered types are the image types that are built into the system, and can be decoded
without using filtering services. If an image filter service is installed, the +imageFileTypes method returns the types
supported by the system as well as all types supported by the installed filter(s). In most circumstances, the +imageFileTypes
method is the preferred choice because it lists all the image file types that can be supported one way or another.

The ImageTypes example provided on the book's Web site (www.cocoaprogramming.net) can be used to see what these
methods return on a given system. Simply compile and run the application. The application is quite simple; it has a single
controller object that acts as the NSApplication's delegate. When the application launches, this controller object runs the file-
type methods and the pasteboard type methods discussed later. The result of each message is then put into its own
NSTextView. The code for the controller object is as follows:

File Controller.h:

#import <Cocoa/Cocoa.h>
@interface MYController : NSObject
{
 IBOutlet NSTextView *imageFileTypesText;
 IBOutlet NSTextView *imagePasteboardTypesText;
 IBOutlet NSTextView *imageUnfilteredFileTypesText;
 IBOutlet NSTextView *imageUnfilteredPasteboardTypesText;
}
@end

File Controller.m:

#import "Controller.h"
@implementation MYController
- (void)applicationDidFinishLaunching:(NSNotification *)notification
{
 NSArray *imageFileTypes = [NSImage imageFileTypes];
 NSArray *imageUnfilteredFileTypes = [NSImage imageUnfilteredFileTypes];
 NSArray *imagePasteboardTypes = [NSImage imagePasteboardTypes];
 NSArray *imageUnfilteredPasteboardTypes =
 [NSImage imageUnfilteredPasteboardTypes];
 [imageFileTypesText setString:
 [NSString stringWithFormat:@"%@", imageFileTypes]];
 [imageUnfilteredFileTypesText setString:
 [NSString stringWithFormat:@"%@", imageUnfilteredFileTypes]];
 [imagePasteboardTypesText setString:
 [NSString stringWithFormat:@"%@", imagePasteboardTypes]];
 [imageUnfilteredPasteboardTypesText setString:
 [NSString stringWithFormat:@"%@", imageUnfilteredPasteboardTypes]];
 [[imageFileTypesText window] makeKeyAndOrderFront:nil];
}

http://www.cocoaprogramming.net/

@end

Given a pasteboard object, an NSImage can be created from the data on the pasteboard. Pasteboards are discussed in Chapter 19.
The NSImage class method, +canInitWithPasteboard:, returns YES if it can initialize an NSImage instance from the
data on the pasteboard, and NO otherwise. Because there are many image formats that might be placed on the pasteboard, this is
the easiest way to tell if NSImage can interpret the data or not. When it is determined that the pasteboard data is useful, the -
initWithPasteboard: method can be used. If given an NSPasteboard instance myPasteboard, the following code
will create a new NSImage instance, if it is possible:

NSImage *newImage = nil;
if ([NSImage canInitWithPasteboard:myPasteboard]) {
 newImage = [[NSImage alloc] initWithPasteboard:myPasteboard];
}

The +canInitWithPasteboard: method only returns a YES or a NO. If there is a need to know the actual pasteboard types
supported by NSImage, the +imagePasteboardTypes and +imageUnfilteredPasteboardTypes methods are
available. These two methods work like their file type counterparts. The strings returned are different, however. Instead of file
types, they are generally longer strings that identify a particular system pasteboard type.

Some of the strings that might be found as a pasteboard type are defined in the NSPasteboard.h header. For example, the
constant NSTIFFPboardType is one of the types returned. On Mac OS X 10.1, this constant is actually NeXT TIFF v4.0
pasteboard type, as seen if you run the ImageTypes example. The system defined types defined as of Mac OS X 10.1 are
NSPostScriptPboardType, NSTIFFPboardType, NSPICTPboardType, and NSPDFPboardType. The values of
these should be ignored, however. It is recommended instead that the constant values always be used.

Of course, applications that publish image filter services might add other pasteboard types as well. Those types will appear in the
+imagePasteboardTypes array but not in the +imageUnfilteredPasteboardTypes array. The Application Kit
also adds several types to the +imagePasteboardTypes array. These extras aren't available as constants. The strings
themselves are of the format NSTypedFilenamesPboardType:TYPE where TYPE is a file extension. These are added so a
file reference placed on the pasteboard can be converted into an NSImage by loading the contents of the file. This is a good
reason to use the more generic +imagePasteboardTypes method for most pasteboard operations. For example, if the
unfiltered pasteboard types are used, drag and drop of image files from the Finder won't work.

Finally, if an NSImage needs to be created from scratch, as opposed to creating the object from preexisting data, use the -
initWithSize: method. This is often used to create offscreen buffers (caches). Because all Quartz drawing is double
buffered, it is usually not necessary for a developer to do caching. However, this can be a useful technique.

For example, suppose a drawing program is being developed. If the user chooses to drag a group of complex objects, it might be
more efficient to render the objects into an NSImage. As the objects move, the NSImage can be redrawn to the view at a new
location instead of rerendering the shapes themselves. The section "Drawing in an NSImage," later in this chapter describes how
to direct drawing to an NSImage instance, and the section "Rendering an Image," (also later in this chapter) shows how to draw
an image to the screen. The NSImage class is used when an offscreen drawing buffer is desired. It is common to want a buffer
that matches an NSView instance in size. To create such an NSImage from within the NSView subclass, the following code
could be used:

NSRect myBounds = [self bounds];
NSImage *backBuffer = [[NSImage alloc] initWithSize:myBounds.size];

Rendering an Image

When an NSImage is rendered, or drawn, it is composited as described in the "Compositing" section earlier in this chapter. The
two basic methods for rendering an image are

- (void)drawAtPoint:(NSPoint)point fromRect:(NSRect)fromRect
 operation:(NSCompositingOperation)op fraction:(float)delta
- (void)drawInRect:(NSRect)rect fromRect:(NSRect)fromRect
 operation:(NSCompositingOperation)op fraction:(float)delta

The only difference between the two methods is in how the destination location is specified. In the first method, the destination is

specified as a point. In this case, the destination point specifies where the image's origin is placed when the composite is
performed. By changing the destination point, the image can be translated within the current graphics context. The destination is
specified in terms of the active graphics context's current coordinate system, so that the existing scale, rotation, and translation
are respected. The second form specifies a destination rectangle instead of a point. The image will be scaled as it is composited
so that it is fitted exactly to the rectangle specified. The rectangle itself is specified in terms of the active graphics context's
current coordinate system.

The rest of the parameters to these methods are identical in purpose. The second parameter is the fromRect parameter. It
specifies the portion of the NSImage that is to be composited. This makes it possible to only composite a subimage from the
NSImage. To composite the whole image, use a rectangle with origin (0.0, 0.0) and a size obtained from the NSImage -size
method.

The next parameter specifies the compositing operation to be performed. The available operations are described in the
"Compositing" section earlier in this chapter. The constants in Table 14.1 are the legal values for the op parameter.The last
parameter, delta, specifies a fade value from 0.0 to 1.0. For a normal compositing operation, this is 1.0. If a fractional value is
used, the final results of the compositing operation are a partial fade between the original destination image and the final,
composited image.

The SimpleAnimation example shows how these methods can be used. It contains a custom NSView object with an
animated object moving across a background. The animated object is a rotating, bouncing ball. There is an NSImage containing
the background. Another NSImage contains the frames of the animated object, as shown in Figure 14.1. To erase the object
before drawing it at a new location, a portion of the background image is composited to the NSView. The ball image contains all
the animation frames, packed together into a single NSImage. To select the desired frame from the ball image, the fromRect
parameter's origin, but not size, is changed with each frame of animation. While the ball itself moves, the delta parameter is
changed to make it fade in and out.

Figure 14.1. This NSImage contains the frames of the animated object in the SimpleAnimation application.

There is only one Interface Builder connection, setting the custom view as the application's delegate. All the code resides in the
custom NSView object. For any real animation, this would not be an effective or scalable design. Instead, separate classes for the
background and the ball would be created. The view would then call upon each class to contribute to rendering the final
animation frame. Although this all has been lumped together into a single object to keep this example simple, an industrial-
strength design would not do so. The code for the custom NSView is as follows:

File AnimationView.h:

#import <Cocoa/Cocoa.h>

#define BALL_FRAMES 10
#define FRAMES_PER_SECOND 30

@interface MYAnimationView : NSView
{
 NSTimer *_myFrameTimer;
 NSImage *_myBackgroundImage;
 NSImage *_myBallFramesImage;
 NSRect _myBallLocation;
 NSPoint _myBallVelocity;
 int _myBallFrame, _myFrameIncrement;
 float _myBallFade, _myFadeIncrement;
}

- (id)initWithFrame:(NSRect)frame;
- (void)applicationDidFinishLaunching:(NSNotification *)notification;
- (void)drawRect:(NSRect)rect;

- (void)eraseOldDrawing;
- (void)calculateNewFrame;
- (void)redrawFrame;
- (void)timerPing:(NSTimer *)theTimer;
- (void)startTimerWithInterval:(float)timeGap;
- (void)stopTimer;
- (void)dealloc;

@end

File AnimationView.m:

#import "AnimationView.h"

#define SECONDS_PER_FRAME (1.0 / (float)FRAMES_PER_SECOND)
#define BALL_WIDTH 104.0
#define BALL_HEIGHT 100.0
#define FADE_INCREMENT 0.02

@implementation MYAnimationView

- (id)initWithFrame:(NSRect)frame
{
 self = [super initWithFrame:frame];
 if (self) {
 myBallLocation = NSMakeRect(random() % 660 + 20,
 random() % 460 + 20, BALL_WIDTH, BALL_HEIGHT);
 myBallVelocity = NSMakePoint(random() % 5 + 5, random() % 5 + 5);
 myBallFrame = 0;
 myFrameIncrement = 1;
 myBallFade = 1.0;
 myFadeIncrement = -FADE_INCREMENT;
 myBallFramesImage = nil;
 myBackgroundImage = nil;
 myFrameTimer = nil;
 }
 return self;
}

- (void)applicationDidFinishLaunching:(NSNotification *)notification
{ // This will finish our initialization after the application has
 // been fully initialized. This object needs to be the
 // application's delegate in order to be sent this message.
 // load and cache animation frames for bouncing ball
 myBallFramesImage = [NSImage imageNamed:@"balls"];
 [myBallFramesImage retain];
 [myBallFramesImage lockFocus]; // forces image to be cached by Quartz
 [myBallFramesImage unlockFocus];
 // load and cache background image
 myBackgroundImage = [NSImage imageNamed:@"background"];
 [myBackgroundImage retain];
 [myBackgroundImage lockFocus]; // forces image to be cached by Quartz
 [myBackgroundImage unlockFocus];
 // start the animation timer
 [self startTimerWithInterval:SECONDS_PER_FRAME];
 // turn on a couple of minor speed-ups
 [self allocateGState];
 [[self window] useOptimizedDrawing:YES];
 // bring our window forward now that we're ready to draw
 [[self window] makeKeyAndOrderFront:nil];
}

- (void)drawRect:(NSRect)rect
{
 NSRect bds = [self bounds];
 NSRect ballFrameRect = NSMakeRect(myBallFrame * BALL_WIDTH,
 0.0, BALL_WIDTH, BALL_HEIGHT);

 // draw the whole background
 [backgroundImage drawInRect:bds fromRect:bds
 operation:NSCompositeSourceOver fraction:1.0];
 // draw the ball
 [ballFramesImage drawInRect:myBallLocation fromRect:ballFrameRect
 operation:NSCompositeSourceOver fraction:myBallFade];
}

- (void)eraseOldDrawing
{
 // erase the ball by splatting the background over it
 [backgroundImage drawInRect:myBallLocation fromRect:myBallLocation
 operation:NSCompositeSourceOver fraction:1.0];
}

- (void)calculateNewFrame
{
 NSRect bds = [self bounds];
 NSPoint ballLimit = NSMakePoint(bds.size.width - BALL_WIDTH,
 bds.size.height - BALL_HEIGHT);
 BOOL bounced = NO;

 // calculate new ball location
 myBallLocation.origin.x += myBallVelocity.x;
 if (myBallLocation.origin.x < 0.0) {
 myBallLocation.origin.x = 0.0;
 myBallVelocity.x = -myBallVelocity.x;
 bounced = YES;
 }
 if (myBallLocation.origin.x > ballLimit.x) {
 myBallLocation.origin.x = ballLimit.x;
 myBallVelocity.x = -myBallVelocity.x;
 bounced = YES;
 }
 myBallLocation.origin.y += myBallVelocity.y;
 if (myBallLocation.origin.y < 0.0) {
 myBallLocation.origin.y = 0.0;
 myBallVelocity.y = -myBallVelocity.y;
 bounced = YES;
 }
 if (myBallLocation.origin.y > ballLimit.y) {
 myBallLocation.origin.y = ballLimit.y;
 myBallVelocity.y = -myBallVelocity.y;
 bounced = YES;
 }

 // calculate which frame to display next
 myBallFrame += myFrameIncrement;
 if (myBallFrame >= BALL_FRAMES) {
 myBallFrame = 0;
 }
 if (myBallFrame < 0) {
 myBallFrame = BALL_FRAMES - 1;
 }
 if (bounced) {
 myFrameIncrement = -myFrameIncrement;

 }
 // calculate ball's fade
 myBallFade += myFadeIncrement;
 if (myBallFade < 0.0) {
 myBallFade = 0.0;
 myFadeIncrement = -myFadeIncrement;
 }
 if (myBallFade > 1.0) {
 myBallFade = 1.0;
 myFadeIncrement = -myFadeIncrement;
 }
}

- (void)redrawFrame
{
 NSRect ballFrameRect = NSMakeRect(myBallFrame * BALL_WIDTH,
 0.0, BALL_WIDTH, BALL_HEIGHT);
 // draw the ball
 [myBallFramesImage drawInRect:myBallLocation fromRect:ballFrameRect
 operation:NSCompositeSourceOver fraction:myBallFade];
}

- (void)timerPing:(NSTimer *)theTimer
{ // called by our NSTimer to render the next animation frame
 // This is the basic animation loop
 [self lockFocus];
 [self eraseOldDrawing];
 [self calculateNewFrame];
 [self redrawFrame];
 [[NSGraphicsContext currentContext] flushGraphics];
 [self unlockFocus];
}

- (void)startTimerWithInterval:(float)timeGap
{
 [self stopTimer];
 myFrameTimer = [NSTimer scheduledTimerWithTimeInterval:timeGap
 target:self selector:@selector(timerPing:)
 userInfo:nil repeats:YES];
 [myFrameTimer retain];
}
- (void)stopTimer
{
 if (myFrameTimer) {
 [myFrameTimer invalidate];
 [myFrameTimer release];
 }
}

- (void)dealloc
{

 [self stopTimer];
 [self releaseGState];
 [myBallFramesImage release];
 [backgroundImage release];
 [super dealloc];
}

@end

Several other rendering operations are less likely to be used. There are four -composite: methods and the two -

dissolveToPoint: methods. The -composite: methods look like this:

- (void)compositeToPoint:(NSPoint)point operation:(NSCompositingOperation)op
- (void)compositeToPoint:(NSPoint)point fromRect:(NSRect)rect
 operation:(NSCompositingOperation)op
- (void)compositeToPoint:(NSPoint)point operation:(NSCompositingOperation)op
 fraction:(float)delta
- (void)compositeToPoint:(NSPoint)point fromRect:(NSRect)rect
 operation:(NSCompositingOperation)op fraction:(float)delta

These methods look suspiciously like the -draw methods described above, but there is a significant difference. The image will
be composited in a way that ignores the current context's scaling and rotation. Only translation is respected. Because this is not
usually what is desired, these methods are not often used.

These methods exist primarily for backward compatibility with older code. Versions of Cocoa prior to Mac OS X had the
limitation that they couldn't composite images in a way that would respect the current coordinate system. The compositing
destination point would respect the coordinate system, but the rest of the image would not. To keep old code from needing to be
completely rewritten, these methods have been retained.

The parameters to these methods have the exact same meanings as the similarly named parameters of the -draw methods.

- (void)dissolveToPoint:(NSPoint)point fraction:(float)aFloat;
- (void)dissolveToPoint:(NSPoint)point fromRect:(NSRect)rect
 fraction:(float)aFloat;

Calling either of the dissolve operations is basically the same as calling the corresponding -compositeToPoint: method
with the Source Over compositing mode. In other words, these two messages produce identical results:

[myImage compositeToPoint:point operation:NSCompositeSourceOver fraction:delta];
[myImage dissolveToPoint:point fraction:delta];

These two lines of code also have identical results:

[myImage compositeToPoint:point fromRect:rect
 operation:NSCompositeSourceOver fraction:delta];
[myImage dissolveToPoint:point fromRect:rect fraction:delta];

Just like the -compositeToPoint: methods, these methods have been retained for backward compatibility with older Cocoa
code.

There is another way to get a bitmap onto the screen, but it is not recommended for general-purpose use. The NSDrawBitMap
() function can take a pointer to raw image data and blast it onto the screen. It is a thin cover for a Quartz function that does the
same thing. This function is briefly described in the "Bitmap Image Representations" section later in this chapter, but actually
using it is often more trouble than it is worth. The NSImage class is efficient enough that there is no performance-based reason
not to use it.

The NSImage method -drawRepresentation:inRect: might seem an obvious choice to use as an alternate rendering
method. It is not, however, meant to be called directly. Instead, it is meant to be overridden in custom subclasses. It's primarily
used as a way to alter how an NSImage will be rendered. Therefore, this method is discussed in the "Drawing in an NSImage"
section later in this chapter.

Inspecting and Manipulating Image Properties

Several methods can be used to change the behavior of an NSImage, or inspect its settings and attributes.

When creating an NSImage there are many ways that the creation attempt might fail. In many cases, nil is returned to signal
this. It is easy to check for that, however, sometimes an instance will be returned. Because an NSImage might load its image
data lazily, depending on how it was initialized, a given instance might not really be usable. This normally wouldn't be known

until the image attempted to render itself. To determine ahead of time whether an NSImage is valid and usable, send it the -
isValid message. Either YES or NO will be returned. It is a good idea to use this method as part of the error checking when
creating a new NSImage, or when unarchiving an image from the pasteboard or elsewhere.

One of the ways that a new NSImage is obtained is by using the class method +imageNamed: to look up the image. A new
image can be created from scratch and assigned a name. When so registered, the image is available via that method. To assign a
name or change an image's name, use the -setName: method. There is something unusual about this method's prototype:

- (BOOL)setName:(NSString *)string;

Unlike most -set methods, NSImage's -setName: returns a boolean value. If another image is already registered under
the name used in the string parameter, this method will fail and return NO. If the receiving image is already registered under
another name, it will first unregister itself, and then reregister with the new name. If this method succeeds, it will return YES. To
see what name an image has been given, the -name method can be used. It will return either an NSString containing the
image's name, or nil if no name has been assigned.

Because image data is expensive, sometimes it is desirable to have an NSImage only retain a reference to the file from which it
was created instead of all the image data. When an image is archived, only the file reference would be stored instead of all the
image data, thereby reducing the archive's size considerably. As previously discussed, the -initByReferencingFile:
method enables creation of an image that only retains a file reference. To find out if an image will retain its data or not, use the -
isDataRetained method. If YES is returned, all the image data will be stored with the image when it is archived. NO will be
returned by objects that only store file references. This behavior can be altered by using the -setDataRetained: method. It
takes a single boolean argument and returns nothing.

All NSImages can have a background color. This color is used when a nonscalable image representation is drawn in an image
that is larger than the representation. The background color fills the pixels that are not covered by the representation. Cached
image representations won't use this because all caches use a white background. Normally, the background color is transparent,
the same color returned by the NSColor class's +clearColor method. To change an NSImage's background color, use the -
setBackgroundColor: method, passing it an NSColor instance. To find out what the background color is set to be, the -
backgroundColor method returns an NSColor object. Changing the background color doesn't cause the image to be
recached. Recaching, if desired, must be forced by sending the -recache message to the image.

Maintaining a graphic context in Quartz can be a bit of a resource hog. To reduce the number of graphics contexts maintained in
Quartz for NSImage caches, a single cache can contain the contents of multiple images. For images that don't change in size,
this can be very efficient. In this scenario, each image owns a portion of the context and when it locks focus, it restricts all
drawing to the portion of the cache that it owns, using a clipping rectangle. There is no need to worry about accidentally drawing
into the area owned by a different NSImage. However, disable this behavior if an image changes its size often. In that case, it is
more efficient to maintain a context just for that image.

To force an image to have its own private graphics context for its cache, as opposed to sharing caches, use the -
setCachedSeparately: method with a YES. To allow an image to be part of a shared cache, send a NO to that method. To
see what the current caching behavior of the image is, use the -isCachedSeparately method. Note that even when cache
sharing is turned on, NSImage might decide to cache the image separately anyway. The choice is implementation dependent. In
other words, this parameter is really just a hint to NSImage, and doesn't guarantee any specific behavior.

The cache for an NSImage can, in theory, take its bit depth from one of two sources. The most common, and the default case, is
to make the cache match the depth of the screen, which is an application's default bit depth. Alternatively, the depth of the image
cache could be determined from the image data itself. For example, a TIFF image has tags that specify how many bits of color
there are per pixel. Not every image can use image data to determine a depth, of course. Basically, only bitmapped images loaded
from a file, or from data in a particular image format, can do this.

To make an image take its bit depth from the image data itself, the -setCacheDepthMatchesImageDepth: method can
be used. Send a YES to it and the cache's depth is taken from the image data. Send a NO to get the default behavior of matching
the cache to the screen. Normally, matching the screen is the desired behavior, but this could cause a high-depth image to lose
information. For some applications, such as a paint program, that would be unacceptable. Matching the cache depth to the image
data makes sense in such a case. To find out how an NSImage instance is determining its cached depth, use the -
cacheDepthMatchesImageDepth method, which will return YES or NO.

One of the few parameters concerning the image data that is actually maintained by an NSImage is the image's size. Because
each image representation maintained by the NSImage might have a different size in and of itself, the parent NSImage stores a

master size that is the canonical size of the image. Representations are scaled to that size if possible, or else uncovered pixels are
painted with the image's background color to make sure that the image covers all the pixels specified by its size.

An image cannot be rendered until it has a size set. When initialized from image data, the NSImage takes its size from that. All
bitmap image data formats specify dimensions for their image data in some way; NSImage uses that information, where
available, to set its size. EPS and PDF files specify a bounding box for their vector graphics; NSImage uses bounding-box
information where applicable to set its size. Where there is no image data provided, a size must be given. This is why a simple -
init should be avoided for an NSImage; -initWithSize: must be used. It is legal, however, to call -initWithSize:
with a zero size (0.0, 0.0). In this case, the size must be set at a later time before the image can be rendered. The image will be
invalid until it has a nonzero size.

To set or change an image's size, use the -setSize: method. The method takes an NSSize as its single argument and returns
nothing. When called, -setSize: will invalidate and release any image cache that might exist, forcing a recache to occur. The
cache will be recreated at the new size the next time it is needed. To determine the size of an image, send it the -size method.
An NSSize will be returned.

When an image is resized, any existing image representations might need to be scaled so they fit the new size exactly. However,
because it might not always be desirable to scale the associated image representations, this can be turned on or off. NSImage's
default behavior is to not scale image representations when the image's size changes. This behavior can be changed with the -
setScalesWhenResized: method. This method takes a boolean argument and returns nothing. Changing this setting
controls the NSImage's behavior in respect to all the image representations it is maintaining. Use the -scalesWhenResized
method to determine the image's current behavior in this respect. It will return a boolean value.

When an image is rendered, it can be drawn with the Y axis flipped (that is, flipped over vertically). To make this happen, send a
YES to the -setFlipped: method. The default behavior is NO, don't flip the image. To see whether an image is drawn
flipped, use the -isFlipped method. It returns a boolean. When an image is flipped, it's still drawn in the exact same place it
would have been if it weren't flipped. This is important to remember, especially with the -compositeToPoint: and -
dissolveToPoint: methods. The image will not be drawn downward from the point specified. Usually, flipping an image
doesn't seem like a very helpful function. However, if the image is being rendered into a flipped view, commonly seen with text,
flipping the image causes it to be drawn correctly in that context.

NSImage's Relationship with NSImageRep

As has been previously described, the NSImage class maintains a list of image representations. The representations themselves
contain the actual image data. NSImage doesn't know how to render anything by itself. It always asks one of its image
representations to do the drawing. Each image representation is an instance of a subclass of the NSImageRep class. A
discussion of the NSImageRep class, its subclasses, and how to use them directly can be found in the "Manipulating Image
Representations" section later in this chapter. This section discusses exactly how the NSImage class makes use of its image
representations.

One of the first questions to ask is how an NSImage chooses which representation to use for rendering itself on a given device.
The selection algorithm uses three basic rules. Each rule can cause some image representations to be discarded from the list of
candidates. If there is more than one candidate left after the rule has been applied, the NSImage will proceed to the next rule
until just one image representation remains. Because the rules might need to be changed, depending upon the situation,
NSImage also provides some ways to modify the rules and the order in which they are applied. The simplest set of rules, the
default procedure, is as follows:

● Rule 1- Look for a representation that matches the device's color space. For example, if the device is monochrome,
choose a monochrome representation, if available. Likewise, if the device is color, look for a color representation in the
same color space, or failing that, any color representation.

● Rule 2- Choose a representation that matches the device's resolution. A representation that is an integral multiple of the
device's resolution is considered to be a match. If there is more than one match, the representation closest to the device
resolution will match. If there is no match, choose the representation with the highest resolution. This rule prefers a
bitmap representation to a vector-based representation because vector graphics typically do not specify a resolution.

● Rule 3- Select a representation that most matches the device's bits per sample. If there is no exact match, choose the
representation with the highest number of bits per sample.

These rules, as are, work great for drawing to a screen device. Because most drawing is to the screen, this is a reasonable default.
However, there might be times where it makes sense to adjust this algorithm. The first change that can be made is to swap the
order of Rules 1 and 2, thereby making a resolution match take precedence over a color space match. The two methods for
controlling this are

- (void)setPrefersColorMatch:(BOOL)flag
- (BOOL)prefersColorMatch

Use -setPrefersColorMatch: to change the order of Rules 1 and 2. The default value is YES. Calling this method, and
passing it the value NO causes a resolution match to take precedence over the color space match. To determine the current
priority of these two rules, use the -prefersColorMatch method.

In Rule 2, which matches resolutions, an integral multiple of the device's resolution is considered to be a match. Although this
can work well on the screen, sometimes an exact match is preferred. To require the rule to only look at exact resolution matches,
use these methods:

- (void)setMatchesOnMultipleResolution:(BOOL)flag
- (BOOL)matchesOnMultipleResolution

The default setting is YES, which allows integral multiples of the device resolution to be considered a match. Setting this to NO
causes only exact matches to be considered. The -setMatchesOnMultipleResolution: method changes the setting, and
the -matchesOnMultipleResolution method returns the current value of the setting.

Rule 2 also favors bitmap-based representations to vector-based representations. For drawing to the screen, this makes a lot of
sense. Often a vector-based image has an associated bitmap preview that is rendered to work well on a device with a given set of
characteristics. When drawing to the screen, the preview is likely to be the better choice. This isn't always the case. Sometimes
the vector representation is preferred. In cases where the vector-based representation takes precedence over bitmaps, the
following methods can be used:

- (void)setUsesEPSOnResolutionMismatch:(BOOL)flag
- (BOOL)usesEPSOnResolutionMismatch

The value of this setting defaults to NO. Setting it to YES makes EPS-based representations take precedence over bitmap
representations during the resolution match whenever a resolution match is not found. If a bitmap with an exact resolution match
is available, it will still be used over the vector representation. Unfortunately there is no current API for making PDF or other
vector-based representations take precedence.

To find out which representation would actually be chosen by the algorithm described previously, the following method can be
used:

- (NSImageRep *)bestRepresentationForDevice:(NSDictionary *)deviceDescription;

This method returns the one image representation that the NSImage instance would choose to be used when rendering to a
device matching the parameters found in the deviceDescription dictionary. The allowable keys for the device description
dictionary are described in Table 14.2.

Table 14.2. Device Description Dictionary Keys

Key Expected Value

NSDeviceResolution This value is an NSValue instance containing an NSSize. (Use the +valueWithSize:
method to create the NSValue). The size specifies the dots-per-inch (dpi) resolution of the
device in each direction.

NSDeviceColorSpaceName This is an NSString. The string is one of these color space identifier constants:
NSCalibratedWhiteColorSpace, NSCalibratedBlackColorSpace,
NSCalibratedRGBColorSpace, NSDeviceWhiteColorSpace,
NSDeviceBlackColorSpace, NSDeviceRGBColorSpace,
NSDeviceCMYKColorSpace, NSNamedColorSpace, NSPatternColorSpace, or
NSCustomColorSpace. See Chapter 17 "Color," for more information about these
constants.

NSDeviceBitsPerSample This value is an NSValue containing an integer. Note that this is bits per sample, not bits
per pixel. For example, a device with a 24-bit RGB color space would specify 8 bits per
sample.

NSDeviceIsScreen The value for this key is the NSString @"YES" only. Leave the key out of the dictionary
if not specifying that the device is a screen.

NSDeviceIsPrinter The value for this key is the NSString @"YES" only. Leave the key out of the dictionary
if not specifying that the device is a printer.

NSDeviceSize This value is an NSValue instance containing an NSSize. (Use the +valueWithSize:
method to create the NSValue.) The size specifies the size of the drawing canvas that can
be painted by the device.

Besides just asking for a single representation, the list of representations maintained by the NSImage can be manipulated. The
following four methods can be used to retrieve the list and modify it:

- (NSArray *)representations;
- (void)addRepresentations:(NSArray *)imageReps;
- (void)addRepresentation:(NSImageRep *)imageRep;
- (void)removeRepresentation:(NSImageRep *)imageRep;

The first method, -representations, returns an NSArray containing all the representations available to the NSImage.
This array is treated as a constant, as can be noted from the nonmutable return type. Don't try to modify the array directly.

To add representations to the NSImage's list one at a time, use the -addRepresentation: method. To add several
representations at once, put them all into an NSArray, and then use the -addRepresentations: method. An NSImage
retains any representations it is given. There is one important, nonobvious detail here. A given image representation can only be
owned by one NSImage. There is no sharing between them. Don't try to add the same representation to multiple images.

To remove a representation from an NSImage, use the -removeRepresentation: method. This removes the
representation from the list and releases it. If the image representation needs to be used elsewhere, perhaps handed to another
image object, you should explicitly retain it before it is removed from the NSImage's list.

Finally, an NSImage object can be saved as a TIFF image. Two methods can be used for this:

- (NSData *)TIFFRepresentation
- (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp
 factor:(float)aFloat

Both methods return an NSData object and not an NSImageRep subclass. Note that a new NSImage could be initialized from
the NSData object that is returned by these methods. To actually create a TIFF file, the NSData object needs to be saved to a
disk. NSData's -writeToFile:atomically: can be used for that.

The -TIFFRepresentation method doesn't allow a compression type or factor to be specified. Instead, the default
compression type is taken from the individual image representations. The default compression type depends on the image

representation. If it was created from a file, that file's compression type is the default. Instances initialized from raw byte data
default to uncompressed.

The -TIFFRepresentationUsingCompression:factor: method allows the compression type and factor to be
specified. The comp parameter is specified from one of the constants offered by the NSBitmapImageRep class. Because the
list is implementation dependent and could change from one release to the next, the NSBitmapImageRep class has facilities
for discovering the list of valid compression types. The "Bitmap Image Representations" section later in this chapter discusses the
available methods.

Some of the commonly used compression schemes in the current Cocoa implementation are NSTIFFCompressionNone,
NSTIFFCompressionCCITTFAX3, NSTIFFCompressionCCITTFAX4, NSTIFFCompressionPackBits, and
NSTIFFCompressionLZW. For no compression at all, the NSTIFFCompressionNone constant is used. For one bit per
sample images, the two CCIITTFAX compression modes can be used. The PackBits and LZW compression modes both work
for any bitmap. Both are lossless compression, which means the uncompressed image will be identical to the original image. The
LZW compression tends to produce a more compact output than PackBits, so it is generally the preferred choice. None of these
compression algorithms can use a compression factor, so the floating-point value passed to the NSImage for the factor is
ignored. For a lossy compression scheme where image fidelity can be sacrificed to obtain more compression, the factor would be
significant. The factor's values would be implementation dependent and specified by the compression type. An example of lossy
compression is JPEG algorithm. Although this algorithm used to be supported by Cocoa, it is no longer available for generating
TIFF images.

If the -TIFFRepresentationUsingCompression:factor: method fails for any reason, such as a discrepancy in the
compression requested, it can raise an exception. Therefore, call this method from within the scope of an exception handler.

Drawing in an NSImage

A new NSImage can be created from scratch or can be modified an existing image. As discussed previously, the -
initWithSize: method can be used to create an image to be used as a blank slate. When an image is available, the image can
be drawn in the way drawing is done in a custom NSView subclass.

To begin drawing in an NSImage, send it the -lockFocus message. All drawing of any type is rendered in the NSImage
(actually in an NSCachedImageRep, to be precise) until the focus is changed. To release focus, send the image the -
unlockFocus message. Drawing is returned to the original drawing context.

The focus can be locked on a particular image representation. Obtain one of the image's image representations (recall that an
array containing them all is returned by the -representations method), and pass it as the parameter to the -
lockFocusOnRepresentation: method.

Whenever focus is locked on an NSImage, all drawing is done in the image itself. This allows an NSImage to be used as an
offscreen buffer. (See the section "Caching Complex Drawing" in Chapter 13 for more information.) The full features of the
Quartz graphics model are available when drawing into an NSImage, so everything discussed in Chapters 12 and 13 about
NSBezierPath, NSAffineTransform, compositing, and so on, applies.

Locking focus is like working with a stack: every lock must absolutely be matched with an unlock to avoid problems. It is
common to have nested locks. For example, when focus has been locked on an NSView, drawing might require temporary
drawing in an NSImage. Without unlocking the view, focus is locked on the image, transferring drawing focus from the view to
the image. Before unlocking the view, the image's focus needs to be unlocked. It is also important to remember to lock focus
before doing drawing intended for an image. Attempting to do any drawing without any focus locked will cause a runtime
exception because the Application Kit will not know where to send the drawing. If focus is locked, but not on the image, the
drawing might go to an unintended destination. Such bugs are easy to spot because they usually have quite dramatic results
onscreen.

A cache is automatically created for an image when focus is locked on it, so that there is someplace for the drawing to go. If the
image won't be used very often, and redraws are cheap enough, it might be worth freeing the cache while the image is not in use.
The -recache method invalidates and releases the image's cache. The cache will not actually be recreated until it is needed
again, so memory resources can be freed up this way. To release and immediately recreate the cache, use the following sequence:

[myImage recache];
[myImage lockFocus];

[myImage unlockFocus];

There doesn't have to be any actual drawing between locking and unlocking the focus. Because locking the focus creates a cache
immediately, this sequence causes the old cache to be thrown away and a new cache to be created.

By creating a custom subclass of NSImage, custom code can be inserted into the rendering path. Although not meant to be
called directly, this method is available to be overridden:

- (BOOL)drawRepresentation:(NSImageRep *)imageRep inRect:(NSRect)rect

When an NSImage has chosen an image representation to be used for rendering itself in a particular context, it calls this method
to actually create a cached image that can be used by Quartz for compositing.

The default implementation fills the cache with the image's background color, and then draws the image representation using
standard Quartz commands. The drawing goes into the NSImage's cache. The cache, which is matched to the resolution and
color depth of the context's output device, is then used for the actual compositing. If the drawing was successful, this method
returns YES. If the drawing failed, NO is returned and NSImage object will try again with another image representation or fall
back to its delegate for help. In the standard implementation, if the NSImageRep passed in is unable to be scaled, only the
origin of the rect parameter is respected.

When -drawRepresentation:inRect: is overridden, developers often choose to modify some graphics context
parameters, such as scale and rotation, and then call the super implementation. Something completely different can also be done;
imagination is the only limit.

Like many other Application Kit objects an NSImage can have a delegate. The normal -setDelegate: and -delegate
methods exist to change and retrieve the delegate object, respectively. In the case of NSImage, the delegate has only one
function.

When an NSImage is unable to render itself, due to a lack of image representations or for any other reason, the NSImage
instance attempts to notify the delegate. The message that the delegate needs to implement to be notified is

- (NSImage *)imageDidNotDraw:(id)sender inRect:(NSRect)aRect

The NSImage returned by the delegate is used as a replacement to render the image. If the delegate returns nil, the NSImage
object gives up on the compositing operation in progress. This means the delegate can take one of the three following courses of
action:

● Return a replacement image to be used for rendering.
● Render the image itself, with custom drawing, a composite, or other operation. The sender parameter can be used to

identify the original NSImage that couldn't draw itself, and the aRect parameter can be used to determine where to
draw. In this case, nil is returned so that NSImage will give up trying to render.

● Give up and render nothing, returning nil so that the sending NSImage also gives up.

This delegation mechanism is really meant to be a way to deal with images which for some exceptional reason are unable to be
rendered. Therefore, it is not the best place to insert custom code into the rendering process. Overriding the -
drawRepresentation:inRect: method, described previously, is a better place for custom code.

Another delegation mechanism is employed via the NSCustomImageRep class. It allows a developer to hook into the
rendering path and insert her own custom code, perhaps code that uses NSBezierPath or other means to render the image.
This delegation mechanism is described later in this chapter in the "Cached and Custom Image Representations" section.

Manipulating Image Representations

The NSImage class does not actually manage an image's data. It uses a subclass of NSImageRep to do that. The previous
discussion about NSImage talks about how the NSImage class uses image representations. Much of the time, this is all that is
needed to get the desired results. When more complex circumstances require, an image representation can be manipulated
directly. For most image manipulation, the NSImage interface is the best API to use. However, when direct manipulation of the
underlying image data is required, it is often necessary to manipulate one or more individual image representations. The

following sections discuss how to work with image representations. First, the base NSImageRep class is discussed. Then,
specific subclasses for working with bitmaps, vector graphics, and more will be discussed.

NSImageRep Class

The NSImageRep class is a semiabstract class that is the basis for all image representation objects. It is abstract in that the
NSImageRep class itself should never be instantiated. Its primary function is to define a basic interface common to all image
representation objects. However, because it defines some instance variables and implements several methods, it is not completely
an abstract class in the purest sense. The methods that are defined by this class include methods for drawing (rendering) the
bitmap in the current graphics context, methods for accessing generic image properties, and several methods for managing the
different image-representation subclasses. Several of the latter exist solely to help subclasses fit cleanly into the Application Kit,
providing a clear way to extend the types of image data that the Application Kit can manipulate.

To obtain a new instance of NSImageRep, one of these messages can be used on a subclass. Note that the NSImageRep class
itself does not implement these methods, but it is expected that all subclasses will.

+ (NSArray *)imageRepsWithData:(NSData *)data
+ (id)imageRepWithData:(NSData *)data
- (id)initWithData:(NSData *)data

The first two methods are essentially convenience methods. Many image file formats, such as TIFF, can contain multiple images.
They can all be different, as in frames of an animation, or they can all be the same image at different resolutions, color depths,
and so forth. Although either method can be used on any image file, the one that returns an array often is the better choice to
avoid losing the other images in the data. Both methods ultimately call the designated initializer, -initWithData:. This
method interprets the image data in the NSData passed to it to initialize the instance. If the data is corrupt or of the wrong type,
the object is released and nil will be returned.

There exists a set of convenience methods implemented by the class object to create new image representations:

+ (NSArray *)imageRepsWithContentsOfFile:(NSString *)filename
+ (id)imageRepWithContentsOfFile:(NSString *)filename
+ (NSArray *)imageRepsWithContentsOfURL:(NSURL *)url
+ (id)imageRepWithContentsOfURL:(NSURL *)url
+ (NSArray *)imageRepsWithPasteboard:(NSPasteboard *)pasteboard
+ (id)imageRepWithPasteboard:(NSPasteboard *)pasteboard

These methods are relatively simple to understand. There are two methods each for obtaining an image representation from a file,
a URL, and a pasteboard. For each pair, one of the methods returns a single NSImageRep subclass, whereas the other returns an
array of one or more. Many image file formats, such as TIFF, can contain multiple images. They can all be different, as in frames
of an animation, or they can all be the same image at different resolutions, color depths, and so forth. Although either method
from each pair can be used on any image file, the ones that return arrays are often the better choice to avoid losing the other
images in the file.

The NSImageRep class keeps a registry of available subclasses and the types each can handle. As a result, each of the previous
methods can be sent to the NSImageRep class. From the registry, it selects the best class for handling the image data. If the
message is sent to a specific subclass instead, only data of the type(s) handled by the subclass are interpreted. Whether the
message was sent to the NSImageRep class or a subclass, if the data cannot be interpreted, these methods will return nil.

The next group of methods is used by NSImage to draw a bitmap in the current graphics context:

- (BOOL)draw
- (BOOL)drawAtPoint:(NSPoint)point
- (BOOL)drawInRect:(NSRect)rect

The -draw method draws the image representation at the coordinate system's origin and without any scaling or rotation. The
second two methods are convenience methods. They adjust the current coordinate system to allow for translation in the case of -
drawAtPoint:, or to allow for both translation and scaling in the case of -drawInRect:. If the image data was successfully
rendered, these methods return YES. If the image representation couldn't render or has no size set, NO will be returned.

These three methods all use the copy compositing operation to render the image data. To use another compositing mode, the
NSImage class draws the image representation into an offscreen buffer and composites from that buffer using the desired mode.
If using an NSImageRep subclass directly, this same approach is needed to use a different compositing operator. The simplest
approach is to just use NSImage.

Several methods allow various image representation attributes to be queried and modified:

- (void)setSize:(NSSize)aSize
- (NSSize)size
- (void)setPixelsWide:(int)anInt
- (int)pixelsWide
- (void)setPixelsHigh:(int)anInt
- (int)pixelsHigh
- (void)setAlpha:(BOOL)flag
- (BOOL)hasAlpha
- (void)setOpaque:(BOOL)flag
- (BOOL)isOpaque
- (void)setBitsPerSample:(int)anInt
- (int)bitsPerSample
- (void)setColorSpaceName:(NSString *)string
- (NSString *)colorSpaceName

Although NSImageRep defines all these methods, some of these parameters might not apply to a given subclass. Therefore,
when using these methods, some care must be taken to assure that the method(s) in question make sense for the type of image
representation being manipulated. The subclasses all respond to any of these methods, but the results might be meaningless.

The size parameter is different from the pixelsWide and pixelsHigh parameters. The image representation's size is
provided in units of the base-coordinate system. The Quartz graphic model currently defines that as typographical points, or 72
dpi. The pixel parameters are based on the actual size in pixels, as defined by the image data. Supposing the image representation
is a bitmap image at 72 dpi, which is 800x600 pixels in size. In that case, the size is (800, 600), matching the pixel dimensions
exactly. Suppose instead that the bitmap was actually a 400-dpi image, but with the same (800, 600) size in pixels. In this case,
the pixel dimensions would return the same values, but the size returned would be (144, 108). It is scaled by a factor of 72/400 to
convert the dimensions from pixels to points. By setting these parameters correctly, the Application Kit can properly manage
bitmaps of different resolutions.

At first glance, the alpha and opaque parameters might seem identical. There is a subtle difference, however. The alpha
parameter specifies whether the image representation has an alpha channel or not. The opaque parameter specifies whether the
image representation will paint every pixel when it is drawn. For example, a bitmap with an alpha channel that covers the entire
area as defined by the image representation's size should say that it has alpha and is opaque, even though the alpha channel
might make portions of the image translucent or transparent. The semantic is indeed unusual, so it is important to be careful how
these methods are used.

The bitspersample parameter refers to the number of bits required to represent a single pixel. This parameter is most
applicable to bitmapped image representations. It is relatively meaningless for vector-based images. The special value
NSImageRepMatchesDevice can be used with these methods.

The following constants define the valid color-space names:

NSCalibratedWhiteColorSpace

NSCalibratedBlackColorSpace

NSCalibratedRGBColorSpace

NSDeviceWhiteColorSpace

NSDeviceBlackColorSpace

NSDeviceRGBColorSpace

NSDeviceCMYKColorSpace

NSNamedColorSpace

NSPatternColorSpace

NSCustomColorSpace

Any of these constants can be used as the color-space name for an image representation. Normally, use the device-independent,
calibrated-color spaces. Doing so allows Apple's ColorSync technology to be used. These constants are discussed in more depth
in Chapter 17, "Color."

To have a new NSImageRep subclass fit into the Application Kit architecture seamlessly, several methods need to be
implemented. Some of these methods have already been discussed, but there are many more as well. The following methods must
all be implemented to have a fully functional NSImageRep subclass:

+ (NSArray *)imageRepsWithData:(NSData *)data
+ (id)imageRepWithData:(NSData *)data
- (id)initWithData:(NSData *)data
+ (BOOL)canInitWithData:(NSData *)data
+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard
+ (NSArray *)imageUnfilteredFileTypes
+ (NSArray *)imageUnfilteredPasteboardTypes

The first three methods have already been discussed; they are where the class will interpret the image data. Because the class
object chooses the proper image representation based on the data, it is reasonable to expect that valid, already filtered data will be
passed to these three methods. The very first method, which returns an NSArray, is actually optional. Implement it for any
NSImageRep subclass that wraps around an image format that could contain multiple images (TIFF would be an example).

To choose the right subclass from the registry, NSImageRep requires that subclasses implement the +canInitWithData:
method. The +canInitWithPasteboard: method is a convenience method that calls +canInitWithData:, so it
doesn't normally need to be specially implemented by a subclass. Note that these methods, if sent to the NSImageRep class, will
answer for all the subclasses in the registry. If any subclass responds YES, then these methods will respond YES. When sent to a
specific subclass it will answer only for that subclass.

The last two methods return file and pasteboard types, respectively. The arrays that are returned contain NSString objects with
contents that match the types the NSImageRep subclass supports. The ImageTypes example on the book's Web site at www.
cocoaprogramming.net can be used to see what these strings look like. It shows all the entries for all subclasses and filtered types
available to NSImage. The return values from a custom subclass should be identical to one or more of those values for types
already listed there. Otherwise, they should be of a similar format. As with the +canInit… methods, these methods can be
sent to either NSImageRep or one of its subclasses. NSImageRep merges the results from all the subclasses in the registry to
provide an answer.

The NSImageRep class implements two methods to expand the unfiltered types to include types that can be filtered into one of
the unfiltered types:

+ (NSArray *)imageFileTypes
+ (NSArray *)imagePasteboardTypes

These two methods work like their NSImage counterparts. They also don't need to be overridden by subclasses. When sent to
NSImageRep, they respond for all the subclasses in the registry. When sent to a subclass, they only answer for that subclass. If
a filtered type is used, the Application Kit filters the data prior to passing it to the -initWithData: method and related class
methods.

The final set of methods implemented by the NSImageRep class itself is for manipulating the registry of NSImageRep
subclasses. The registry is used by NSImage and NSImageRep to select an appropriate NSImageRep subclass given a chunk
of image data. The following methods are for registry manipulation:

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

+ (void)registerImageRepClass:(Class)imageRepClass
+ (void)unregisterImageRepClass:(Class)imageRepClass
+ (NSArray *)registeredImageRepClasses

The first method adds a class to the registry. The second removes a class from the registry. When either method is called, an
NSImageRepRegistryDidChangeNotification notification is sent to the default notification center. This allows
objects to watch for changes in the registry.

Any subclass that adds new file or pasteboard types must be sure to register itself. Most NSImageRep subclasses will want to
register once, as soon as possible. They probably won't ever want to unregister themselves, either. A good place to do such a
registration is in the +load method. It is called only once, when a class is first incorporated into the runtime.

The third method returns an array containing the class objects for all the NSImageRep subclasses that have been registered.

To actually search the registry, NSImageRep implements three methods:

+ (Class)imageRepClassForFileType:(NSString *)type
+ (Class)imageRepClassForPasteboardType:(NSString *)type
+ (Class)imageRepClassForData:(NSData *)data

Given a file type, a pasteboard type, or an NSData object, the appropriate method searches the registry and finds a subclass that
can handle the image type or data in question. When a match is found, that class object is returned. If none is found, nil is
returned.

Bitmap Image Representations

One of the most common NSImageRep subclasses is the NSBitmapImageRep. As the name implies, it is meant to handle
bitmap data. It is capable of handling data for a wide variety of common bitmapped image file formats. TIFF, GIF, JPEG, BMP,
and PNG are all supported. This class can read and write images in these formats. It can also be created from raw pixel data or by
taking a snapshot of the contents of an NSView.

As discussed previously in conjunction with the NSImageRep class, the following methods are implemented by this class to
initialize it from existing data or an image file:

+ (NSArray *)imageRepsWithData:(NSData *)imagedata
+ (id)imageRepWithData:(NSData *)imagedata
- (id)initWithData:(NSData *)imagedata

These methods work exactly as previously described. There are two other ways to obtain a new NSBitmapImageRep object.
The first, and most complex, is to create one from a raw-data buffer. This is complex because there are many ways to lay out an
image data buffer. Quite a few parameters are required to specify a given buffer's layout. Here's the method that is used:

- (id)initWithBitmapDataPlanes:(unsigned char **)planes
 pixelsWide:(int)width pixelsHigh:(int)height
 bitsPerSample:(int)bps samplesPerPixel:(int)spp
 hasAlpha:(BOOL)alpha isPlanar:(BOOL)isPlanar
 colorSpaceName:(NSString *)colorSpaceName
 bytesPerRow:(int)rowBytes bitsPerPixel:(int)pixelBits

Because of the length of this method's name, it can be daunting at first. However, it isn't as bad as it looks. The Points example
in Chapter 13, "Custom Views and Graphics Part II," uses this method to create a drawing buffer. It actually manipulates the raw
data after creating the bitmap image representation directly, using the image representation only to simplify drawing the image
on the screen. This method releases the object and returns nil if something fails during initialization.

Before looking at the parameters, it is important to understand the difference between meshed and planar buffer configurations.
To explain the difference, consider a bitmapped RGBA image. Each pixel of the image has four components, one for red, green,
blue, and alpha. Suppose that each component is a single byte. Then, each pixel requires four bytes. Given a stream of raw bytes,
there are two common ways to determine where the RGBA components of the pixel are found in the stream.

One approach is to have the first four bytes be a single pixel. In this case, byte 0 would be the first pixel's red component, byte 1
would be green, byte 2 would be blue, and byte 3 would be the alpha. Bytes 4-7 would be the next pixel. Pixels would be laid out
until the end of the row, and then the next row would begin. This would continue until the image is completed. This format is
known as meshed because the component values are interleaved throughout the byte stream.

The other approach is to separate the components. In this case, byte zero would be the red component of the first pixel, byte 1
would be the red component of the second pixel, and so on. One quarter of the way through the data, the green components
would begin in the same way. Blue would begin at the halfway mark, and the last quarter of the data would contain the alpha
components.

Figure 14.2 graphically shows the differences between the meshed and planar layouts.

Figure 14.2. Notice the differences between the meshed and planar layouts.

The planes parameter of this method is an array of pointers to the buffers that contain the data planes. If the image data is in
meshed format, then there will only be one plane of data. For a planar image, there could be between one and five planes of data.
A grayscale image without alpha would be a single plane, whereas a CMYKA image would have five planes of data. The
significance of each plane, and the order of the planes, is dictated by the color model. The planes must appear in the order they
appear in the color-model name. For example, a planar RGB image would have three planes: red, green, and blue, in that order.
The alpha channel, if it exists, always comes last. So CMYK with alpha (CMYKA) would have the five planes: cyan, magenta,
yellow, black, and alpha.

The safest way to provide the planes' array is to provide an array with five elements, setting those that do not correspond to an
actual data plane to NULL. This reduces the risk of memory overruns and invalid accesses.

If no buffer has been created, there is the option of having the NSBitmapImageRep class create one automatically. Simply
pass NULL as the value for planes, and the necessary buffers will be allocated. Pointers to the buffer's plane(s) can still be
obtained; even when the planes have been allocated by the class itself. Thus, no matter where the buffer comes from, there's no
danger of losing the capability to have direct access to the raw image data.

When the NSBitmapImageRep object allocates a buffer, it takes responsibility for it. The buffer is freed when the object is
deallocated. If the buffer was not allocated by the object, a reference is stored, but ownership is not transferred to the object. The
data is copied and it won't be freed automatically. It is up to the original owner of the memory to free it when the time is right.
This can be a problem because an object can be retained more than once. When the original owner releases it, he can only free
the image data if the -release causes the object to be deallocated. There are several ways to avoid this problem, but the easiest
is to just let the class create a buffer automatically.

The next two parameters to the method are width and height. They specify the image data's dimensions. These are the
image's width and height in pixels, and both must be greater than zero. The NSBitmapImageRep assumes that the data is
being provided at a 72-dpi resolution. To change the resolution, call the inherited -setSize: method to change the size in
relation to the number of pixels. For example, to change the image representation's resolution from 72 dpi to 400 dpi, the current
size needs to be multiplied by 72/400. This would also have the side effect of having the image render smaller onscreen, of
course. Changing the size will not alter the number of pixels of width and height, nor will it modify the data buffer in any way. It
only changes how the buffer is interpreted.

Next comes the bits per sample, bps, and the samples per pixel, spp. These two values are interrelated and depend on the image
data's color model. A sample refers to a color component of a pixel. Thus, a 24-bit RGB image (no alpha channel) would have
three samples per pixel and 8 bits per sample. (24 bits/pixel divided by 3 samples/pixel=8 bits/sample). Note that this assumes the
bps is the same for each component. That places a minor constraint on what kinds of data layouts the NSBitmapImageRep

class can support. Common values for bps for color images are 4 and 8. Black and white images might also be 1. It is a good
idea to avoid other unusual values, because the current implementation of this class might not be support for them. The spp
parameter can be anything from 1, for a grayscale image with no alpha, to 5 for a CMYKA image.

The alpha parameter is YES if there is alpha channel data and NO if not. The isPlanar parameter is a YES for image data in
planar format and NO for data that is meshed.

The NSImageRep class discussion mentions color spaces. The same values that can be used there can also be used here for the
colorSpaceName parameter. Remember, the following constants are all predefined by Cocoa:

NSCalibratedWhiteColorSpace

NSCalibratedBlackColorSpace

NSCalibratedRGBColorSpace

NSDeviceWhiteColorSpace

NSDeviceBlackColorSpace

NSDeviceRGBColorSpace

NSDeviceCMYKColorSpace

NSNamedColorSpace

NSCustomColorSpace

The next parameter, rowBytes, specifies how many bytes are in one horizontal line of pixels (scan line). This value is
significant on a per-plane basis. One might expect that the width, bps, and spp parameters would be sufficient to determine
how many bytes are in a row of image data. For a meshed image, the number of bytes in a row would normally be

rowBytes = width * bps * spp / 8

For a planar image, spp is left out of the equation. This is the default value, and passing a zero as rowBytes causes it to be
calculated and used. If an image is laid out in memory so that the rows start on specific word or byte boundaries, however, there
might be a few unused bytes at the end of the row. Doing this can actually be useful on Mac OS X. If, for example, image data is
laid out so as to be on 16-byte boundaries, then Quartz can invoke Altivec to draw the image on a G4 processor. For an image so
aligned, the rowBytes parameter would be greater than or equal to the value calculated in the previous equation.

The final parameter is pixelBits. Again, this is a parameter that normally can be calculated from the other parameters. For a
meshed image, the following equation applies:

pixelBits = bps * spp

For a planar image, pixelbits would normally be the same as bps. However there might be some padding so that each pixel
is aligned to a byte or word boundary. For an image without any per-pixel padding, passing a zero for pixelBits causes the
default value to be calculated and used. The NSBitmapImageRep class only supports a few values for this parameter other
than the default. In particular, a 12-bit RGB image can use a pixelbits of 16, and a 24-bit RGB image can use a value of 32.

Although there are a lot of parameters, this is the method most commonly used for obtaining an NSBitmapImageRep instance
for direct manipulation. By creating an image representation this way, the byte buffer of the image can be directly manipulated.
This is significant. Many game developers would like to get a pointer to the memory behind a Quartz buffer. However, there is
no way to do this. Core Graphics can be used to access video memory directly after capturing a screen, but accessing Quartz's
backing store cannot be done directly. For a game developer who doesn't capture the screen, this means she might not be able to
write "to the metal" the way that she would like. The closest approximation to this in Cocoa is to use an NSBitmapImageRep
object as a cover for a byte buffer, and to then composite that image to the screen to flush the buffer. As shown in the Points
example in Chapter 13, this does work well and is very fast. It is, however, a lot more complex than simply using the normal

drawing functions provided by the Application Kit.

There is one more way to obtain a new instance of NSBitmapImageRep. While focus is locked on an NSView, this method
can be called:

- (id)initWithFocusedViewRect:(NSRect)rect

This takes a snapshot of the current state of the currently focused NSView object, taken from the specified rectangle. The image
data is copied from Quartz into a new buffer maintained by the NSBitmapImageRep instance. Unfortunately, there isn't a
method for taking a snapshot of an entire window or of the entire screen. This is one way to find out what is in a Quartz buffer,
but it doesn't allow for direct manipulation. After the data is captured, the Quartz buffer might change further.

When an NSBitmapImageRep instance has been created and initialized, there are several properties that might be queried, but
not changed. The following methods exist to query the layout of the NSBitmapImageRep's internal data buffer.

- (BOOL)isPlanar
- (int)samplesPerPixel
- (int)bitsPerPixel
- (int)bytesPerRow
- (int)bytesPerPlane
- (int)numberOfPlanes

Each of these methods returns information about the buffer's layout. The meaning of each of these parameters was described
previously in conjunction with the -initWithBitmapDataPlanes:… method. To obtain a pointer to the actual buffer
itself, one of the following two methods can be used:

- (unsigned char *)bitmapData
- (void)getBitmapDataPlanes:(unsigned char **)data

For meshed image data, the -bitmapData method is sufficient. For data in planar format, this points to the first plane. Because
planes are often contiguous in memory, making the assumption that this is true often works. However, planes are not required to
be contiguous. In fact, they might actually be in some other order.

The safest approach is to get a pointer to the start of each data plane. To get these pointers, use the -
getBitmapDataPlanes: method. The pointer array passed to this method needs to have room for at least five pointers
because there could be as many as five planes. If there are fewer than five planes, the extra pointers are set to NULL. For meshed
buffers, there is only one plane anyway.

It is legal to modify the data in the various planes directly, and then redraw the image. This is the approach taken with the
Points example in Chapter 13 to achieve the fastest drawing rates.

The other primary function of the NSBitmapImageRep object is to enable the image data to be saved back out to a file.
Because each file format has different supported features, this can be somewhat complex. This class originally only dealt with the
TIFF file format, so many of its methods are specific to that image format. The TIFF format methods are covered first, and then
the methods that are more general in nature are covered.

The TIFF image format supports many different kinds of compression, so there are several methods revolving around
compression schemes.

+ (void)getTIFFCompressionTypes:(const NSTIFFCompression **)list count:(int *)
numTypes

The first method is used to obtain a list of all the available TIFF compression algorithms. Several constants are currently defined
as values for the NSTIFFCompression type. Table 14.3 shows the constants and their meanings.

Table 14.3. NSTIFFCompression Constants and Meanings

Constant Meaning

NSTIFFCompressionNone No compression

NSTIFFCompressionCCITTFAX3 Standard fax compression algorithm for 1-bit images only

NSTIFFCompressionCCITTFAX4 See previous

NSTIFFCompressionLZW Lempel-Ziv-Welch (LZW) lossless compression algorithm

NSTIFFCompressionJPEG Lossy JPEG compression algorithm with variable compression factor; no longer
supported

NSTIFFCompressionNEXT Proprietary algorithm. Supported for input only, for backward compatibility

NSTIFFCompressionPackBits Lossless PackBits compression algorithm

NSTIFFCompressionOldJPEG Lossy JPEG compression algorithm with variable compression factor; no longer
supported

To convert one of these constants into a localized string, for use in a user interface, the following method can be used:

+ (NSString *)localizedNameForTIFFCompressionType:(NSTIFFCompression)compression

To determine whether a particular compression method is applicable to a given instance, use this method:

- (BOOL)canBeCompressedUsing:(NSTIFFCompression)compression

When a compression type is chosen, the image representation can be told to use it with this method:

- (void)setCompression:(NSTIFFCompression)compression factor:(float)factor

Note that there is an additional parameter, factor. This is the compression factor and is used only by compression schemes that
support variable compression rates. The values of factor are dependent on the algorithm. The only types in Table 14.3 that
support different compression factors are the JPEG algorithms, where compression values from 0.0 to 255.0 are legal (0.0 means
minimal compression). However, they are now listed in the documentation as no longer being supported. That means the
factor value is currently ignored by the class.

When an NSBitmapImageRep instance is created from image data, the compression type is stored with the object. This
method can be used to change the compression type. To see what compression type is currently set for the image, use this method:

- (void)getCompression:(NSTIFFCompression *)compression factor:(float *)factor

Note that both the compression type and factor are returned by reference instead of as return values. The object's data is stored in
an uncompressed format. Any compression that is set is used only when writing the image representation to a file. Even this isn't
set in stone, however. Some of the methods that save the data to a file allow the preset compression values to be overridden.

To save an NSBitmapImageRep as a TIFF file, two steps must be taken. First, the NSBitmapImageRep object has to be
converted into an NSData object. Next, the NSData needs to be written to the output file. To obtain an NSData, one of four
methods can be used:

- (NSData *)TIFFRepresentation
- (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp
 factor:(float)factor
+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array
+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array
 usingCompression:(NSTIFFCompression)comp factor:(float)factor

The first two methods are the basic means of producing a TIFF file from a single NSBitmapImageRep object. The first
method uses the compression algorithm already set in the object. The second method overrides those settings.

Because a TIFF image can actually contain several different images within the file, there are also two class methods. Instead of
being sent to an individual instance, an array of NSBitmapImageRep instances is sent to the class object. It combines them
into a single, multiframe TIFF image. Like the first two methods, each instance can use its own compression algorithm, or with
the latter method, an algorithm can be chosen to override for all the image representations.

With the addition of support for multiple bitmap image file formats, there are also two methods that are more generic in nature.
These methods work much like the previous TIFF methods, but they require a properties dictionary to specify particular features
of a given image file format. The two generic methods are

+ (NSData *)representationOfImageRepsInArray:(NSArray *)imageReps
 usingType:(NSBitmapImageFileType)storageType
 properties:(NSDictionary *)properties
- (NSData *)representationUsingType:(NSBitmapImageFileType)storageType
 properties:(NSDictionary *)properties

The first method is used for image formats like TIFF where multiple images are to be put into a single file. The second method is
for creating a file from just a single image representation. Both methods require the file format and a properties dictionary to be
specified.

The storageType parameter can currently be one of these predefined constants: NSTIFFFileType, NSBMPFileType,
NSGIFFileType, NSJPEGFileType, or NSPNGFileType. They correspond to TIFF, BMP, GIF, JPEG/JPG, and PNG
files, respectively.

The properties dictionary is a little more complex. It is an NSDictionary instance. The valid keys and expected values are
shown in Table 14.4. Remember the keys that make sense depend on the value of the storageType parameter.

Table 14.4. Keys and Values for Image Property Dictionaries

Valid keys Expected values

NSImageCompressionMethod This is the compression method for TIFF files. An NSTIFFCompression value is
placed into an NSNumber.

NSImageCompressionFactor This is the compression factor for TIFF or JPEG/JPG files. For JPEG compression,
the value is between 0.0 and 255.0, stored in an NSNumber. (255 is the maximum
compression.)

NSImageColorSyncProfileData This is ColorSync profile information stored in an NSData object. This is only
applicable to the TIFF format. There is currently no specific way to obtain such an
object from the Cocoa frameworks.

NSImageDitherTransparency This is a boolean flag stored in an NSNumber. It is only applicable to GIF images
that support transparent pixels, but not translucent (partially transparent) pixels. If
YES, then translucency will be approximated by dithering with clear pixels.

NSImageRGBColorTable This is a color map or palette that is used for a GIF image. It is an NSData object
containing 256 tightly packed RGB triplets (a total of 768 bytes).

NSImageInterlaced This is a boolean flag stored in an NSNumber. If YES, then the image will be
interlaced. As documented, this is used for PNG images only, even though the GIF
format can support interlacing.

The NSBitmapImageRep class can also perform one other interesting function. It can convert a grayscale image into a color
image. The following method is used to do this:

- (void)colorizeByMappingGray:(float)midPoint toColor:(NSColor *)midPointColor
 blackMapping:(NSColor *)shadowColor whiteMapping:(NSColor *)lightColor

Note that three colors and a gray value need to be specified. A grayscale image's gray values run from 0.0 to 1.0. The value of
midPoint should be chosen as a value between 0.0 and 1.0. This method will create a color continuum that goes from
shadowColor to midPointColor to lightColor. The gray value will be linearly mapped onto that continuum to
calculate the color for a given gray value.

If a pixel's gray value is equal to zero, then the resultant color is shadowColor. If the gray value equals midPoint then
midPointColor is the resultant color. Gray values between zero and midPoint are converted into a color linearly
interpolated between shadowColor and midPointColor. A gray value of 1.0 is mapped to lightColor.

The one limitation of this method is that it only works on images with 8 bits per pixel. This means it will only convert from an 8-
bit grayscale to a 24-bit color image, with alpha optional. 12/16-bit color and 1 or 4 bit gray are not supported.

When working with raw bitmap data, if you want to bypass using an NSBitmapImageRep all together, a raw image data
buffer can be rendered directly to the screen. This is a bad idea, but if you insist on doing it, then use this function:

void NSDrawBitmap(const NSRect rect, int pixelsWide, int pixelsHigh,
 int bitsPerSample, int samplesPerPixel, int bitsPerPixel,
 int bytesPerRow, BOOL isPlanar, BOOL hasAlpha,
 NSColorSpace colorSpace, const unsigned char *const data[5])

The parameters to this function directly correspond to the parameters previously described for the -
initWithBitmapDataPlanes:… method. The correlation is obvious. The only new parameter is the first one, rect. If the
size of rect differs from the pixelsWide and pixelsHigh parameters, the image is scaled as it is rendered.

The documentation warns that this method is "marginally obsolete." It is best to simply use an NSBitmapImageRep object to
manage raw image data. Some developers might be tempted to use this function with the justification that it avoids the overhead
of Objective-C. However, because of the complexities of setting up a Quartz context for drawing, it isn't surprising to find that
the Application Kit is actually more efficient, and therefore faster than this function. Thus, there is little reason to use this
function. For the fastest drawing, whether using this function or the NSBitmapImageRep class, it is important to match the
layout of the image data to the layout of the screen to which it will be drawn. By matching them exactly, Quartz can use a very
tight, optimized loop to render the image instead of a more general-purpose loop that can handle data format conversions.

Cached and Custom Image Representations

Two of the available NSImageRep subclasses are a little bit unusual. The NSCachedImageRep class is used to manage
offscreen image caches. Although a developer is unlikely to create one of these, it is quite likely that one might be returned when
dealing with an NSImage. Whenever Quartz drawing is performed inside an NSImage, after locking focus on the image, the
drawing is directed into a cached image representation created automatically by the NSImage. The other unusual class is
NSCustomImageRep, which acts as a cover for a custom drawing method specified dynamically by the developer. It is used in

the CompositeLab example provided by Apple with the Mac OS X developer tools to draw the various source images.

The cached image representation, as noted previously, is used by the NSImage class to manage any offscreen buffers it is using.
When focus is locked on an image, an instance of NSCachedImageRep is created to act as a destination for the drawing. This
class uses a region of an offscreen window for its drawing surface. It knows both the window and the area of the window that are
assigned to it. This allows multiple NSCachedImageRep instances to share a single window. Because the original data to
create the image isn't available, the cache itself is the image data managed by this representation. Because the drawing commands
used to render the cache are not stored, a cached image representation is implicitly a kind of bitmapped image.

There are two ways to initialize an instance of NSCachedImageRep. The first is to tell it the window and area within the
window that is to be used, using this method:

- (id)initWithWindow:(NSWindow *)win rect:(NSRect)rect

If an NSWindow to be used as the cache is not already available, then NSCachedImageRep can create one. To do this, several
parameters to specify the nature of the window must be provided. This method creates or finds an appropriate NSWindow
instance to use as a cache:

- (id)initWithSize:(NSSize)size depth:(NSWindowDepth)depth
 separate:(BOOL)flag alpha:(BOOL)alpha

The size parameter refers to the size of the cached image representation, not necessarily the size of the cache window. The
flag parameter tells the NSCachedImageRep object whether it is allowed to share the window it is using with another
NSCachedImageRep instance. If YES, it searches for an available NSWindow that it can use. If one isn't available, it creates a
new window. Later on, another NSCachedImageRep object might then share the window. If flag is NO, then a brand new
cache window is created and will never be shared. The alpha parameter specifies whether the window contains an alpha
channel.

The window's depth is specified with the depth parameter. This is a little trickier, because there are no predefined constants that
can be used for it. Instead, it must be obtained by using either the NSBestDepth() or the NSAvailableWindowDepths()
function. These functions are defined as follows:

NSWindowDepth NSBestDepth(NSString *colorSpace, int bps, int bpp,
 BOOL planar, BOOL *exactMatch)
const NSWindowDepth *NSAvailableWindowDepths(void)

The NSAvailableWindowDepths() function returns a zero-terminated list of depths. Normally, the NSBestDepth()
function is the best choice because it attempts to choose a depth that works well with the screen's depth.

All the parameters to the NSBestDepth() function are hints. It will try to find the closest match from the available window
depths supported by Quartz and the underlying hardware. As such, all the parameters are optional. If a zero is passed in, default
values are used. This makes it easy to get the window depth that matches the screen.

The colorSpace parameter takes a color-space name. See chapter 17, "Color," for a list and descriptions of the available color
spaces. The bps parameter refers to bits per sample. This is the standard meaning, where each component of a pixel is
considered to be a sample. Likewise, bpp refers to the number of bits per pixel. For example, in the case of 24-bit RGB, there are
8 bits per sample and 24 bits per pixel. To specify a meshed buffer layout, use NO for the planar parameter; obviously a YES
produces a planar depth.

Finally, the exactMatch parameter returns by reference whether the depth returned matched the input specification exactly or
not. If there is no available window depth to match exactly, the nearest match is chosen. The order of precedence to determine a
match is colorSpace, bps, planar, and finally, bpp.

Given an NSWindowDepth, the various parameters can be determined using this set of functions:

BOOL NSPlanarFromDepth (NSWindowDepth depth)
NSString *NSColorSpaceFromDepth (NSWindowDepth depth)
int NSBitsPerSampleFromDepth (NSWindowDepth depth)
int NSBitsPerPixelFromDepth (NSWindowDepth depth)

These four functions are named to match up with the semantics of the first four parameters of the NSBestDepth() function.
They can be used to determine the details of a given value for NSWindowDepth.

After an NSCachedImageRep instance has been initialized, the -draw method can be used. Generally, some drawing would
be done in the cache first. NSImage usually manages this. To draw inside the cache directly, the window and drawing area are
needed. Both can be obtained using these two methods, respectively:

- (NSWindow *)window
- (NSRect)rect

To draw in the cache, an NSView instance needs to be placed in the cache's window at the location and size specified by the
cache's rect. Then, focus can be locked on the image, and drawing can take place. In this case, a plain NSView instance can be
used; no custom subclass is needed. Because it is possible to lock focus on the view, draw in it, and then unlock focus, a subclass
containing drawing code isn't strictly necessary. The lock/unlock machinery that is already there is all that is really needed. The
view itself wouldn't even be needed if it were possible to directly lock focus on a window, but the Application Kit doesn't allow
that to be done. Because of the complexity required to draw in the cache, it is best to use an NSImage to handle all the details
automatically.

The other kind of image representation mentioned at the beginning of this section is the custom image representation. The
NSCustomImageRep object is a cover for a custom drawing method. When it is asked to render itself, it sends a message to its
delegate, requesting that the custom method be performed. For this to work, the object needs to know both the method's selector,
and the object to which the selector is to be sent. The initialization method requires both to be specified:

- (id)initWithDrawSelector:(SEL)aMethod delegate:(id)anObject

For this to be meaningful, the delegate must respond to the specified method. The draw method itself can assume that focus is
already locked, and that the image's origin is at (0,0). The method takes a single parameter, the NSCustomImageRep object
that sent the drawing message. For example, a valid drawing method might have this prototype:

- (void)drawForImageRep:(NSCustomImageRep *)sender

The values used to initialize the object can be obtained with these two methods:

- (SEL)drawSelector
- (id)delegate

Note that neither the delegate nor the selector can be changed. Instead, a new NSCustomImageRep object must be created to
replace the existing object.

To see an example of custom image representations in action, refer to the CompositeLab example that comes with Mac OS X
Developer. It can be found in /Developer/Examples/AppKit/CompositeLab.

Other Image Representations

There are three other NSImageRep subclasses that have not yet discussed. They are NSPDFImageRep, NSPICTImageRep,
and NSEPSImageRep. These classes are designed to allow NSImage to deal with PDF, PICT, and EPS images, respectively.
Each of these classes has minor differences. The PDF object is the most useful in the Mac OS X environment. The other two
classes, for PICT and EPS images, are primarily for baseline backward compatibility.

For all three types of image representation, it is preferable to use the following NSImageRep methods after initialization but
before drawing to finish the setup:

-setColorSpaceName:
-setAlpha:
-setPixelsHigh:
-setPixelsWide:
-setBitsPerSample:

Of course, if any of the previous methods are omitted, Cocoa provides a default value. When the basic setup is complete, the -
draw method can be used as normal to render the image representation. Each of the three classes offers a few methods specific
to the class, which will be discussed class by class.

The first class is NSPDFImageRep, which is meant for dealing with PDF files. The subclass implements the -
initWithData: method for reading PDF information from an NSData object. As a convenience, the
+imageRepWithData: method could be used to allocate and initialize an instance. To get an NSData object containing the
PDF data, use the -PDFRepresentation method.

Because a PDF file can have more than one page, this class has methods for manipulating pages. The three main methods are

- (int)pageCount
- (int)currentPage
- (void)setCurrentPage:(int)page

The -pageCount method returns the number of pages in the PDF image representation. The -currentPage method returns
the page number of the page that is rendered when the image representation is drawn. The return value is zero based. This means
that the first page is number zero, the second page is one, and so on, up to pageCount-1 for the last page. To change pages,
use the -setCurrentPage: method. Just like -currentPage, the page number passed to this method is zero-based.

Because each page could, in theory, have a different size, the -bounds method returns an NSRect, which contains the
bounding box of the object's current page.

The NSPDFImageRep object does not handle many of the advanced features that the PDF format offers. However, it is an easy-
to-use object that works well for most basic display purposes. As an example of how well it does or doesn't do, try looking at a
PDF file in the Preview application that comes with Mac OS X.

The next class mentioned is the NSPICTImageRep. As the name implies, it is meant to handle Apple's PICT image format.
Because of differences in graphics models, there is no guarantee that the image is rendered by Cocoa and Quartz exactly as it
would be rendered by QuickDraw on Mac OS 9 or earlier. Apple's documentation specifically draws attention to transfer modes
and region operations. Some of them render differently under Quartz than they do under QuickDraw.

Just like the NSPDFImageRep class, the NSPICTImageRep class implements both the +imageRepWithData: and -
initWithData: methods to create and to initialize an instance, respectively, from an NSData object containing image data in
the PICT format. The data object does not need the 512-byte header present on PICT files. If the header is present, it is ignored.

To obtain an NSData object with the PICT data in it, use the -PICTRepresentation method. The data object will not
contain the 512-byte header required by the PICT spec. To write this data to a file, it is necessary to write the header first, and
then the contents of the returned data object. It is valid, and simplest, to write out 512 bytes of zeroes as the header.

The last NSPICTImageRep method of interest is -boundingBox. This method returns an NSRect containing the bounding
box of the PICT image. The bounding box is taken from the picFrame field in the PICT data's picture header. For more details
about the data itself, consult Apple's documentation. The book, Inside Macintosh: Imaging with QuickDraw provides more
information about the picture header and the PICT image format.

The final class is the NSEPSImageRep class. As the name suggests, it is meant to manage Encapsulated PostScript (EPS)
images. When the Application Kit used Display PostScript as its graphics model, it was able to directly display any EPS image
directly, without needing preview bitmaps. With the transition to Quartz, which lacks a PostScript interpreter, this capability has
been lost, thereby reducing the utility of this class. As a result, while the Application Kit uses this class to manage EPS data, it is
very likely that what is displayed is not what is printed.

Like the other classes, an NSData object containing the EPS data can be passed to either the +imageRepWithData: or -
initWithData: methods to create and/or initialize an instance of this class. The actual EPS data can be obtained from the -
EPSRepresentation method, which returns an NSData containing the EPS image data.

To obtain the bounding box of the EPS image, the -boundingBox method can be used. It returns an NSRect. This bounding
box is obtained from the bounding box specified in the EPS header's comments. Specifically, the data comes from the "%%
BoundingBox:" comment.

There is a final method used by the NSEPSImageRep object that is meant for subclasses to implement. Whenever the -draw
method is called, the object first calls the -prepareGState method. Place any initializations to the graphics state that a
subclass would like to make inside this method. The default implementation does nothing.

Book: Cocoa® Programming
Section: Chapter 14. Custom Views and Graphics Part III

Drawing Text

Drawing text is an extremely complex process. Because of this, the Application Kit provides the NSText object just
for this purpose. Because of the complexity of this object, a whole chapter of this book (Chapter 11, "Text Views")
has been devoted to the NSText and related objects. Sometimes the NSText object is overkill for the type of text
rendering that needs to be accomplished. At other times, it doesn't provide some of the special, in-depth manipulation
options that would be useful in a heavy-duty graphically oriented application. In these cases, there are some other
alternatives available that might make more sense.

The Application Kit adds drawing methods to the NSString and NSAttributedString classes. These
methods are useful for adding simple text labels to graphics, but if a developer has multiple lines of text or anything
much more complex than a simple label, using NSText should be considered. The NSBezierPath object has
some methods that allows the path used to render a particular glyph from a given font to be captured. These methods
would be useful, for example, in a font editor that might want to present the user with the details of the glyph's actual
path. In this case, all the specialized text handling NSText provides would be moot.

Both of these types of drawing are discussed in the following two sections. As part of the discussion, the
TextRendering example is described. This example shows code for implementing the text rendering techniques
described here.

NSString Drawing Methods

The Application Kit adds a handful of methods to the NSString and NSAttributedString classes that render
them as text in the current graphics context. The NSString methods require an NSDictionary listing the
rendering attributes, such as font, to be used. Because only one dictionary can be provided, the entire string is
rendered with that one set of attributes. Because an NSAttributedString instance stores attributes with the
string itself, strings can be created with different attributes on different characters.

All the methods in this section also require some significant set up time when they are invoked, because they need to
set several parameters in the graphics context, such as the active font. This can be relatively inefficient to do for each
and every text string to be rendered. The result is that all the methods described in this section should be considered
to be the slowest possible way to render text with the Application Kit. For text that isn't rendered very often or isn't
very complex, these methods are quite convenient. Due to their performance penalty, however, avoid them.

The first NSString method of interest is

- (void)drawAtPoint:(NSPoint)point withAttributes:(NSDictionary *)attrs

This method renders the NSString at the specified point using the text attributes found in the attrs parameter.
When the text is rendered, it will have a bounding box, defined as the smallest rectangle that completely encloses the
touched pixels. The point that is passed to this method is used as the lower-left corner of the bounding box. This is
significant because the lower-left corner of the bounding box is below the baseline. It is somewhat difficult to predict
exactly where the baseline will be in the final rendered text, making this method rather imprecise.

Negative coordinates cause the rendering to be clipped aggressively. Passing points that are to the left or below the
coordinate system's origin needs to be avoided. An NSAffineTransform can be used to translate the coordinate
system to work around this limitation.

The attributes dictionary contains a series of predefined keys and values. If a parameter isn't provided, a default value
is used. Table 14.5 describes each of the keys that might be used in this dictionary.

Table 14.5. Valid Keys and Values for Attributes Dictionary

Keys Value

NSFontAttributeName An NSFont object. Default is 12-point Helvetica.

NSForegroundColorAttributeName An NSColor object. Default is NSColor's +blackColor.

NSBackgroundColorAttributeName An NSColor object. For a transparent background, omit this key.
The text is rendered with a composite-copy operation rather than a
source-over operation, so using NSColor's +clearColor results in a
black background. Default is nil (no background).

NSBaselineOffsetAttributeName An NSNumber containing a floating-point number. The text baseline
is moved up or down by this amount. (Down if it is negative.)
Default is 0.0.

NSSuperscriptAttributeName An NSNumber containing an integer greater than or equal to 0.
Default is 0, no superscript. A positive integer indicates superscript
level.

NSLigatureAttributeName An NSNumber containing one of the integers 0 (no ligatures), 1
(default ligatures), or 2 (all ligatures). Default is 1.

NSUnderlineStyleAttributeName An NSNumber containing the integers 0 (no underline) or 1 (use
underline). Default is 0, no underline.

NSKernAttributeName An NSNumber containing a floating-point number representing the
amount to modify the kerning. Positive spaces the glyphs farther
apart (loosened); negative brings them closer together (tightened).
Default is 0.0, no kerning.

NSParagraphStyleAttributeName An NSParagraphStyle object. Default is +defaultParagraphStyle.

NSAttachmentAttributeName An NSTextAttachment object. Default is nil.

The next NSString method is almost identical to the first:

- (void)drawInRect:(NSRect)rect withAttributes:(NSDictionary *)attrs

It still uses the same attributes dictionary as the previous method. The difference is that the rendering location is
specified in terms of a rectangle instead of a point. The destination rectangle is used as a clipping path for the text
rendering. Furthermore, the upper-right corner of the rendered text's bounding box is matched to the upper right of

this rectangle. Therefore, if this rectangle is not tall enough, the bottom of the rendered text will be clipped. This is
slightly counter-intuitive because most developers might have expected the origins to line up, causing the top of the
text to be cut off instead.

Just like the other NSString method, there can be clipping problems with this method, especially if negative
coordinates are used. An NSAffineTransform can be used to translate the coordinate system to get around this
limitation.

The final new NSString method is not for rendering. Instead, it can be used to learn the size of the rendered text's
bounding box, given a particular set of attributes:

- (NSSize)sizeWithAttributes:(NSDictionary *)attrs

It would be reasonable to assume that if the -drawAtPoint:withAttributes: method were used, the
rectangle defined by the point parameter and the size returned by -sizeWithAttributes: would be the
actual bounding box of the rendered text. This is not the case, however. The size is determined from the font's metrics
and doesn't always match what is rendered. Consider it to be an approximation and not exact.

If the bounding box is defined as the smallest rectangle that encloses all the pixels touched by rendering, both the size
and origin will not match up. The returned size will probably be taller than the actual touched area because it takes
into account the space that might be used by ascenders and descenders. The true bounding box's origin might be
horizontally offset slightly from the rendering origin, too. This can cause the drawing to extend outside the bounding
box that you would assume to be correct. Note that an oblique font is far more likely to extend past the right edge of
this box. Not all fonts extend outside this box; the accuracy of the box is very dependent on the font being used.
Currently, no drawing will extend outside this box, so oblique fonts will often be clipped.

To better understand how this bounding box differs from the true bounding box, the TextRendering example
provides a visual representation of the problem. In the example, the TextStringView object uses the -
drawAtPoint:withAttributes: method to render text. It also paints a gray rectangle showing the box that is
defined by using the point parameter to -drawAtPoint:withAttributes: and the return value from -
sizeWithAttributes:. Comparing the location of this box to where the text was rendered makes it clear that
getting an accurate bounding box is rather difficult. As an approximation, it might be good enough for most purposes,
however. To help make it obvious where the point parameter of the -drawAtPoint:withAttributes:
method lies inside the view, the code also draws a horizontal and a vertical line, both of which intersect that point.

The code for this example view looks like this:

File TextStringView.h:

#import <AppKit/AppKit.h>

@interface MYTextStringView : NSView
{
}

@end

File TextStringView.m:

#import "TextStringView.h"

@implementation MYTextStringView

- (void)drawRect:(NSRect)dirtyRect

{
 NSString *message = [NSString stringWithString:@"Hello World!"];
 NSFont *font = [NSFont fontWithName:@"Helvetica-BoldOblique" size:64.0];
 NSMutableDictionary *attributes = [NSMutableDictionary dictionary];
 NSBezierPath *path = [NSBezierPath bezierPath];
 NSRect textBounds = NSZeroRect;
 NSRect bds = [self bounds];

 // set up text attributes
 if (!font) {
 [[NSColor whiteColor] set];
 NSRectFill(bds);
 return;
 }
 [attributes setObject:font forKey:NSFontAttributeName];
 [attributes setObject:[NSColor blueColor]
 forKey:NSForegroundColorAttributeName];
 textBounds.size = [message sizeWithAttributes:attributes];
 textBounds.origin = NSMakePoint(
 (bds.size.width - textBounds.size.width) / 2.0,
 (bds.size.height - textBounds.size.height) / 2.0);
 [[NSColor whiteColor] set];
 NSRectFill(bds);
 [[NSColor greenColor] set];
 [path setLineWidth:2.0];
 [path moveToPoint:NSMakePoint(NSMinX(bds), textBounds.origin.y)];
 [path lineToPoint:NSMakePoint(NSMaxX(bds), textBounds.origin.y)];
 [path moveToPoint:NSMakePoint(textBounds.origin.x, NSMinY(bds))];
 [path lineToPoint:NSMakePoint(textBounds.origin.x, NSMaxY(bds))];
 [path stroke];
 [message drawAtPoint:textBounds.origin withAttributes:attributes];
 [[NSColor grayColor] set];
 NSFrameRect(textBounds);
}

@end

Figure 14.3 illustrates the output that is produced when this example is run on Mac OS X 10.1.

Figure 14.3. This is the output produced when MYTextStringView is run on Mac OS X 10.1.

Notice that the top, left, and bottom edges of the bounding box all have a margin that makes the box larger than the

true bounding box on those sides. Note also how the text extends outside of the box on the right side and is clipped.
Furthermore, the horizontal line is not the same as the text's baseline. (Both the lines pass through the point that was
used as a parameter to the -drawAtPoint:withAttributes: method.)

NOTE

A workaround to avoid this clipping problem is to add a space character to the end of string being
rendered. Instead of rendering "Hello World!" try modifying the previous example code to render
"Hello World! " The bounding box will be clearly wider than necessary, but at least there will be no
clipping.

Three methods are defined for the NSAttributedString class as well:

- (NSSize)size
- (void)drawAtPoint:(NSPoint)point
- (void)drawInRect:(NSRect)rect

These methods work exactly as the corresponding NSString methods. The most noticeable difference is that none
of them take an attributes dictionary. Instead, the attributes are stored as part of the NSAttributedString itself.
This allows for text with mixed attributes to be conveniently rendered. All the caveats to the NSString methods
apply to these methods, however. It is strongly recommended that these methods be avoided for most text rendering.
These methods might be acceptable for simple rendering that is not repeated very often and doesn't need to be
particularly accurate. Beyond that application, though, a better technique is required.

NSBezierPath and Glyphs

The NSBezierPath object can be used to draw text. This rendering approach is more accurate than the NSString
and NSAttributedString methods in many ways. Because the actual rendered path is known, bounding boxes
are calculated from actual rendering as opposed to font metrics. Furthermore, when an NSBezierPath is asked to
render at a particular point, that point is specified as being on the font's baseline, so it is much easier to accurately
position the glyphs. Another aspect to this technique is particularly attractive. When a glyph has been added to an
NSBezierPath object, the NSBezierPath methods can be used to inspect the path itself. Any developer who
wants to extract glyph paths from fonts, perhaps for editing or other manipulation, can do so by using an
NSBezierPath object. A final feature offered by this approach is that text can be rendered as outlines by using the
-stroke method. The NSString rendering methods can only render filled text.

There is, at present, a serious difficulty with this approach. The NSBezierPath wants developers to tell it which
glyphs to render. Because the methods work in terms of glyphs and not in terms of individual characters or strings of
characters, it is a little bit more difficult to use these methods. The biggest problem is that Cocoa provides only one
method for obtaining a glyph. The only public method in the Application Kit that returns a glyph is found in the
NSFont class:

- (NSGlyph)glyphWithName:(NSString *)aName

The problem is that the Cocoa documentation offers absolutely no explanation of how glyphs are named, rendering
this method almost useless. What would be preferred is a way to turn a unichar character into an NSGlyph.
Unfortunately, using an NSString containing a single character in it for the glyph name does not work, so there's
no clear way to get a glyph from a character. Even if it did work, it would probably be rather slow to convert a string
into characters, convert those characters into some mystery string, and then have NSFont parse and convert that
string into a glyph.

This is currently a very annoying flaw in Cocoa. Luckily, there is an easy, though slightly dangerous, way to work

around this difficulty. By falling back to a private method in NSFont the problem is solved simply. The NSFont
class implements this method:

- (NSGlyph)_defaultGlyphForChar:(unichar)theChar

Because this is a private method, it is not defined in the Application Kit headers, and it is subject to change at any
future date. In other words, it can be used now and will work, but any code that uses it could break under any future
release of Cocoa. It might never break, but there's always a lurking danger. Hopefully Apple will expose this method
publicly in the future, but until then it is the easiest way to obtain an NSGlyph so the following example uses it,
dangerous or not.

Because this method isn't in the headers, a category header needs to be added to any project that needs to use this
method. Import this header for any code file that uses this method.

File NSFont+PrivateGlyph.h:

#import <AppKit/NSFont.h>

@interface NSFont(PrivateGlyph)
- (NSGlyph)_defaultGlyphForChar:(unichar)theChar;
@end

Now that there is a means of obtaining an NSGlyph, the NSBezierPath methods can be used. The first method of
interest obtains the path for a single glyph:

- (void)appendBezierPathWithGlyph:(NSGlyph)glyph inFont:(NSFont *)font

This will append a glyph to the path object at the current point. An empty path object needs to first have a current
point to add a glyph. Using -moveToPoint: first does the trick. Note that the glyph needs to be obtained from the
font object that is passed to this method. Here is some code to render the outline of a character:

- (void)renderCharacterOutline:(unichar)theChar atPoint:(NSPoint)location
 withFont:(NSFont *)font andLineWidth:(float)width
{
 NSBezierPath *path = [NSBezierPath bezierPath];
 NSGlyph theGlyph = [font _defaultGlyphForChar:theChar];
 [myPath moveToPoint:location];
 [path appendBezierPathWithGlyph:theGlyph inFont:font];
 [path setLineWidth:width];
 [path stroke];
}

When rendering text one glyph at a time, the NSFont object can also be used to help determine where the next glyph
is to be placed. The following NSFont method can be used to determine where the next glyph is to be drawn, given
the glyph that was just drawn:

- (NSSize)advancementForGlyph:(NSGlyph)ag

By adding the size returned by this method to the point where the first glyph was drawn, the location where the
second glyph should be drawn is produced. Using this approach takes into account the font's metrics, but it does not
do any kerning and ignores any available ligatures. If there isn't an explicit -moveToPoint: operation before
appending each glyph, then the resultant path will probably be something very different from what was expected.
After appending a glyph, the current point is left at a random location that is dependent on the font being used. Try
removing all but the first -moveToPoint: from the single glyph at a time code in the following

TextRendering example to see what happens. (The font used in the example causes the glyphs to be placed on an
ascending diagonal from lower left to upper right, with the glyphs overlapping slightly.)

Rendering text one glyph at a time can be rather tedious. A series of glyphs can be added to an NSBezierPath
object all at once with this method:

- (void)appendBezierPathWithGlyphs:(NSGlyph *)glyphs
 count:(int)count inFont:(NSFont *)font

This method uses NSFont's -advancementForGlyph: method to place the glyphs one after another, starting
with the path's current point. The count parameter tells the method how many glyphs are in the glyphs array.
Unfortunately, there is no method to take a string and return an array of glyphs based on it. Such a method would be
nice because it could add ligatures, and so forth. Unfortunately, this is another gap in the Cocoa APIs. At present, the
array of glyphs has to be produced manually, and there's no easy way to find out what ligatures are available in a
given font. Again, using the full Cocoa text system makes these kinds of features available, but they aren't exposed
publicly at this low a level.

Besides a simple array of glyphs, Cocoa also has an idea of a packed array of glyphs. Such an array can save as much
as 50 percent of the memory used by the array, so it can be more efficient to deal with. There are two more
NSBezierPath methods that can be used to manipulate arrays of glyphs, but they require a packed array. The
Application Kit defines the following function to convert an array of glyphs into a packed array of glyphs:

int NSConvertGlyphsToPackedGlyphs(NSGlyph *glBuf, int count,
 NSMultibyteGlyphPacking packing, char *packedGlyphs);

There are four parameters to this function. The glBuf parameter is the unpacked array of glyphs that needs to be
packed, and count tells how many glyphs are in the array.

The way the glyphs are actually packed is font dependent. Therefore, the packing parameter needs to be obtained
from the font that was originally used to obtain the glyphs. The NSFont class defines this method:

- (NSMultibyteGlyphPacking)glyphPacking

The final parameter of this function is the output array, where the packed array of glyphs is stored. To avoid buffer
overruns, this array needs to be at least count*4+1 bytes in length. Given the font myFont, input glyph array
myGlyphArray, and array element count myNumGlyphs, an example call to this function looks like this:

char *outputArray = (char *)malloc(myNumGlyphs * 4 + 1);
NSConvertGlyphsToPackedGlyphs(myGlyphArray, myNumGlyphs,
 [myFont glyphPacking], outputArray);

After creating a packed array of glyphs, the following two NSBezierPath methods can be used:

- (void)appendBezierPathWithPackedGlyphs:(const char *)packedGlyphs
+ (void)drawPackedGlyphs:(const char *)packedGlyphs atPoint:(NSPoint)point;

The first method works like the methods already discussed. It appends the glyphs to the path, using the current font.
The glyphs are spaced as dictated by the font's metrics. For this to work as expected, it is important to send a -set
message to the font to be used for rendering. Note that focus must have previously been locked on a view or image to
be able to set a font. Given a path object myPath and a location for the text myTextOrigin, this code could be
appended to the glyph in the previous packing code:

[myFont set];

[myPath moveToPoint:myTextOrigin];
[myPath appendBezierPathWithPackedGlyphs:outputArray];

Following up with a stroke or fill would complete the rendering.

The other method is an NSBezierPath class method. It does exactly what it says, render the glyphs to the
specified point. Like the related instance method, the font must be set first and focus must already be locked. The
+drawPackedGlyphs:atPoint: methods use a fill for the text, not a stroke. If the capability to render outlined
text or inspect the glyph paths is desired, use the instance methods instead.

The TextDrawing example uses each of these four methods to draw glyphs in its TextGlyphView object. Four
text strings are rendered. At the top of the window is the string @"Packed Glyphs", rendered with
+drawPackedGlyphs:atPoint:. The next row is the same string rendered with the -
appendBezierPathWithPackedGlyphs: method. It is rendered with a fill followed by a stroke, creating
opaque letters that are outlined. The third row is the string @"Glyph Array." It is rendered without a packed
array by using the -appendBezierPathWithGlyphs:count:inFont: method. It is also rendered with a fill
followed by a stroke, but with a narrower line width on the stroke. Finally, the last line is rendered by adding the
glyphs one at a time to the path object using the -appendBezierPathWithGlyph:theGlyph inFont:
method. This line of text is stroked, but not filled, so only the character outlines are rendered. A horizontal line is also
drawn at the same y coordinate as the one specified for the text to show that the text is accurately positioned on its
baseline. The result of this rendering can be seen in Figure 14.4.

Figure 14.4. This is how the four text strings render in the TextDrawing application.

The code to create the drawing in the Figure 14.4 is listed here.

File TextGlyphView.h:

#import <Cocoa/Cocoa.h>
@interface MYTextGlyphView : NSView
{
 NSFont *_myFont;
 NSGlyph *_myGlyphArray;
 int _myGlyphArrayLength;
 NSGlyph *_myPackedGlyphArray;
 char *_myPackedGlyphs;
 int _myPackedGlyphArrayLength;
}

@end

File TextGlyphView.m:

#import "TextGlyphView.h"

#define ARRAY_STRING @"Glyph Array."
#define GLYPH_STRING @"Single Glyphs"
#define PACKED_GLYPH_STRING @"Packed Glyphs"

@interface NSFont(Exposing_Private_AppKit_Methods)
- (NSGlyph)_defaultGlyphForChar:(unichar)theChar;
@end
@implementation MYTextGlyphView

- (id)initWithFrame:(NSRect)frame
{
 int i;
 self = [super initWithFrame:frame];
 if (!self) return nil;
 myFont = [NSFont fontWithName:@"Helvetica-BoldOblique" size:64.0];

 // set up the unpacked glyph array
 myGlyphArrayLength = [ARRAY_STRING length];
 myGlyphArray = (NSGlyph *)malloc(sizeof(NSGlyph) * myGlyphArrayLength);
 for (i=0; i<myGlyphArrayLength; i++) {
 myGlyphArray[i] = [myFont _defaultGlyphForChar:
 [ARRAY_STRING characterAtIndex:i]];
 }

 // set up the packed glyph array
 myPackedGlyphArrayLength = [PACKED_GLYPH_STRING length];
 myPackedGlyphArray = (NSGlyph *)malloc(sizeof(NSGlyph) *
 myPackedGlyphArrayLength);
 myPackedGlyphs = (char *)malloc(4 * myPackedGlyphArrayLength + 1);
 for (i=0; i<myPackedGlyphArrayLength; i++) {
 myPackedGlyphArray[i] = [myFont _defaultGlyphForChar:
 [PACKED_GLYPH_STRING characterAtIndex:i]];
 }
 NSConvertGlyphsToPackedGlyphs(myPackedGlyphArray,
myPackedGlyphArrayLength,
 [myFont glyphPacking], myPackedGlyphs);
 return self;
}

- (void)drawRect:(NSRect)rect
{
 NSBezierPath *path = [NSBezierPath bezierPath];
 NSRect bds = [self bounds];
 int i, length = [GLYPH_STRING length];
 NSPoint position = NSMakePoint(10.0, 20.0);

 [[NSColor whiteColor] set];
 NSRectFill(bds);
 // draw baseline for the individual glyph text
 [[NSColor blackColor] set];
 [path moveToPoint:NSMakePoint(NSMinX(bds), 20.0)];

 [path lineToPoint:NSMakePoint(NSMaxX(bds), 20.0)];
 [path setLineWidth:1.0];
 [path stroke];

 // draw individual glyphs
 [path removeAllPoints];
 for (i=0; i<length; i++) {
 NSGlyph theGlyph = [myFont _defaultGlyphForChar:
 [GLYPH_STRING characterAtIndex:i]];
 NSSize advancement;
 [path moveToPoint:position];
 advancement = [myFont advancementForGlyph:theGlyph];
 position.x += advancement.width;
 position.y += advancement.height;
 [path appendBezierPathWithGlyph:theGlyph inFont:myFont];
 }
 [path setLineWidth:2.0];
 [[NSColor purpleColor] set];
 [path stroke];

 // draw glyph array
 [path removeAllPoints];
 [path moveToPoint:NSMakePoint(10.0, 100.0)];
 [path appendBezierPathWithGlyphs:myGlyphArray
 count:myGlyphArrayLength inFont:myFont];
 [path setLineWidth:1.0];
 [[NSColor yellowColor] set];
 [path fill];
 [[NSColor blueColor] set];
 [path stroke];

 // draw packed glyph array
 [path removeAllPoints];
 [myFont set];
 [path moveToPoint:NSMakePoint(10.0, 180.0)];
 [path appendBezierPathWithPackedGlyphs:myPackedGlyphs];
 [path setLineWidth:4.0];
 [[NSColor greenColor] set];
 [path fill];
 [[NSColor blackColor] set];
 [path stroke];

 // draw packed glyph array with NSBezierPath class method
 [[NSColor orangeColor] set];
 [NSBezierPath drawPackedGlyphs:myPackedGlyphs
 atPoint:NSMakePoint(10.0, 260.0)];
}

@end

Book: Cocoa® Programming
Section: Chapter 14. Custom Views and Graphics Part III

Summary

This chapter completes the description of drawing facilities offered by Cocoa. The facilities
for rendering images are extremely powerful. Cocoa also offers several interfaces for
drawing text. Basic text drawing is described in this chapter. This basic interface is
extremely low level. Chapter 11, "Text Views," describes the NSText object suite that
provides a high-level, text-rendering interface. Chapters 12, "Custom Views and Graphics
Part I," and 13, "Custom Views and Graphics Part II," in combination with this chapter
discuss custom NSView subclasses that draw. Custom drawing is one reason to subclass
NSView. Customizing the handling of events such as mouse and keyboard input is
another. Chapter 15, "Events and Cursurs," discusses NSView subclasses that customize
event handling.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 15. Events and Cursors

IN THIS CHAPTER

● Event Handling in Custom NSView Subclasses
● Managing Cursors

NSView is a subclass of NSResponder, and plays an important role in event processing.
The role of views in the responder chain was briefly introduced in Chapter 8, "The
Application Kit Framework Overview." This chapter expands that introduction and
provides the details needed to effectively subclass NSView for event handling.

Events are handled the same way regardless of the graphics or drawing API used. In
addition to handling events, views play a role in cursor management. As a cursor moves in
and out of a view, the cursor can be changed to provide feedback to users. This chapter
discusses event handling and cursor management in subclasses of NSView and provides
examples.

Book: Cocoa® Programming
Section: Chapter 15. Events and Cursors

Event Handling in Custom NSView Subclasses

The NSView class is a subclass of NSResponder. This means that any instance of NSView, or one of its subclasses, can be a part
of the responder chain and potentially can become the first responder. As described in Chapter 8, the Application Kit automatically
sends pertinent events to view instances. An event enters through the application object, which then distributes it to the appropriate
window. The window passes the event to the appropriate view object. The type of the event and the state of the application
determine the appropriate window and view. To receive events, an NSView subclass simply has to override the appropriate
NSResponder method(s), such as -mouseDown: or -keyDown:.

This section doesn't go into much detail about how events pass from object to object. Instead, the focus is on what events can be
received by a view class and what might be done with them. For information about how an event finds its way to a view object, refer
to the "Responder Chain" section in Chapter 6, "Cocoa Design Patterns," and the "Responders" section in Chapter 8. Throughout
this section on events, the EventMonitor example is discussed and used. The intended use of EventMonitor is to allow
experimentation with various events and determine exactly what events are generated by various user actions. The application's
main window is shown in Figure 15.1.

Figure 15.1. The main window of the EventMonitor application can be used to experiment with events and the responder
chain.

Accepting First Responder Status

Subclasses of NSView can exert some control over which events they receive. The most important control is over whether the view
can become the first responder. This can be controlled by overriding the NSResponder method -acceptsFirstResponder
to return YES instead of the default NO. Because this defaults to NO, it must be overridden by any NSView subclass that wants to
become the first responder. If it isn't overridden, the object will never become the first responder.

The capability to become the first responder is important to be able to receive several types of events. Mouse events generally are
sent directly to the view where they occur. A mouse down and associated mouse up events are sent to the view that was clicked.
Other events, such as keyboard events, won't be sent unless the view is the first responder. For example, a view that wants to receive
key down events needs to be the first responder.

The EventMonitor example implements the -acceptsFirstResponder method in the MYEventView class. Because it is
always willing to accept first responder status, the implementation always returns YES.

- (BOOL)acceptsFirstResponder
 return YES;
}

This is the most common implementation of the -acceptsFirstResponder method. Usually a view subclass either wants to
be first responder or doesn't, and that won't be variable. Sometimes, a view only wants this status under certain circumstances. In
that case, this method would need to determine the proper response based on its internal state and other context within the
application.

A view is informed that it is about to gain or lose first responder status by being sent one of these NSResponder messages, as

appropriate:

- (BOOL)becomeFirstResponder
- (BOOL)resignFirstResponder

Neither of these methods should ever be sent directly to a responder; instead, they are sent automatically by Cocoa. They are meant
to be overridden by subclassers and can be used to further control the gain and loss of first responder status. Both methods are
supposed to return a YES or NO answer to inform Cocoa whether they actually became or resigned first responder status,
respectively. Usually, these methods are overridden in the following manner:

- (BOOL)becomeFirstResponder
{
 <determine if can become first responder>
 if (<can't be first responder>) {
 return NO;
 }
 return [super becomeFirstResponder];
}

YES is never returned in the previous pseudocode. Instead, the result of calling the super implementation is used. This is the
preferred approach. These methods might be used in several ways. For example, consider an NSTextField. If the field is disabled
for editing, it doesn't need to be the first responder. It would return a NO when -becomeFirstResponder is called. Suppose
further that the field is using an NSFormatter to validate its input. It is important that the user enter correct data before moving to
a new field. It could return a NO from -resignFirstResponder until there is valid input in the field. This would keep focus on
the field until it contains a valid value.

NOTE

There are two places where first responder status can be refused. Typically, the -acceptsFirstResponder
method returns YES if the object might ever accept the status, and -becomeFirstResponder is used to determine
whether it will accept the status at a given moment.

Detecting Changes in First Responder Status

When the -acceptsFirstResponder, -becomeFirstResponder and -resignFirstResponder methods are
overridden, they might make minor state changes in the object and not alter the super's return value. These methods, if used this
way, inform you of status changes. In the EventMonitor application, the MYEventView draws a different color border to show
whether it is the first responder. When it is not the first responder, it draws a blue border. When first responder status is gained, the
border becomes red. Thus, the view needs to be redrawn whenever its first-responder status changes. This is done by overriding
these two methods as follows:

- (BOOL)becomeFirstResponder
{
 [self setNeedsDisplay:YES];
 return [super becomeFirstResponder];
}

- (BOOL)resignFirstResponder
{
 [self setNeedsDisplay:YES];
 return [super resignFirstResponder];
}

Whenever the status of MYEventView changes, it flags itself for a redraw. When the view is redrawn, it can use its current status
to determine which color or border to draw. Determining whether a view is actually the first responder is a two-step process. It must
be the window's first responder, and the window itself must be the key window. Both conditions must be met for the view to truly be
the application's first responder. Therefore, the MYEventView class implements this method to test both conditions:

- (BOOL)isFirstResponder

{
 if (![[self window] isKeyWindow]) return NO;
 if ([[self window] firstResponder] == self) return YES;
 return NO;
}

Because the window's status as key is a significant part of this, the view also needs to be redrawn whenever the window's key status
is gained or lost. As shown so far, the view's border changes, as it should, except when the user switches to another application or
another window within the application. This happens because although the key window's status changes, the view's status as first
responder for its window has not. To fix this, the MYEventView instance is used as the window's delegate and implements two
methods to detect changes in key window status:

- (void)windowDidBecomeKey:(NSNotification *)notification
{
 [self setNeedsDisplay:YES];
}
- (void)windowDidResignKey:(NSNotification *)notification
{
 [self setNeedsDisplay:YES];
}

With that change, the view correctly displays its status. Note that instead of becoming the window's delegate, the view could
alternatively register with the default notification center to receive the NSWindowDidBecomeKeyNotification and
NSWindowDidResignKeyNotification notifications. Either approach works. Notifications and delegation are described in
Chapter 7, "Foundation Framework Overview," and Chapter 8, respectively.

First Mouse Clicks

Another way a view can control which events it receives is to override the NSView method -acceptsFirstMouse:.

- (BOOL)acceptsFirstMouse:(NSEvent *)theEvent

This method is expected to return a YES or NO answer. The answer determines how a mouse click is handled when the view's
window is not the main window. The difference between the main window and the key window is explained in Chapter 8. A user
click of a nonmain window normally makes that window the main and key window. The question is should the click that made the
window main also be passed to the view that was clicked.

If the view is a button, should the first click on that button in a nonmain window be interpreted as a button click or not? The Aqua
guidelines normally require that the first click not be used by the view. The first click just makes the window become the main
window. Therefore, the implementation of -acceptsFirstMouse: inherited from NSView returns NO. If there is a good reason
to override the default behavior, override -acceptsFirstMouse: to return YES. If a view returns YES from -
acceptsFirstMouse:, a first mouse click on the view is sent view as well as making the window become the main and key
window.

The EventMonitor application allows the -acceptsFirstMouse: behavior to be turned on and off for a MYEventView
instance. Try switching to another application, and then clicking the MYEventView; then click again. Try it all again after turning
on the Accepts First Mouse switch. Notice that the first mouse-down event on the window will never even be sent to the
EventView object unless Accepts First Mouse is on.

Controlling Key Status and Window Ordering

There is another related NSView method that subclassers might want to override:

- (BOOL)needsPanelToBecomeKey

The default implementation of this method returns NO. A view requires that its window become key in order for the view to receive
keyboard events. An NSPanel might resist becoming key, however. By overriding this method to return YES, this problem can be
overcome. Typically, a view that wants to receive keyboard events overrides this method to return YES. If this method is
overridden, the -acceptsFirstResponder method also needs to be overridden to return YES. There's little point to asking a
panel to become key if first responder status won't be accepted anyway.

There is a similar situation that might require an override to make drag and drop more reasonable for the end user. When dragging
objects from one window to another, the normal Aqua behavior can get in the way. A mouse click is the first part of a drag
operation. Normally, a mouse click brings the window to the front. This is a problem if the source window is large; it could come
forward and obscure the drag target! Because this is extremely annoying, it is kinder to delay bringing the window forward until it is
known whether that is the right thing to do. This delay can be introduced by overriding the following method:

- (BOOL)shouldDelayWindowOrderingForEvent:(NSEvent *)theEvent

The default implementation returns a NO. This causes the window to be brought forward immediately when a mouse-down event is
received. If the event passed to this method is over a potential drag candidate, then YES should be returned. If YES is returned
instead of a NO, the window won't be ordered forward until the mouse-up event is received. For anything other than a drag, the
window still comes forward immediately. The delay only happens when the mouse is released instead of with the mouse down. If a
drag is actually started, it is critical to send the -preventWindowOrdering message to the shared application object (NSApp)
before the mouse up is received. This keeps the drag source window from ever being brought forward. Normally, the method that
starts the drag would send the -preventWindowOrdering message. NSView's -dragImage:at:offset:event:
pasteboard:source:slideback: and -dragFile:fromRect:slideBack:event: methods do this for you.

The NSEvent Class

When it is determined how first responder status is managed by a view subclass, it is time to start interpreting actual events. Before
going into specific events and how to receive and use them, it is important to understand the NSEvent class. All events that are
sent to a view are instances of NSEvent.

The NSEvent class encapsulates an event. Events can be related to the mouse. Mouse clicks, mouse movement, mouse drags, and
scroll wheel movement are all mouse-related events. Other events, such as key up, key down, and flags changed are all related to the
keyboard. There are several other internal events defined by the Application Kit, the OS, and the application.

When an event occurs, an NSEvent instance is created to hold all the data pertinent to the event. This instance is handed to the
shared application object and placed into a queue. When there are events in the queue, the application removes them one at a time
and attempts to send them to the correct object. Keyboard and mouse events go from the application object to the key window to be
distributed. Keyboard events are sent from the window to the first responder, and then down the responder chain. Mouse events go
to the view that is under the mouse when it is clicked, even if the view is not first responder. Events without an obvious destination
remain in the application's event queue until they are explicitly removed by Application Kit or custom objects.

When events are sent to a view, the actual event object is sent to one of several methods defined by the NSResponder class. For
example, Cocoa considers all mouse clicks to be mouse-down events. Such events are sent to the -mouseDown: method, with the
event object as the argument. If the mouse is clicked on a view object, an NSEvent is created and follows the path described
previously. It ends up as the argument to a -mouseDown: message being sent to the view where the mouse was clicked.

When an event is received by a specific method, such as -mouseDown: in the previous example, it is reasonable to assume what
type of event the object represents. Despite this, the first thing that needs to be done when handling an event is to determine what
the event's type is. The -type message can be sent to any NSEvent object to learn its type. One of several constants will be
returned. Table 15.1 lists all the available event-type constants.

Table 15.1. Event-Type Constants

Event Constants Event-Mask Constants

NSLeftMouseDown NSLeftMouseDownMask

NSLeftMouseUp NSLeftMouseUpMask

NSRightMouseDown NSRightMouseDownMask

NSRightMouseUp NSRightMouseUpMask

NSMouseMoved NSMouseMovedMask

NSLeftMouseDragged NSLeftMouseDraggedMask

NSRightMouseDragged NSRightMouseDraggedMask

NSMouseEntered NSMouseEnteredMask

NSMouseExited NSMouseExitedMask

NSKeyDown NSKeyDownMask

NSKeyUp NSKeyUpMask

NSFlagsChanged NSFlagsChangedMask

NSAppKitDefined NSAppKitDefinedMask

NSSystemDefined NSSystemDefinedMask

NSApplicationDefined NSApplicationDefinedMask

NSPeriodic NSPeriodicMask

NSCursorUpdate NSCursorUpdateMask

NSScrollWheel NSScrollWheelMask

Each of the event types also has a corresponding mask. The mask constants are the event-type constant names with "Mask"
appended. For example, when fetching events from the application's event queue, it is possible to request that only events that match
a certain mask be considered. The C language bitwise OR operator is used to build up a mask that selects multiple events. For
example, the mask to select the mouse-down, mouse-dragged, or mouse-up events for the left mouse button would be

leftMouseMask = NSLeftMouseDownMask | NSLeftMouseUpMask | NSLeftMouseDragged;

It is also possible to create an event mask given an event type by using the NSEventMaskFromType() function. If all event
types are to be considered, use the NSAnyEventMask constant.

Fetching Events

It is possible to fetch events that are waiting for processing in an application's event queue. The main method used to obtain an event
from the shared application object is NSApplication's -nextEventMatchingMask:untilDate:inMode:dequeue:.
This method should only be sent to the shared application object. The shared application object can be obtained by calling
[NSApplication sharedApplication] or by using the NSApp global variable. There are four arguments. The first,
mask, is the bitwise OR of one or more of the eveny-mask constants in Table 15.1. The mask is used to choose which events are
considered. Typically, only events of a certain type will be of any interest at a given time.

The untilDate argument is an expiration date used to limit the search. No events with a time stamp later than expiration are
returned. Time wise, the earliest event is the one returned. If there are no events that happened before the time given, nil is
returned. It is also allowable to use nil as the value for expiration. This enables the search to consider all events regardless of
timestamp.

A final way to narrow the search is through the inMode argument. The mode is one of two predefined constants:
NSModalPanelRunLoopMode and NSEventTrackingRunLoopMode. The latter constant is used for retrieval of normal
events. The modal run loop mode is used only while retrieving events from within a modal loop. See Chapter 9 for an explanation of
modal loops.

The dequeue argument tells the application what to do with the event. If it is YES, then the event is removed from the queue, and
the application assumes that the event has been properly handled. When NO is used, the event remains in the application's event
queue and is still dispatched by the application object. Passing NO as the dequeue argument is a way to see what events are
coming without actually interfering with them.

This method is used in the EventMonitor application. The event monitor can set up a repeating event when the mouse is clicked
and held down. The -nextEventMatchingMask: method is used to retrieve the periodic events and abort when a mouse up
occurs. The code for this example is shown and described in the "Other Events" section later in this chapter.

There are a few other NSApplication methods that are useful for dealing with events. It is possible to remove events from the
application's event queue in bulk. The following method can remove many events at once:

- (void)discardEventsMatchingMask:(unsigned int)mask
 beforeEvent:(NSEvent *)lastEvent

The mask argument is the same as before. Only events that match the mask are affected by a call to this method. The lastEvent
parameter determines a time frame for event removal. Only events preceding lastEvent are deleted. This method can be used
with mouse-dragged and mouse-moved events to discard extra events.

Posting Events

It is also possible to add an event to the application's event queue. To do that, it is necessary to obtain an event instance. A
previously dequeued event could be added back into the queue. There are also several methods that can be used to create new
events. Four class methods to do this are listed and described briefly in the "Creating Events" section. Normally there is little need to
add new events to the queue. The most common need for this functionality is for creating and queuing an application defined event.
Add an event to the queue with this method:

- (void)postEvent:(NSEvent *)event atStart:(BOOL)flag

The event to be posted is passed in as the event parameter. The flag value is used to determine which end of the event queue
will get the event. If the flag is YES, then the event will be added to the head of the queue and will be the next event to be dequeued
by the application object. Using a flag value of NO will place the event at the end of the queue. It will not be dispatched until the
events already in the queue have been handled. It is safe to post events from a subthread. All events are still handled in the main
thread, however. Therefore, it is possible to create events in a thread and post them as a way to communicate with the main thread.
Chapter 24, "Subprocesses and Threads," talks more about adding multiple threads to an application and communicating between
them.

Finally, the -currentEvent method can be used to determine what event is currently being handled by the application.

Common Event Properties

Returning to the NSEvent class, it has already been mentioned that the -type method can be used to determine the event's type.
There are many properties of the event that are dependent upon the event's type. For example, asking a key down event where the
mouse was clicked is nonsensical. Likewise, asking a mouse-down event which key was pressed is unrealistic. As a result, there are
many methods that can only be called on events of a specific type. For this reason, it is wise to check an event's type before sending
it an event-type specific message.

On the other hand, there are several other properties that exist for all events. The following methods can all be sent to an event of
any type:

- (NSEventType)type
- (unsigned int)modifierFlags
- (NSTimeInterval)timestamp
- (NSPoint)locationInWindow
- (NSWindow *)window
- (int)windowNumber
- (NSGraphicsContext*)context

The first method, -type, has already been discussed. The next method, -modifierFlags, is designed to tell which modifier
keys were engaged when the event was created. The value returned is a bitwise OR of bit masks. The following predefined constants
define the available modifier flags:

NSAlphaShiftKeyMask

NSShiftKeyMask

NSControlKeyMask

NSAlternateKeyMask

NSCommandKeyMask

NSNumericPadKeyMask

NSHelpKeyMask

NSFunctionKeyMask

More than one of these may be active at any given time. Use a bitwise AND operation between one of these masks and the return
value of the -modifierFlags method to determine if a given modifier key is engaged. For example, to distinguish between a
normal click and a command-click, use the following code:

BOOL commandKeyUsed = [mouseDownEvent modifierFlags] & NSCommandKeyMask;

If other flags are also relevant, then they can be tested too.

Each event has a timestamp that tells when it occurred. The -timestamp method will return an NSTimeInterval value. Note
that this is not an object instance. Instead, it is the time in seconds since the system was last started up. Timestamps can therefore be
sorted and compared against each other with standard C comparison operators. On the other hand, they require conversion to be
used with NSDate and related objects.

The -locationInWindow method tells where the event occurred. This method doesn't make a whole lot of sense for key down
and key up events, but it is still available to them. Normally, this is used to see where a mouse down or mouse up occurred or where
the mouse ended up after a drag or move. The NSPoint that is returned is in the window's coordinate system. Because most
relevant events are dispatched to a view subclass, the point needs to be converted to the view's coordinate system before it can be
used meaningfully. This is easy to do by using code like this:

NSPoint windowLocation = [theEvent locationInWindow];
NSPoint location = [self convertPoint:windowLocation fromView:nil];

The previous code is used throughout the Event Monitor example to get a point within the view's coordinate system. This code is
part of the view class itself, hence the latter message being sent to self.

The final three methods are used to determine the event's destination. The -window message tells which window is meant to
receive the event. This is how the application knows where to send the event. The application can pass the event to the window and
then the window object dispatches the event to a particular view based on the -locationInWindow return value. The -
windowNumber message returns a unique integer ID that is used internally by Quartz. This is usually ignored unless one needs to
deal directly with Quartz. Because NSWindow and other Application Kit classes cover most Quartz functionality, this is typically
not necessary. The last method is -context. This returns the NSGraphicsContext instance that applies to the event.

Generally, graphics contexts are associated with windows, so this is another value that isn't used very often.

As explained previously, there are also several methods that are more specific to the event type. These methods are discussed in
later sections of this chapter that focus on mouse, keyboard, and other events.

Creating Events

The NSEvent class also has several class methods. These methods are primarily meant for creating new events that could then be
posted to an application's event queue. Normally this is a bad idea. However, scripting and other operations might want to simulate
user actions by creating events. The following methods can all create new events; each method specifies which type of event will be
created and returned.

+ (NSEvent *)mouseEventWithType:(NSEventType)type location:(NSPoint)location
 modifierFlags:(unsigned int)flags timestamp:(NSTimeInterval)time
 windowNumber:(int)wNum context:(NSGraphicsContext*)context
 eventNumber:(int)eNum clickCount:(int)cNum pressure:(float)pressure

+ (NSEvent *)keyEventWithType:(NSEventType)type location:(NSPoint)location
 modifierFlags:(unsigned int)flags timestamp:(NSTimeInterval)time
 windowNumber:(int)wNum context:(NSGraphicsContext*)context
 characters:(NSString *)keys charactersIgnoringModifiers:(NSString *)ukeys
 isARepeat:(BOOL)flag keyCode:(unsigned short)code

+ (NSEvent *)enterExitEventWithType:(NSEventType)type location:(NSPoint)location
 modifierFlags:(unsigned int)flags timestamp:(NSTimeInterval)time
 windowNumber:(int)wNum context:(NSGraphicsContext*)context
 eventNumber:(int)eNum trackingNumber:(int)tNum userData:(void *)data

+ (NSEvent *)otherEventWithType:(NSEventType)type location:(NSPoint)location
 modifierFlags:(unsigned int)flags timestamp:(NSTimeInterval)time
 windowNumber:(int)wNum context:(NSGraphicsContext*)context
 subtype:(short)subtype data1:(int)d1 data2:(int)d2

Each event creation method is long and complex. It is beyond the scope of this book to give the complete details of each method and
its parameters. However, careful inspection shows that it is required to provide all the general and specific data that would be part of
a given event if it were real. The more specific data is described in the later sections dealing with each event type.

Handling Mouse Events

There are several mouse related events that can be sent to an NSView object. For a view to receive a mouse event, it needs to
implement one of the methods that have been predefined by the NSResponder class for handling mouse events. These methods
typically do nothing, simply absorbing the event. The methods in question are

- (void)mouseDown:(NSEvent *)theEvent
- (void)mouseUp:(NSEvent *)theEvent
- (void)mouseDragged:(NSEvent *)theEvent
- (void)rightMouseDown:(NSEvent *)theEvent
- (void)rightMouseUp:(NSEvent *)theEvent
- (void)rightMouseDragged:(NSEvent *)theEvent
- (void)scrollWheel:(NSEvent *)theEvent
- (void)mouseMoved:(NSEvent *)theEvent

The first three methods are the common mouse operations. A mouse-down event is the start of a click and a mouse-up is when the
mouse button is released. Mouse dragged events are sent whenever the mouse moves while the button is being pressed.

Each of these three operations, mouse-down, mouse-up, and mouse-dragged, has a counterpart for the right mouse button as well.
While Cocoa supports a second mouse button, write applications so that they can be used with only a single mouse button. Apple
does not ship a multi-button mouse, so this is a very important point to remember when designing an application.

It is also possible to use a mouse with more than just two buttons. Getting events for other mouse buttons is a little bit thornier. The
Application Kit does generate events related to other mouse buttons, but they are currently not documented. Because the interface is

private and not normally used, it is beyond the scope of this book.

There are other mouse events. The scroll-wheel event can be sent by a mouse with a scroll wheel. Current mouse devices only
support one scrolling axis. The Application Kit allows up to three scrolling axes to exist on the input device, however. Whether or
not an input device that can actually use all these axes will ever appear is unknown, but they are there if ever needed.

Two final mouse events, not previously listed, are related to tracking rectangles. A tracking rectangle is a region of a view that is
watched. An event is generated whenever the mouse enters or exits the region. The mouse entered and mouse exited events are
discussed in the "Other Events" section later in this chapter.

The Event Monitor application implements all the previous mouse event methods. The implementations are bare bones. They simply
obtain the most important attributes of their respective events and print out the information in a console.

Mouse-Related NSEvent Methods

The mouse-down, up, and mouse-dragged NSEvent objects each respond to a few additional methods. Each of the following three
methods is implemented by the NSEvent class. The first two methods are only valid for mouse-up, mouse-down, and mouse-
dragged events. The last method is also valid for the mouse-enter and mouse-exit events described later in this chapter.

- (int)clickCount
- (float)pressure
- (int)eventNumber

The first method is the most important. When the mouse button is pressed, a mouse-down event is generated. This is true for single,
double, triple, or other clicks. The -clickCount method can be used to determine whether the mouse-down is a single, double, or
other click. The count starts at one, so a single click will report 1 and a double click will report 2, and so on.

Each mouse-down event is reported. This means that a double click operation will generate an event for both a single and double
click. A triple click will generate a single, double, and triple click mouse-down. When implementing a view's behavior it is easiest if
higher click counts simply extend the action already taken by lower click counts. For example, double clicking in an NSTextView
will select a word. A triple click selects the whole paragraph. Because the word selection is part of the paragraph, the triple click
simply adds to the selection of the double click. This is easy to implement, because the action doesn't undo what has already been
done and previous actions don't interfere.

There may be cases where the desired behavior is more complex. For example, suppose that a text area contains multimedia
elements, such as an image. If the image is double clicked, a good behavior would be to launch it from the finder so that it can be
manipulated in an image editor. If some text is already selected, this could pose a problem. The default behavior would cause the
selection to be changed with the first click. However, if the user only wants to open the image for editing, changing the selection to
the image is probably somewhat user-unfriendly. It would be better to leave the selection unchanged, but launch the double clicked
image.

The TextEdit application that comes with Mac OS X follows this latter, more user-friendly course. To implement this in a
mouse- down method, the first click would not necessarily change the selection or insertion point immediately. Instead, it would
first check to see if the mouse click was on top of an attachment. If not, then the normal action can be taken. Otherwise, it sets up a
delayed event to perform the standard single (or double) click operation using one of the -performSelector:...
afterDelay: methods. If the double click never comes, the delayed perform will cause the normal action to happen. If the
double click does come, the delayed action can be cancelled. The attachment can be opened with one of NSWorkspace's -
openFile:... methods. Although somewhat complex, this approach does implement the desired behavior.

Aside from the click count, a mouse event can also report a pressure and an event number. The -pressure method returns the
input device's pressure, if it has one. Most devices don't have pressure sensors. They simply report 1.0 on mouse-down and mouse
drag and 0.0 on mouse-up. A pen-oriented device such as a tablet may offer pressure values that vary between 1.0 and 0.0. The -
eventNumber method returns an integer that can be used as a unique ID to link a mouse-down event to its respective mouse-up
event and any drag events generated between them. Each group of mouse events will use a new, different number. It is easy to see
how this works from the following sample output from EventMonitor:

Left Mouse Down: location (57.000000, 86.000000), 1 click, pressure 1.00, number
6185
Left Mouse Up: location (57.000000, 86.000000), 1 click, pressure 0.00, number
6185
Left Mouse Down: location (66.000000, 93.000000), 1 click, pressure 1.00, number

6186
Mouse Dragged: location (68.000000, 93.000000), pressure 1.00, number 6186
Mouse Dragged: location (68.000000, 92.000000), pressure 1.00, number 6186
Mouse Dragged: location (69.000000, 90.000000), pressure 1.00, number 6186
Mouse Dragged: location (70.000000, 88.000000), pressure 1.00, number 6186
Mouse Dragged: location (70.000000, 87.000000), pressure 1.00, number 6186
Mouse Dragged: location (71.000000, 87.000000), pressure 1.00, number 6186
Mouse Dragged: location (71.000000, 86.000000), pressure 1.00, number 6186
Left Mouse Up: location (71.000000, 86.000000), 0 click, pressure 0.00, number
6186
Left Mouse Down: location (163.000000, 103.000000), 1 click, pressure 1.00, number
6187
Left Mouse Up: location (163.000000, 103.000000), 1 click, pressure 0.00, number
6187
Left Mouse Down: location (89.000000, 62.000000), 1 click, pressure 1.00, number
6191
Left Mouse Up: location (89.000000, 62.000000), 1 click, pressure 0.00, number
6191
Left Mouse Down: location (123.000000, 67.000000), 1 click, pressure 1.00, number
6192
Mouse Dragged: location (123.000000, 66.000000), pressure 1.00, number 6192
Mouse Dragged: location (123.000000, 65.000000), pressure 1.00, number 6192
Left Mouse Up: location (123.000000, 65.000000), 0 click, pressure 0.00, number
6192

Note that the numbers are not always sequential; some numbers may be skipped. The numbers can reliably be used to match up the
mouse-down, up, and drag events, however. Observe that the mouse-up event says 0 clicks whenever the mouse has been dragged.
This is always the case. A mouse-up event will give the same number of clicks as the matching mouse-down event unless the mouse
has been dragged.

Another event generated by a mouse is the scroll-wheel event. This event happens whenever the scroll wheel is moved, and the
mouse is above a particular view. If the mouse is outside of a view's bounds, it will not receive these events even if it is first
responder. The scroll-wheel event supports three axes of movement. Most mouse devices have only one scroll wheel, so there is
only one axis of movement. To access the scroll amounts, the following methods are available for scroll-wheel events:

- (float)deltaX
- (float)deltaY
- (float)deltaZ

The events themselves can be received when a view overrides this NSResponder method:

- (void)scrollWheel:(NSEvent *)theEvent

Because most mouse devices implement only one wheel, the -deltaY method is used in a typical implementation of the -
scrollWheel: method. As can be demonstrated with the Event Monitor example, scroll-wheel movement is expressed in the Y
axis. When the wheel is rolled forward, -deltaY returns a value of 1.0. The NSTextView object implements this direction as
scrolling back, toward the top of the document, that is, the scrollbar is moved upwards if possible. When the scroll wheel is rolled
backward (toward the user), -deltaY returns -1.0. The NSTextView object interprets this as a scroll toward the end of the
document. The scrollbar moves downward if it can. The other two axes, which aren't moving, both always return 0.0. On a mouse
with multiple scroll wheels, if such a beast existed, the other axes would be assigned to the other scroll wheels.

Mouse-Moved Events

The last type of mouse event not yet discussed is the mouse-moved event. When the mouse moves, either a mouse-moved or a
mouse-dragged event is generated. The difference is whether or not a mouse button is pressed while the mouse moves. If a button is
pressed, it is a mouse-dragged event. Otherwise, it is just a mouse-move event. Because the mouse moves quite often, mouse-moved
events are not usually dispatched. This is to avoid flooding the application's event queue. Normally, these events are turned on
temporarily for a specific purpose, and then turned off again.

To begin receiving mouse-moved events a view class will tell its window that it wants them, using code such as this:

[[self window] setAcceptsMouseMovedEvents:YES];

Even when this is enabled, a view might not be sent mouse-moved events. Several conditions must be met. The application must be
the active application. Also, the view's window must be the key window. Finally, the view itself must be the first responder. Even if
a view doesn't want to receive keyboard events, it needs the capability to become key to receive mouse-moved events.

A much better way to track the position of the mouse is provided in many situations where mouse-moved events are wanted. For
example, a somewhat famous "toy" application draws a pair of eyeballs that track the mouse as it moves around the screen. It seems
obvious that mouse-moved events should be used to track the mouse as it moves. However, the previous conditions stipulate that the
moment the user switches to another application, the stream of mouse-moved events will stop. The result is that the eyes stop
moving. Obviously, this approach is unsatisfactory.

A better approach is to periodically poll the location of the mouse. If it has moved, the view can be redrawn as needed. A NSTimer
or a repeating delayed perform can be used to trigger the polling method. The method itself needs to obtain the current location of
the mouse, and then force the view to be redisplayed. The only thing that is new here is to determine the current location of the
mouse. Two methods can be used:

NSEvent: + (NSPoint)mouseLocation
NSWindow: - (NSPoint)mouseLocationOutsideOfEventStream

Both of the previous methods return the current location of the mouse. The first method, an NSEvent class method, returns the
mouse position in screen coordinates. The second method is sent to an instance of NSWindow and returns the mouse position in the
window instance's base-coordinate system. There are readily accessible methods to convert mouse coordinates from the window's
coordinate system to the view's coordinate system. This makes the NSWindow method the easiest to use. A view could use this
code to get the current mouse location in the view's coordinate system:

NSPoint mouseBase = [[self window] mouseLocationOutsideOfEventStream];
NSPoint mouseLocation = [self convertPoint:mouseBase fromView:nil];

There are a few methods that are particularly good for working with mouse coordinates. The first is an NSView method for testing
to see if a point is inside of a rectangle:

- (BOOL)mouse:(NSPoint)aPoint inRect:(NSRect)aRect

The point referenced by aPoint is usually the mouse's location in view coordinates, and aRect is the rectangle of interest. Either
a YES or NO is returned. Remember that there is also a rectangle function NSPointInRect(). The -mouse:InRect: method
is preferred to the NSPointInRect() function because it properly takes into account whether the view's coordinate system is
flipped, whereas the function does not.

The Application Kit also provides a way to test if a given point is on a path. The following NSBezierPath method can be used
for this:

- (BOOL)containsPoint:(NSPoint)point

This method does not take fills into account. It only returns a YES if the point is actually on the path itself. Furthermore, the point
must be on the path, not just nearby. This is all that the Application Kit provides for hit detection. For more complex hit detection, it
is necessary to create a custom method.

There is one more NSView method that is of interest when working with mouse events:

- (NSView *)hitTest:(NSPoint)aPoint

This method returns an NSView instance. It is another method that is meant to be subclassed, but not called directly. It is used by
the NSWindow class to determine how to dispatch mouse events. The point passed to this method is assumed to be in the
superview's coordinate system and not the receiver's coordinate system.

If aPoint lies outside of the receiver, nil is returned. If the point is inside the view, this method traverses as deep as possible into
the view hierarchy and returns the farthest leaf found. The result could be the receiver itself, if it has no subviews. Another way to
look at what is returned is to think of a view, and its subviews, as a group of concentric, nested rectangles. The innermost rectangle
that encloses the point is the one that is returned by this method.

This behavior works as if a subview were on top of all its superviews. The main reason to override this method is to change the
underlying semantic. Overriding provides the opportunity to give priority to a different subview, perhaps the receiver itself. A
common reason to override this method is to hide mouse events from some or all subviews. By returning self, mouse events are sent
to the receiver instead of its subviews.

Handling Key Events

There are three types of events related to the keyboard: key down, key up, and flags changed. As noted previously, for a view to
receive keyboard events, it must be the first responder. This is true for all three types of keyboard events. Just like mouse events,
there are several NSResponder methods that must be overridden in an NSView subclass for it to actually receive these events.
The methods are

- (void)keyDown:(NSEvent *)theEvent
- (void)keyUp:(NSEvent *)theEvent
- (void)flagsChanged:(NSEvent *)theEvent

NSEvent doesn't implement any special methods for the last event type, flags changed. Typically, the -modifierFlags
method, which is available for all events, is the main point of interest. Note that this event doesn't say which flags changed. It
provides the current state of the modifier flags and the implication that something changed. To know what changed, you would have
had to save the previous value of the flags, and then compare them. Normally, this is irrelevant because all that matters is the current
state of the flags.

The two -key methods, especially -keyDown:, are the ones most commonly overridden.

Key-Related NSEvent Methods

Key-up and key-down event objects implement several methods specific to their event type, which are

- (BOOL)isARepeat
- (NSString *)characters
- (NSString *)charactersIgnoringModifiers
- (unsigned short)keyCode

When a key is held down, it repeats. Repeated key-down events return a YES when sent -isARepeat. The typical sequence of
events in such a situation is a key-down (with repeats returning NO), several key-down events that return YES to -isARepeat, and
then a key-up. The following output from the EventMonitor example shows how this works:

Key Down: "a", unmod "a", code 0x0000, number 13554240
Key Down: "a", unmod "a", repeat, code 0x0000, number 13518880
Key Down: "a", unmod "a", repeat, code 0x0000, number 13554240
Key Down: "a", unmod "a", repeat, code 0x0000, number 13518880
Key Down: "a", unmod "a", repeat, code 0x0000, number 13554240
Key Down: "a", unmod "a", repeat, code 0x0000, number 13518880
Key Up: "a", unmod "a", code 0x0000, number 13510528

The two -characters methods return information about which keys went up or down. In both cases, an NSString instance is
returned. Normally, the string contains only a single character. However, it is possible for multiple characters to be in the string.
Because of this, it is always wise to check how many characters are in the string and not just blindly pick out the character at index
0, tossing away any others that potentially might be there. This usually happens whenever the application's event queue gets behind.
Perhaps the processing of a previous event took a while to complete and multiple key-down events were received. Cocoa buffers the
key events so they aren't lost. To allow the application a chance to catch up, all the key-down events are collected together and
passed on as a single event. (This is sometimes called "coalescing" in the documentation.)

The difference between the -characters and -charactersIgnoringModifiers methods is straightforward. The first
method takes into account all the modifier keys, such as the alternate key. The second method returns the event's characters ignoring
all the modifier keys except for the Shift key. For example, an alternate-a and alternate-shift-a produce non-ASCII characters. In this
situation, the -charactersIgnoringModifiers method would return "a" and "A," respectively. This is shown in the
following output from the EventMonitor application:

Flags Changed: alternate, code 0x003a, number 0

Key Down: "å", unmod "a", code 0x0000, number 18168144
Key Up: "å", unmod "a", code 0x0000, number 18167824
Flags Changed: code 0x003a, number 0
Flags Changed: alternate, code 0x003a, number 0
Flags Changed: shift, alternate, code 0x0038, number 0
Key Down: "Å", unmod "A", code 0x0000, number 13462032
Key Up: "Å", unmod "A", code 0x0000, number 18120320
Flags Changed: alternate, code 0x0038, number 0
Flags Changed: code 0x003a, number 0

Because the characters generated by keyboard events are all provided in NSString instances, they are accessible as unicode
characters (the unichar type). Besides the normal alphabet, there are many special keys, such as the arrows and function keys. There
are many constants that can be used to refer to these special keys. All the constants in the following list are of the unichar type. The
first part of this list has been abbreviated. There are 35 constants for function keys 1 through 35, only a few of which are shown.

NSF1FunctionKey

NSF2FunctionKey

NSF3FunctionKey. . .

NSF35FunctionKey

NSUpArrowFunctionKey

NSDownArrowFunctionKey

NSLeftArrowFunctionKey

NSRightArrowFunctionKey

NSInsertFunctionKey

NSDeleteFunctionKey

NSHomeFunctionKey

NSBeginFunctionKey

NSEndFunctionKey

NSPageUpFunctionKey

NSPageDownFunctionKey

NSPrintScreenFunctionKey

NSScrollLockFunctionKey

NSPauseFunctionKey

NSSysReqFunctionKey

NSBreakFunctionKey

NSResetFunctionKey

NSStopFunctionKey

NSMenuFunctionKey

NSUserFunctionKey

NSSystemFunctionKey

NSPrintFunctionKey

NSClearLineFunctionKey

NSClearDisplayFunctionKey

NSInsertLineFunctionKey

NSDeleteLineFunctionKey

NSInsertCharFunctionKey

NSDeleteCharFunctionKey

NSPrevFunctionKey

NSNextFunctionKey

NSSelectFunctionKey

NSExecuteFunctionKey

NSUndoFunctionKey

NSRedoFunctionKey

NSFindFunctionKey

NSHelpFunctionKey

NSModeSwitchFunctionKey

Clearly, not every keyboard has a key for every one of the previous constants. In fact, most keyboards only have 12 function keys,
not 35. As an example of handling special keys, imagine an NSView subclass that responds to the arrow keys. A simple
implementation of the -keyDown: method might look like this:

- (void)keyDown:(NSEvent *)event
{
 unichar theChar = [[event characters] characterAtIndex:0];
 if (theChar == NSLeftArrowFunctionKey) {
 [self leftAction:self];
 } else if (theChar == NSRightArrowFunctionKey) {
 [self rightAction:self];
 } else if (theChar == NSDownArrowFunctionKey) {
 [self downAction:self];
 } else if (theChar == NSUpArrowFunctionKey) {
 [self upAction:self];
 }
}

The previous code will work. Pressing an arrow key causes the appropriate action method to be called. The one simplification is that
only the first character in the event is processed. If there are other characters, they will be effectively thrown out. For a game or an

application that doesn't require complete precision, this might be acceptable. However, setting up a loop like this is the better
approach, for most applications:

- (void)keyDown:(NSEvent *)event
{
 NSString *characters = [event characters];
 int i, length = [characters length];
 for (i=0; i<length; i++) {
 unichar theChar = [characters characterAtIndex:i];
 if (theChar == NSLeftArrowFunctionKey) {
 [self leftAction:self];
 } else if (theChar == NSRightArrowFunctionKey) {
 [self rightAction:self];
 } else if (theChar == NSDownArrowFunctionKey) {
 [self downAction:self];
 } else if (theChar == NSUpArrowFunctionKey) {
 [self upAction:self];
 }
 }
}

Another change to be considered is to call the super implementation of -keyDown: for unrecognized characters. This causes the
standard beep, as would be expected when the user hits a key that is unrecognized. The previous implementations simply ignore
invalid key presses.

There is one final method implemented by NSEvent for key events:

- (unsigned short)keyCode

This is a device-dependent code. While it is provided for key- down, key-up, and flags changed events, it is generally a very bad
idea to use it. If an application never runs on more than one piece of hardware, the value returned is reliable. Apple is constantly
changing their hardware in minor and major ways. Depending on the key code is a sure-fire way to ensure that an application breaks
when new hardware is released. It is preferable to use the -characters method wherever possible because it always returns
consistent results no matter what the underlying hardware does.

Key-Related NSView Methods

Besides the normal NSResponder methods such as -keyDown:, there are two NSView specific methods that can be overridden
to handle certain kinds of keyboard events. The methods are

- (BOOL)performKeyEquivalent:(NSEvent *)theEvent
- (BOOL)performMnemonic:(NSString *)theString

Typically, if either of these methods is implemented, the -keyDown:, and other methods will not be. The first method is the one
most commonly used. A key equivalent is a key that can be used to trigger the view, also known as a shortcut. An example of this is
seen in the NSButton class. A common key equivalent is the Return key. Setting the Return key as the button's key equivalent
makes it sensitive to the key being pressed. The button will be triggered and its action sent when the user hits Return. When a panel
or window is key and the first responder view doesn't respond to the -keyDown: method, the window checks if any of its views
respond to key equivalents. If not, the event is passed up the responder chain.

To see if the view responds to a particular key equivalent, the -performKeyEquivalent: method is sent to the view. If the
view accepts the key equivalent, YES is returned and the search ends there. It is assumed that the key equivalent has been handled at
that point. Otherwise, NO is returned and the search continues. The default implementation passes the message on to any subviews.
Because of this, if a custom implementation doesn't return YES, it should return the result of calling the super implementation
instead of returning NO. Custom implementations should use the NSEvent method -charactersIgnoringModifiers
instead of -characters when checking to see if the key equivalent can be accepted.

The other method, -performMnemonic:, is meant for handling key mnemonics. This feature is a remnant from the Application
Kit on OPENSTEP and Windows. In those environments, a button's title could be set so one of the characters would be underlined.
That character is the mnemonic. When a mnemonic is triggered from the keyboard, the Application Kit follows a procedure similar
to key equivalents, but using this method. Because Aqua doesn't actually use mnemonics, this method should normally be ignored.

Of course, if Cocoa ever returns to being cross platform or mnemonics are added to Aqua, this method could once again become
relevant. In that case, it would be overridden in a way similar to the -performKeyEquivalent: method previously described.
The primary difference is that an NSString is used as the argument instead of an NSEvent object, removing the extra step of
asking the NSEvent for its characters.

Other Events

There are other event types that don't fall into the standard mouse and keyboard event types. These other event types include
tracking and cursor rectangles, system-defined events, Application Kit-defined events, application-defined events, and periodic
events.

Tracking Rectangles

To simplify a common task in mouse-movement processing, the Application Kit adds the idea of a tracking rectangle. This is a
rectangular area that covers all or a portion of a view. Whenever the mouse enters or exits the tracking rectangle, an event is sent to
the view. This can be used to trigger redraws that highlight areas under the mouse, such as Web page mouse overs. Another use is to
update a separate NSTextField that is acting as a status field, displaying data about whatever is under the mouse. It is common to
change the cursor when it enters a tracking rectangle. Because this particular usage is so common, there is a special set of methods
just for cursor manipulation. See the "Cursor Rectangles" section later in this chapter for more information on this special case.

To set up a tracking rectangle, call the following NSView method:

- (NSTrackingRectTag)addTrackingRect:(NSRect)aRect owner:(id)anObject
 userData:(void *)data assumeInside:(BOOL)flag

This method returns a special tag that is kept to remove the tracking rectangle later. It can also be matched with incoming enter and
exit events to determine which rectangle was entered or exited.

The aRect argument specifies the rectangle of interest in the view's coordinates. This gives an invisible border, and an event is
generated every time the mouse crosses this border.

The owner is the object that receives the mouse-entered and mouse-exited events. Often this method is being sent to self, and
anObject is set to self. This is the case in the EventMonitor sample application.

The data is a pointer to untyped. It is wise to use an NSDictionary instance here because a dictionary can store arbitrary
amounts of information for easy retrieval.

The data provided here is bundled up within the NSEvent objects that come back, so this is a way of passing data on to the tracking
rectangle's owner object.

Finally, the flag argument tells the method which kind of event, entered or exited, is to be sent first. If it is set to YES, the
assumption is that the mouse is already inside the tracking rectangle, regardless of its actual location. The first event sent in relation
to this tracking rectangle is a mouse-exited event. If the mouse was already outside, no entered event is sent when the mouse enters
the rectangle. The exited message is sent the moment the mouse leaves the rectangle. After the initial event, subsequent mouse-
entered and mouse-exited events will all be sent as expected. If the value of flag is NO, the opposite happens. It is assumed that the
mouse is outside of the rectangle. The first event related to this rectangle would then be sent the moment that the mouse moves from
outside to inside, triggering an entered event.

This might seem a little confusing at first. The EventMonitor application can set up a tracking rectangle that can be the subject
of various experiments. Try enabling the tracking rectangle, and then passing the mouse in and out of the rectangle. Notice that if
the assumption made when the rectangle is turned on is incorrect, the first crossing in or out of the rectangle will not generate an
event. This happens because the mouse is moving to where the Application Kit already thinks it is. Future crossings from there
generate the appropriate event, of course.

To remove an existing tracking rectangle, use the following NSView method. Notice that it is necessary to provide the tag that was
returned when the tracking rectangle was initially created.

- (void)removeTrackingRect:(NSTrackingRectTag)tag

Using these two methods for setting up and removing the tracking rectangle, the EventMonitor application implements the

following code to toggle the state of the tracking rectangles:

- (IBAction)changeTrackingRect:(id)sender
{
 if ([[sender selectedCell] tag] > 0) {
 [self addTrackingRect];
 } else {
 [self removeTrackingRect];
 }
}

- (NSRect)rectToTrack
{
 return NSInsetRect([self bounds], 20.0, 20.0);
}

- (void)addTrackingRect
{
 NSString *message;
 if (haveTrackingRect) return;
 trackingRectTag = [self addTrackingRect:[self rectToTrack] owner:self
 userData:@"RectData" assumeInside:([insideSwitch state] ? YES : NO)];
 haveTrackingRect = YES;
 message = [NSString stringWithFormat:
 @"Tracking rect on: tag %d\n", trackingRectTag];
 [[NSApp delegate] appendStringToConsole:message];
 [self setNeedsDisplay:YES];
}

- (void)removeTrackingRect
{
 NSString *message;
 if (!haveTrackingRect) return;
 [self removeTrackingRect:trackingRectTag];
 haveTrackingRect = NO;
 message = [NSString stringWithFormat:
 @"Tracking rect off: tag %d\n", trackingRectTag];
 [[NSApp delegate] appendStringToConsole:message];
 [self setNeedsDisplay:YES];
}

To provide some visual feedback, the view object also uses the NSFrameRect() function to draw the outline of the tracking
rectangle when it is enabled.

When a tracking rectangle has been set up, event methods need to be implemented to receive the mouse-entered and mouse-exited
events. The owner of the tracking rectangle should implement both of these NSResponder methods:

- (void)mouseEntered:(NSEvent *)theEvent
- (void)mouseExited:(NSEvent *)theEvent

These methods are called when the mouse enters or exits the tracking rectangle. The supplied NSEvent instance implements these
special, related methods:

- (int)trackingNumber
- (void *)userData
- (int)eventNumber

The first method, -trackingNumber, returns a tag that matches up with the tag returned when the tracking rectangle was
created. The second method returns the untyped data that was used when creating the tracking rectangle. It needs to be cast to the
appropriate data type before it can be used. As was noted previously, it is a good idea to use an NSDictionary here. However,
other objects or 32-bit data types can certainly be used. The important thing is that because the programmer decides what to put
here, she needs to be consistent with that when attempting to decode the data. This is an opportunity for pointer problems to surface

if proper care isn't taken.

The last method returns the event number, similar to the mouse methods described in the previous section. In the case of mouse-
enter and mouse-exit events, this event number does not necessarily match between them. If a mouse event such as mouse down or
mouse up is received between an entered or exited event, the numbers differ. For this reason, the value returned by -
eventNumber is only of marginal value when dealing with mouse-entered and mouse-exited events.

The EventMonitor application's implementation of the -mouseEntered: and -mouseExited: methods simply print lines in
the console that contain the return values of these three methods.

Periodic Events

Another useful event type is the periodic event. These events are used within tracking loops to generate events at a constant rate.

An example of periodic event use within the Application Kit would be found within the arrow buttons associated with a scroller.
When the button is clicked and held, there is a slight pause. The button then repeatedly sends its action at a constant rate until it is
released. The loop to start, handle, and stop the periodic events happens within the -mouseDown: method. By doing this, the
normal event dispatching system for mouse-up and mouse-drag events is bypassed.

Periodic events are not dispatched through the normal event process. To receive them it is necessary to explicitly grab them from the
application's event queue. Normally, this is part of a tracking loop. To start a series of periodic events, the following method is sent
to the NSEvent class object:

+ (void)startPeriodicEventsAfterDelay:(NSTimeInterval)delay
 withPeriod:(NSTimeInterval)period

The events won't actually start until the delay period, which is specified in seconds, has elapsed. The NSTimeInterval type is a
floating-point type, so fractional values are acceptable. The period argument specifies how often the periodic event is to be sent.
Sending the +stopPeriodicEvents message to the NSEvent object stops periodic events.

To dequeue periodic events, the NSPeriodic and NSPeriodicMask constants have been defined for the event type and mask,
respectively.

The full implementation of the EventMonitor's -mouseDown: method shows a sample implementation of periodic events.
When periodic events are enabled, it sets up a tracking loop. The loop watches for a mouse-up event, which is used to break out of
the loop. Until the mouse up happens, periodic events are received at a regular rate. The code for this is as follows.

[View full width]

- (void)mouseDown:(NSEvent *)theEvent
{
 NSPoint windowLocation = [theEvent locationInWindow];
 NSPoint location = [self convertPoint:windowLocation fromView:nil];
 int clicks = [theEvent clickCount];
 NSString *message = [NSString stringWithFormat:
 @"Left Mouse Down: location (%f, %f), %d click%@, pressure %0.2f, number %d\

n",
 location.x, location.y, clicks, ((clicks > 1) ? @"s" : @""),
 [theEvent pressure], [theEvent eventNumber]];
 [[NSApp delegate] appendStringToConsole:message];
 if (periodicFlag) {
 BOOL repeating = YES;
 [NSEvent startPeriodicEventsAfterDelay:2.0 withPeriod:0.5];
 while (repeating) {
 NSEvent *mouseUp = [NSApp nextEventMatchingMask:NSLeftMouseUpMask
 untilDate:nil inMode:NSEventTrackingRunLoopMode dequeue:NO];
 if (mouseUp) {
 repeating = NO;
 } else {
 NSEvent *periodicEvent = [NSApp
 nextEventMatchingMask:NSPeriodicMask

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/&r=noccc&xmlid=0-672-32230-7/ch15lev1sec1#PLID41

 untilDate:nil
 inMode:NSEventTrackingRunLoopMode
 dequeue:YES];
 NSString *message = [NSString stringWithFormat:
 @"Periodic Event: number %d\n",
 [periodicEvent eventNumber]];
 [[NSApp delegate] appendStringToConsole:message];
 }
 }
 [NSEvent stopPeriodicEvents];
 }
}

This technique is the preferred way to animate things in a tracking loop. The loop could have received mouse-drag events instead,
which would cause some form of animation to occur, but only when the mouse is moved. The periodic events provide a constant
rate and predictable behavior. Because a tracking loop temporarily bypasses the normal event dispatching system, it is necessary to
use periodic events instead of an NSTimer. Messages sent by timers are temporarily put on hold while a tracking or modal loop is
active. Periodic events get around this problem nicely.

Miscellaneous Event Types

There are a few other types of events that might be encountered when creating a custom view subclass. They are not commonly
used, however. The other event types are system-defined, Application Kit-defined, and application-defined events. All these event
types, like periodic events, must be explicitly retrieved from the application's event queue. There is no overrideable NSResponder
method for them to be sent to. The constants NSSystemDefined, NSAppKitDefined, and NSApplicationDefined and
the associated masks NSSystemDefinedMask, NSAppKitDefinedMask, and NSApplicationDefinedMask have been
defined for use in identifying and dequeuing these events.

Each of these three types of custom events responds to these three NSEvent methods:

- (short)subtype
- (int)data1
- (int)data2

The -subtype method returns an event subtype to further define the event's semantics. There is currently only one subtype for
system-defined events, NSPowerOffEventType. This is a predefined constant. There are several constants defined for
Application Kit-defined events, as shown in the following list.

NSWindowExposedEventType

NSApplicationActivatedEventType

NSApplicationDeactivatedEventType

NSWindowMovedEventType

NSScreenChangedEventType

NSAWTEventType

The two data methods return information that is specific to the event's subtype. Specific data values' semantics are not documented
at this time. In fact, the documentation recommends that programmers avoid working with these events. Because they are primarily
internal to the Application Kit and made available through various Application Kit methods, there is little need to access them
directly anyway.

Creating application-defined events is of the most value. Such events can be queued, and then retrieved as needed. The subtype and
two data values can be used in whatever ways are useful to the application. Because events can be queued from subthreads, and then
retrieved in the main event loop, they can be a valuable means of communicating with the main thread. For example, a subthread
could be running a detailed calculation in the background. Although in a tracking loop, application-defined events could be retrieved
to signal updates to the application's output or modify the tracking itself as the calculations progress.

Application-defined events, being by definition application specific in nature, are not shown in the EventMonitor application.
However, the facilities already described are adequate for managing them.

Book: Cocoa® Programming
Section: Chapter 15. Events and Cursors

Managing Cursors

Cocoa provides several ways to manage mouse cursors. The NSCursor class is central to this, but NSView and
NSWindow classes both play an integral part in the more complex management options. For the simplest cases, such as
a modal tool that temporarily changes the cursor on an application-wide basis, only knowledge of the NSCursor class
is required. Because this class plays such a central role, it is discussed first, followed by more complex cursor
management. Finally, cursor rectangles are covered. These special tracking rectangles provide a way to change the
cursor automatically as it enters or exits a specific region.

The Cursors example at the www.cocoaprogramming.net Web site demonstrates all these techniques. It will be
discussed throughout this section.

NSCursor Class

The NSCursor class encapsulates a mouse cursor. The cursor consists of two elements: an image and a hotspot. In
Mac OS X, a cursor can be any full-color image, but it is limited to being 16x16 pixels in size. Although the image is 16-
pixels wide and high, mouse itself is considered to be at a specific point on the screen.

To place the cursor image at the correct place on the screen in relation to where the mouse is located, a hotspot is
defined. The hotspot of the image is always directly over the mouse. Because the image's meaning might change from
cursor to cursor, the hotspot isn't always in the same place. For example, an arrow cursor would place the hotspot at the
tip of the arrow. A crosshair would put the hotspot at the center. The wait cursor would put the hotspot at the center, too.

When cursors are set up to change as the mouse enters a particular region, the change occurs when the cursor's hotspot
crosses the invisible line. The hotspot is also used to determine the location of a mouse click.

Creating an NSCursor

To create a new NSCursor object, both a cursor image and the hotspot need to be provided. The designated initializer
is

- (id)initWithImage:(NSImage *)newImage hotSpot:(NSPoint)aPoint

The documentation discusses how the cursor has a flipped coordinate system. This can be confusing because it does not
apply to the image itself. The image passed to the NSCursor instance is not flipped at all. It should be exactly as it
would look onscreen. The coordinate system for the hotspot is flipped, however. The upper-left corner of the cursor is
(0, 0), and the lower-right corner is (15, 15).

When an NSCursor has been initialized, it is immutable. The image and hotspot cannot be changed. Instead, a new
instance needs to be created with the new values. There is one other -init… method that asks for foreground and
background color hints. Because the two extra parameters are ignored by the current implementation of Cocoa, the
method can safely be ignored.

Although a cursor cannot be changed once it has been created, it is possible to obtain an instance's image and hot spot.
To see what a cursor's image is, use the -image method. It returns an NSImage. The -hotSpot method returns an
NSPoint.

There are two NSCursor methods that can be used to obtain standard Mac OS X cursors. The NSCursor class
method +arrowCursor returns the standard arrow cursor, a black arrow with a white outline. The +IBeamCursor
method returns the I-beam cursor used with text fields. Figure 15.2 shows enlarged representations of the two cursors.

http://www.cocoaprogramming.net/

Figure 15.2. Enlarged representations of the +arrowCursor (left) and the +IbeamCursor (right) are shown.

Cursors Example

When an application defines its own cursors, it is convenient to have them accessible through a means similar to the
+arrowCursor and +IBeamCursor methods. By using a category on the NSCursor class, this is possible.

The Cursors application uses two custom cursors. One is a crosshair, as seen in drawing applications such as sketch.
Figure 15.3 shows an enlargement of the image.

Figure 15.3. This is an enlarged representation of the crosshair cursor.

Because the hot spot is basically in the center of the image, the following code is a reasonable way to set up the cursor.
This code is part of the CustomCursors category added to the NSCursor class in the Cursors application:

File NSCursor+CustomCursors.h:

#import <Cocoa/Cocoa.h>

@interface NSCursor(CustomCursors)

+ (NSCursor *)crossCursor;

@end

File NSCursor+CustomCursors.m:

#import "NSCursor+CustomCursors.h"

@implementation NSCursor(CustomCursors)

+ (NSCursor *)crossCursor
{
 static NSCursor *crossCursor = nil;
 if (!crossCursor) {
 NSImage *crosshair = [NSImage imageNamed:@"Cross"];
 NSSize crossSize = [crosshair size];
 NSPoint hotspot = NSMakePoint((crossSize.width / 2.0),
 (crossSize.height / 2.0));
 crossCursor = [[NSCursor alloc]
 initWithImage:crosshair hotSpot:hotspot];
 }
 return crossCursor;
}

@end

Because the cursor object is immutable, it only needs to be created once. Because the crossCursor variable is
declared as static, it will start out nil and retain across method calls whatever value is assigned. Because the variable
starts out as nil, it triggers the if statement and creates the cursor, and the cursor is then returned. Subsequent calls
will return the original instance, saved in the crossCursor variable. This basic code pattern is commonly used as a
way to make custom cursors readily available throughout an application. To obtain the custom cursor, the following
code is all that is required:

[NSCursor crossCursor];

By using a category to add the method to the NSCursor class, it makes it much easier to remember where to go to get
the custom cursor. The Cursors application adds a second custom cursor. This cursor looks like a pencil with the
point at the lower left of the image. Figure 15.4 shows an enlargement of the cursor.

Figure 15.4. This is an enlargement of the pencil cursor.

For this cursor, the hotspot is at the lower left. Recall that the hotspot needs to be specified in a vertically flipped
coordinate system. Furthermore, for a 16x16 image the coordinates run from 0.0 to 15.0. Therefore, the coordinates for
the hot spot would be (0.0, 15.0). The code for setting up this cursor looks almost exactly like the code for setting up the
crosshair cursor:

+ (NSCursor *)pencilCursor
{
 static NSCursor *pencilCursor = nil;
 if (!pencilCursor) {
 NSImage *pencil = [NSImage imageNamed:@"Pencil"];
 NSPoint hotspot = NSMakePoint(0.0, 15.0); // lower left
 pencilCursor = [[NSCursor alloc] initWithImage:pencil hotSpot:hotspot];
 }
 return pencilCursor;
}

Cursor Management

Most cursor management is done with the NSCursor class. Instance methods are available to make a given cursor
active. The class object also maintains a stack of active cursors so that cursor changes can be done and undone easily.
Additionally, the class object can be used to hide and unhide the mouse cursor.

The +currentCursor class method returns the NSCursor that is currently active. To make a cursor active, simply
send it the -set method. In the case of an application-wide modal cursor, the cursor is often changed only temporarily.
There are two ways to change the cursor back to what it was before it was engaged. The first is to save the current cursor
before making the change and then using the -set method to change it back at a later time. Because this actually
happens quite often, NSCursor provides an alternate means of changing the cursor.

Cursors can be placed onto a stack. Whatever cursor is at the top of the stack is the active cursor. When a cursor is sent
the -push method, it is added to the top of the stack and made active. When the -pop method is received, the cursor is
removed from the top of the stack and whatever cursor was active before it will once again be activated. Because the
current cursor might not be known, simply sending a +pop to the NSCursor class pops the current cursor off the top
of the stack.

By using this stack mechanism, it is not necessary to save the current cursor in a temporary variable. The NSCursor

class tracks that all automatically.

When a user clicks on a text area and begins to type, the mouse cursor is hidden automatically. In a custom subclass of
NSView, however, this needs to be done explicitly if it is appropriate. There are two ways to hide the cursor, and they
are not to be mixed.

The first is to use the NSCursor class methods +hide and +unhide to hide and reveal the mouse cursor,
respectively. This works, but if the application forgets to unhide the cursor it could be a major cause of irritation to the
user. Therefore, it is not the preferred way to hide the cursor.

The other method of hiding the cursor is more user-friendly. The following method can hide or unhide the cursor:

+ (void)setHiddenUntilMouseMoves:(BOOL)flag

If the flag is YES, the cursor is hidden until the user moves the mouse. If the flag is set to NO, the cursor is revealed
immediately without waiting for the user to move the mouse. Normally, when the cursor is hidden the user expects it to
reappear when she moves the mouse. When this method is used, the computer feels very responsive because the
application won't have to intervene to make the mouse cursor visible. The +hide and +unhide methods require the
application to notice the movement and unhide the cursor.

These two methods are not to be mixed, however. If +hide was used to hide the cursor, then +unhide and not
+setHiddenUntilMouseMoves: must be used to unhide it. Conversely, if the cursor was hidden with
+setHiddenUntilMouseMoves:, the same method and not +unhide must be used to unhide it.

The Cursors application wraps all these methods inside action methods. For example, the +hide method is wrapped
this way:

- (IBAction)hideCursor:(id)sender
{
 [NSCursor hide];
}

All these wrappers are found in the MYCursorController class. They are hooked up to a user interface that can be
used to allow a developer to experiment with the methods by triggering them directly. The interface is shown in Figure
15.5.

Figure 15.5. The Cursor Manipulation Tools window of the Cursors application can be used to set the cursor
type.

Try experimenting with this panel to get a good feel of how these methods work together. Note that the Hide Cursor
button hides the cursor for good until it is unhidden explicitly. Slowly moving the cursor to the unhide button and
clicking works, but it's hard to do when the cursor is invisible. To get around this, the application also has a menu item
for unhiding the cursor. This allows a Cmd-key combination to be used to bring back the cursor. To bring back the
cursor without poking around blindly, use Cmd-Alt-U.

Changing the Cursor

Usually, cursor changes are wanted when the cursor moves over a particular area. For example, when the cursor is
moved over the canvas of a drawing program, it might change from an arrow to a crosshair.

It is possible to track mouse-movement events, and then change the cursor when it enters a particular area. The code to
do this would be somewhat involved, however. Because this pattern for cursor manipulation is used so often, Cocoa
provides several methods that make this functionality easy to implement. One is to set a cursor for an overall document
and the other is to set up cursor rectangles within an NSView object.

Document Cursors

For a document that is displayed within an NSScrollView, give the scroll view an NSCursor instance that is to be
used whenever the cursor is over the document itself. Send the following message to the document's scroll view:

- (void)setDocumentCursor:(NSCursor *)anObj

With this method, whenever the mouse moves over the scroll view's content view the cursor changes. The -
documentCursor method can be used to retrieve the cursor that has been set.

This is demonstrated in the Cursors application. The Mandlebrot window contains an NSScrollView wrapped
around an NSImageView. The CursorController class uses the -awakeFromNib method to set up the scroll
view to display the crosshair cursor.

- (void)awakeFromNib
{
 [mandelScroll setDocumentCursor:[NSCursor crossCursor]];
}

When the cursor moves over the image, it changes to the crosshair as seen in Figure 15.6.

Figure 15.6. The cursor as it moves over the image.

There is one caveat. The cursor changes only if the window is key. This behavior is part of the look and feel of Aqua
and it is something that the Application Kit offers for free. The programmer doesn't have to be aware of whether the
window is key.

Simply tell the scroll view which cursor to use and the cursor appears whenever the time is right as specified by Apple's
human-interface guidelines.

The NSClipView class also implements this method. This makes sense because an NSScrollView is actually using
an NSClipView as a subcomponent. In a multidocument application, the -awakeFromNib method is not the best

place for this code. Instead, it should be a part of the NSDocument subclass, typically in an implementation of the -
windowControllerDidLoadNib: method.

This approach is very easy to use and for many situations it is enough. However, some views are even more complex
and might need to change the cursor as it moves over different regions of the view. For example, an NSMatrix full of
NSTextFieldCell objects would want to show the I-beam cursor when the mouse is over a text field and the arrow
cursor when the mouse is between fields. Another example is the Web browser OmniWeb. When the cursor moves over
a hyperlink, it changes from an arrow to a pointing finger. In these cases, setting a single cursor for the whole document
or view is not sufficient.

Cursor Rectangles

A special tracking rectangle called a cursor rectangle can be used over a portion of a view to cause the cursor to change
only when it is over that particular rectangle. The NSView class implements four methods for managing cursor
rectangles, which are

- (void)addCursorRect:(NSRect)aRect cursor:(NSCursor *)anObj
- (void)removeCursorRect:(NSRect)aRect cursor:(NSCursor *)anObj
- (void)discardCursorRects
- (void)resetCursorRects

The only one of these methods that actually ever needs to be called is -addCursorRect:cursor:. Its function is
obvious, pass it a rectangle in the view's coordinate system and a cursor. Whenever the mouse moves over that
rectangle, the cursor changes. Effectively, the previous scroll-view method simply set up a single-cursor rectangle
covering the entire content area.

The -resetCursorRects method is where all the calls to -addCursorRect:cursor: are to be placed. This
method is never called directly. Instead, it will be called automatically by the Application Kit as needed. In this method,
all the view's cursor rectangles are to be defined. It can be safely assumed that when this method is called, all previous
cursor rectangles have already been removed. Therefore, it is important to set up all the cursor rectangles that apply to
the view in this method.

The -removeCursorRect:cursor: method removes a cursor rectangle that was set up previously. The rectangle
and cursor arguments must match exactly with a rectangle and cursor pair previously passed to the -
addCursorRect:cursor: method for this to work, however. The -discardCursorRects method will remove
all the cursor rectangles. However neither the -removeCursorRect:cursor: or -discardCursorRects
methods are meant to be called directly. They exist primarily for use by subclassers wanting to trap these events. If
overridden, the subclasser must remember to call the super implementation.

If neither removal method is to be called directly, a question arises. How are cursor rectangles supposed to be reset? It is
done through the view's window and not directly through the view itself. The reason for this is in the implementation.
Cursor rectangles are actually managed on a per-window basis by NSWindow instances and not by the views
themselves. So, to remove cursor rectangles for a view, the -invalidateCursorRectsForView: method is sent
to the view's window. For example:

[[someView window] invalidateCursorRectsForView:someView];

Because the window manages the cursor rectangles, they need to be reset whenever the window is resized or the view's
bounds change. Whenever the view moves, for instance, through scrolling, the cursor rectangles also need to be reset.
Moving a view to a new location in the view hierarchy is also reason to reset the rectangles. In all these cases, they are
reset automatically by the Application Kit. The only time that cursor rectangles need to be reset manually is when a
view's internal state changes in a way that causes the cursor rectangles to be changed.

Even though this isn't too terribly complex, in most normal implementations this is even simpler than it sounds. In the
Cursors.app application, the CursorRects window shows the bare minimum implementation. The view draws

two rectangles. The left rectangle has the pencil cursor assigned, whereas the right rectangle has the crosshair. The
CursorRectsView class contains all the necessary code. The core is the implementation of the -
resetCursorRects method, as follows:

- (void)resetCursorRects
{
 NSRect leftRect;
 NSRect rightRect;
 [self getLeftRect:&leftRect andRightRect:&rightRect];
 [self addCursorRect:leftRect cursor:[NSCursor pencilCursor]];
 [self addCursorRect:rightRect cursor:[NSCursor crossCursor]];
}

Nothing has to be done to invoke the -resetCursorRects method. It is invoked automatically by the Application
Kit at the right time. Just by providing an implementation of the method, the rectangles become active automatically. In
this implementation, the first method call is used to determine the actual two rectangles that are to be used; the latter two
method calls do all the important work.

The example class adds a few other features besides just cursor management. It draws the cursor images in the center of
the rectangles so the user knows at a glance which rectangle is which. Cursor rectangles are only active when the
window is the key window, so the view tests to see if its window is key. If not, then the cursor images won't be drawn.
By becoming the window's delegate, the view can be told of changes in the window's key status. This can be used to
trigger the view to redraw itself. This way, it is clear when the cursor rectangles are active and when they are not. The
sequence of screen shots in Figure 15.7 shows how the cursor changes as it moves from left to right across the view.

Figure 15.7. The cursor changes as it moves from left to right across the view.

The full code for this class, with all the features described previously, is shown as follows:

File CursorRectsView.h:

#import <Cocoa/Cocoa.h>

@interface MYCursorRectsView : NSView
{
}

- (void)getLeftRect:(NSRect *)leftRect andRightRect:(NSRect *)rightRect;

@end

File CursorRectsView.m:

#import "CursorRectsView.h"
#import "NSCursor+CustomCursors.h"

@implementation MYCursorRectsView

// Note that no special initialization is needed.

- (void)getLeftRect:(NSRect *)leftRect andRightRect:(NSRect *)rightRect
{
 // Split the view into two rectangles and then cause them to be inset by
20%.
 NSRect bds = [self bounds];
 float midX = bds.size.width / 2.0;
 float widthInset = midX * 0.20;
 float heightInset = bds.size.height * 0.20;

 *leftRect = NSMakeRect(0.0, 0.0, midX, bds.size.height);
 *rightRect = NSMakeRect(midX, 0.0, midX, bds.size.height);
 *leftRect = NSInsetRect(*leftRect, widthInset, heightInset);
 *rightRect = NSInsetRect(*rightRect, widthInset, heightInset);
}

- (void)drawRect:(NSRect)rect
{
 NSRect bds = [self bounds];
 NSRect leftRect;
 NSRect rightRect;
 BOOL windowIsKey = [[self window] isKeyWindow];

 [self getLeftRect:&leftRect andRightRect:&rightRect];

 // view is filled with white and has black border
 [[NSColor whiteColor] set];
 NSRectFill(bds);

 [[NSColor blackColor] set];
 NSFrameRect(bds);

 // left rectangle is red with pencil image in the middle
 [[NSColor redColor] set];
 NSFrameRect(leftRect);
 if (windowIsKey) {
 NSImage *leftImage = [[NSCursor pencilCursor] image];
 NSSize imageSize = [leftImage size];
 NSRect imageSrc = NSMakeRect(0.0, 0.0,
 imageSize.width, imageSize.height);
 NSPoint imageLoc = NSMakePoint(NSMidX(leftRect) -
 (NSWidth(imageSrc) / 2),
 NSMidY(leftRect) - (NSHeight(imageSrc) / 2));
 [leftImage drawAtPoint:imageLoc fromRect:imageSrc
 operation:NSCompositeSourceOver fraction:1.0];
 }

 // right rectangle is blue with crosshair image in the middle
 [[NSColor blueColor] set];
 NSFrameRect(rightRect);
 if (windowIsKey) {
 NSImage *rightImage = [[NSCursor crossCursor] image];
 NSSize imageSize = [rightImage size];
 NSRect imageSrc = NSMakeRect(0.0, 0.0,
 imageSize.width, imageSize.height);

 NSPoint imageLoc = NSMakePoint(NSMidX(rightRect) -
 (NSWidth(imageSrc) / 2),
 NSMidY(rightRect) - (NSHeight(imageSrc) / 2));
 [rightImage drawAtPoint:imageLoc fromRect:imageSrc
 operation:NSCompositeSourceOver fraction:1.0];
 }
}

- (void)resetCursorRects
{
 NSRect leftRect;
 NSRect rightRect;
 // set up the two rects' bounds as cursor rectangles
 [self getLeftRect:&leftRect andRightRect:&rightRect];
 [self addCursorRect:leftRect cursor:[NSCursor pencilCursor]];
 [self addCursorRect:rightRect cursor:[NSCursor crossCursor]];
}

// Use window delegate methods to detect gain or loss of key status.
// We want to draw or not draw the cursor images in the rects to reflect
// this status, so we need to know when it changes to force a redraw.

- (void)windowDidBecomeKey:(NSNotification *)notification
{
 [self setNeedsDisplay:YES];
}

- (void)windowDidResignKey:(NSNotification *)notification
{
 [self setNeedsDisplay:YES];
}

@end

Besides the -invalidateCursorRectsForView: method, the NSWindow class offers a few other methods for
working with cursor rectangles:

- (void)disableCursorRects
- (void)enableCursorRects
- (BOOL)areCursorRectsEnabled

The first method turns off Cocoa's automatic management of the cursor rectangles in a particular window, whereas the
second turns it back on. The last method allows the state of automatic cursor rectangle management to be determined. If
some special cursor management is being done, and the Application Kit is interfering too much, disabling automatic
management could help solve the problem.

There are two other methods, seen previously as NSView methods, which are also implemented by the NSWindow
class:

- (void)discardCursorRects
- (void)resetCursorRects

Neither of these methods are meant to be called directly. Instead, they exist so that a subclasser can override them.
Normally, the subclasser should call the super implementation at some point in their override.

It was mentioned in passing previously that an NSMatrix might need to set up cursor rectangles over some or all of the

cells that it is displaying. There is a predefined protocol for this, too. A developer only needs to worry about it when
they want to create an NSCell subclass that uses a cursor other than the arrow when the mouse is over it. The obvious
example is the NSTextFieldCell class, which uses this protocol to set up an I-beam cursor. Because cells are more
lightweight than views, they don't implement the -resetCursorRects method. Instead, the matrix sends this
method to every cell it is displaying:

- (void)resetCursorRect:(NSRect)cellFrame inView:(NSView *)controlView

When a cell gets this message, it sets up any necessary cursor rectangles. A typical implementation would be something
like this:

- (void)resetCursorRect:(NSRect)cellFrame inView:(NSView *)controlView
{
 [controlView addCursorRect:cellFrame cursor:myCustomCursor];
}

The cell's rectangle and the parent view are both sent as parameters to the method, so the only thing that needs to be
determined is which cursor is to be used. This method should never be called directly and is meant for subclassers only.
If an NSCell subclass doesn't need a special cursor, there is no need to include this method in the subclass.

There is one other programming interface of note in conjunction with cursor rectangles. An NSCursor class or
subclass can receive both the -mouseExited: and -mouseEntered: events if it has explicitly been told to do so.
The NSCursor methods relating to this are

- (void)setOnMouseExited:(BOOL)flag
- (BOOL)isSetOnMouseExited
- (void)mouseExited:(NSEvent *)theEvent
- (void)setOnMouseEntered:(BOOL)flag
- (BOOL)isSetOnMouseEntered
- (void)mouseEntered:(NSEvent *)theEvent

The methods that take NSEvent objects as arguments are not meant to be called directly; they are called automatically
by the Application Kit as long as they have been turned on. They are listed here so that subclassers can take advantage
of them. The other methods are for turning them on and off and determining whether or not they are on.

Book: Cocoa® Programming
Section: Chapter 15. Events and Cursors

Summary

Subclassing NSView to handle events and manage the cursor enables the creation of
complex views that accept user input. Application Kit classes such as NSControl,
NSScrollView, and NSSplitView extend NSView using the techniques described in
this chapter to provide the standard behaviors of Cocoa applications. After using Cocoa for
a while, programmers can often guess exactly how the various Application Kit subclasses
of NSView are implemented. The important realization is that there is no magic involved.

Views provide one of the most common ways to accept input from users. Another common
way users interact with programs is via menus. Chapter 16, "Menus," delves into menu
management, including the interaction of menu items and the responder chain.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 16. Menus

IN THIS CHAPTER

● Standard Menu Layouts
● NSMenu Class
● NSMenuItem Class
● Menu Validation
● Contextual Menus
● Dock Menus
● Deprecated Functionality

Menus are an important feature of Mac OS X. Beyond the familiar menu bar across the top
of a Macintosh's screen, there are also pop-up menus, pull-down menus, dock menus, and
contextual menus. The Aqua user interface defines specific layouts and conventions for all
menus in Mac OS X. Cocoa provides several facilities to make supporting the Aqua
guidelines easy for developers.

In a Cocoa application, the menu displayed in the menu bar at the top of the screen is
known as the main menu. It is composed of NSMenu and NSMenuItem objects. Both
classes are also reused by Cocoa to implement all the other kinds of menus. Therefore,
learning how to manipulate NSMenu and NSMenuItem objects enables a developer to
work with the main menu and all pop-up, pull-down, dock, and contextual menus.

This chapter briefly highlights some of the Aqua interface's guidelines with respect to
Cocoa, and then shows how to use the NSMenu and NSMenuItem classes. Menu
validation, the automatic enabling and disabling of menus, is also discussed. Finally,
contextual and dock menus are covered.

There are other Cocoa classes closely related to menus. One is NSPopUpButton, which
controls both pop-up and pull-down menus. NSPopUpButton is discussed in Chapter 10,
"Views and Controls." There are also the NSStatusBar and NSStatusItem classes,
which control the little icons some programs add to the right side of the menu bar at the top
of the screen. NSStatusBar and NSStatusItem are discussed in Chapter 18,
"Advanced Views and Controls." Because pop-ups and status items are typically used in
conjunction with NSMenu and NSMenuItem objects, the information in this chapter
supplements the information in Chapters 10 and 18.

Book: Cocoa® Programming
Section: Chapter 16. Menus

Standard Menu Layouts

The Aqua user interface guidelines specify a particular layout for an application's main
menu. They also offer suggestions for how menus should be organized. The guidelines also
offer suggestions for labeling menu items. Because this is a book about Cocoa and not
Aqua, not every menu guideline is covered in detail. Every developer should read the Aqua
guidelines at least once, however, to ensure that their menu layouts are consistent with
other Mac OS X applications. The Aqua guidelines can be found at /Developer/
Documentation/Essentials/ AquaHIGuidelines/AHIGMenus/index.
html on any Mac OS X machine with the developer tools installed.

Menu Support in Interface Builder

Interface Builder is designed to help developers follow the Aqua guidelines. A new .nib
for a Cocoa application contains a default main menu holding many of the menus and
menu items suggested by Aqua. The Cocoa-Menus palette also contains many of the
standard Aqua submenus. The Cocoa-Menus palette is shown as part of Figure 16.1. Also
shown is a .nib file that was created with Interface Builder's "Cocoa Application"
document type. The preconfigured main menu is also visible. Additionally, a new NSMenu
instance has been dragged into the .nib file.

Figure 16.1. Interface Builder's Cocoa-Menus palette.

Editing Menus with Interface Builder

For many programs, the main menu is built entirely in Interface Builder; no actual code is
involved. To do this, drag menu items, dividers, and submenus from the palette and drop
them onto an existing menu. The menu divider is the menu item on the palette without a
title. It is a special NSMenuItem instance that is used to add white space between other
menu items.

To rename an item, double-click it or change the title in the Attributes inspector (opened
with Cmd-1). Key equivalents can also be set in the Attributes inspector. Dividers cannot
have key equivalents, so these options are disabled when a divider is selected. Interface
Builder allows a divider's title to be changed, but doing so does not change the appearance
of the divider. (The Title text field ought to be disabled. A future revision of Interface
Builder may fix this.)

NOTE

The menu item's Attributes inspector doesn't have a switch for enabling or
disabling menu items. This is done dynamically by Cocoa. The "Menu
Validation" section of this chapter explains how to control enabling of menu
items.

To change the order of the items, drag them to the new location. Items can be removed
with the delete key or the Cut command. Menu items can also be copied and pasted. A
pasted item is inserted in the menu just after the currently selected item.

Menu Connections

The final step of configuring the menu is to create connections from the menu items to
objects in the application. Many menu commands are sent to the first responder object.
This will allow them to be retargeted to whichever object is currently the active selection.
For example, the Cut, Copy, and Paste commands, among others, are sent to the first
responder because they should always apply to the current selection.

If a menu item should always call the same object, a connection to that object should be
made. For example, the Quit item is usually configured to send a -terminate: message
to the File's Owner. (In the main .nib, the File's Owner is the application object.)

NOTE

Submenus dragged off the palette are actually a pair of objects: an
NSMenuItem with an associated NSMenu. The connection from the
NSMenuItem to the NSMenu causes the submenu to be displayed. This
connection is preconfigured on the palette and cannot be edited in Interface
Builder.

Creating New Menus

The Cocoa-Menus palette also has an empty NSMenu instance. To create a new menu, drag
this object from the palette into the .nib's document window. The menu is created and
opened on the screen, ready for editing. Double-click the instance to open the new menu
for editing if it isn't visible. Menus created this way are typically used for contextual and
dock menus, as described in the "Contextual Menus" and "Dock Menus" sections of this
chapter. They are edited just like the main menu, in the same manner as previously
described.

Menu Support in the Cocoa APIs

Everything that can be done with menus in Interface Builder can also be done using the
NSMenu and NSMenuItem classes. There are also several other features of menus that
can be performed only in code. All this functionality is covered in other sections of this

chapter. At the time of this writing, none of the following API features are exposed by
Interface Builder:

● Images in menu items (see "Configuring the Appearance" in the "NSMenuItem
Class" section)

● "Radio" groups of menu items (see "Configuring State" in the "NSMenuItem
Class" section)

● "Represented" objects (see "Configuring Identifiers" in the "NSMenuItem class"
section)

● Explicit enabling and disabling of menu items (see "Menu Validation" section)

Book: Cocoa® Programming
Section: Chapter 16. Menus

NSMenu Class

The NSMenu Class is the basis for all Cocoa menus. It manages a collection of NSMenuItem
instances. It also handles the management of a borderless window used to display the menu. Because
the NSMenu object acts as a collection containing several menu items, most of its methods are for
manipulating a list of menu items. Aside from variations in the names, these methods are very similar to
the methods defined by NSMutableArray.

NOTE

Because both the NSMenu and the NSMenuItem classes are nearly always used together,
this section explains the NSMenu methods but does not provide specific code examples.
Instead, the "NSMenuItem Class" section later in this chapter provides example code
showing how both classes are used. You need to first learn how both objects work before
trying to write code using them.

Creating an NSMenu

An NSMenu instance, like any other object, is created with +alloc. The designated initializer is -
initWithTitle:. The title should be an NSString. Submenus are opened by NSMenuItem
objects, so the title of an NSMenu destined to become a submenu should always match the title of the
NSMenuItem that opens it. The -title method can be used to determine the title of an existing
menu object.

Adding Items to an NSMenu

A newly created and initialized menu object contains no menu items. Items must be added to make the
menu useful. There are two basic approaches to adding menu items. The simplest is to let the NSMenu
create the items. Alternatively, a developer can create the NSMenuItem instances, and then add them
to the menu. The latter approach is more flexible, but requires more code.

To have the menu object create the items, use one of these two methods:

- (id <NSMenuItem>)insertItemWithTitle:(NSString *)aString
 action:(SEL)aSelector keyEquivalent:(NSString *)charCode
 atIndex:(int)index;

- (id <NSMenuItem>)addItemWithTitle:(NSString *)aString
 action:(SEL)aSelector keyEquivalent:(NSString *)charCode;

The -insertItemWithTitle:action:keyEquivalent:atIndex: method will insert an
item before the item currently at the index provided to the method. The -addItemWithTitle:

action:keyEquivalent: method will append the item to the end of the menu. Both methods
require a title, action, and key equivalent to be defined. The title can be any NSString.

The action is an Objective-C selector that will be invoked when the item is selected. Note that there is
no parameter for the target. The target will be set to nil, which means the action message for a menu
item created with one of these two methods will be sent to the first responder. To set an explicit target,
it is necessary to create the menu item, and then add it to the menu.

The key equivalent should be an NSString containing the key equivalent. There is no way to set
specific keyboard modifier flags using these methods. To set equivalents that use the option or control
keys, it is necessary to create the menu item, and then add it to the menu. For an item without a key
equivalent, do not pass nil as the charCode. Instead, use an empty string such as @"". Passing nil
causes an exception to be raised.

If a menu item has already been created and configured, it can simply be added to the menu. The
methods to do so are simpler because they don't take arguments required to create a new menu item:

- (void)insertItem:(id <NSMenuItem>)newItem atIndex:(int)index;
- (void)addItem:(id <NSMenuItem>)newItem;

Just as before, inserting an item places it in the middle of the menu as specified by the index
argument, while adding an item puts it at the end of the menu.

Removing Items from an NSMenu

There are two ways to remove a menu item. The -removeItemAtIndex: method is most
commonly used. It removes the item at the specified index. Be careful to use a valid index. The -
numberOfItems method can be used to determine how many items are in the menu. Alternatively, if
an actual NSMenuItem instance is available, the -removeItem: method can be used. For any
change to the menu to occur the item passed as an argument should be a menu item that is actually in
the menu receiving the message.

Finding Items in an NSMenu

One of the most common operations performed with an NSMenu is to retrieve one of its menu items.
This makes sense because all the details of a menu's behavior are actually found in the individual items.
Because there are so many ways to identify a menu item, there is a long list of methods for looking up
either an item or its index in the menu:

- (int)indexOfItem:(id <NSMenuItem>)index;
- (int)indexOfItemWithTitle:(NSString *)aTitle;
- (int)indexOfItemWithTag:(int)aTag;
- (int)indexOfItemWithRepresentedObject:(id)object;
- (int)indexOfItemWithSubmenu:(NSMenu *)submenu;
- (int)indexOfItemWithTarget:(id)target andAction:(SEL)
actionSelector;
- (id <NSMenuItem>)itemAtIndex:(int)index;
- (id <NSMenuItem>)itemWithTitle:(NSString *)aTitle;

- (id <NSMenuItem>)itemWithTag:(int)tag;

To find a menu item, use the method that matches the information available about the desired item. For
example, if the menu item's tag is known, use -itemWithTag: or -indexOfItemWithTag:.
Items can be searched based on title, tag, represented object, attached submenu, or target/action.

These methods return either the first item that matches the criteria or the index of the first item that
matches. Because only one item or index is returned, but there might be multiple items that match the
criteria, care should be taken to use a search criteria that can uniquely identify a particular menu item.
For example, if many menu items use the same target/action pair, searching by tag is more likely to
uniquely identify a menu item than would searching by target/action pair. This assumes that the menu's
items were given unique tags when the menu was created, however.

Because there are fewer methods returning an actual NSMenuItem, it is common to combine one of
the -indexOf methods with the -itemAtIndex: method. For example, because there is no -
itemWithSubmenu: method, this code would do what is intended:

NSMenuItem * theItem = [myMenu itemAtIndex:
 [myMenu indexOfItemWithSubmenu:theSubmenu]];

Finally, there are two methods that are useful for developers wanting to inspect more than one menu
item. The -numberOfItems method returns the number of items that the menu actually contains.
The -itemArray method returns an immutable array containing all the menu's NSMenuItem
objects. The items in the array will be in the same order that they are found in the menu itself, so object
indexes from the array will match the indexes returned by the previous methods and can be used to
determine insert locations for new menu items. Because the array is immutable, the NSMenu methods
still need to be called to change the order of items or add or remove them.

NSMenu Notifications

Two groups of notifications are sent by NSMenu instances.

Whenever a menu item is selected, there is a notification both before and after the action has been sent.
The notifications are named NSMenuWillSendActionNotification and
NSMenuDidSendActionNotification, respectively. The most common use of these
notifications is by loadable bundles. Objects in the bundle can register for these notifications as a way
to be informed of events happening inside the parent application. This is especially useful if the
application's bundle API doesn't offer all the desired notifications.

Both of these notifications include an NSDictionary as the notification's userInfo object. The
dictionary contains a single key, @"NSMenuItem", which returns the NSMenuItem that has been
selected. The actual action in question can be retrieved from this menu item.

The other type of notification from NSMenu objects is to announce changes to the menu. If an item is
added to a menu, the NSMenuDidAddItemNotification notification is sent. The
NSMenuDidRemoveItemNotification notification is sent when an object is removed and the
NSMenuDidChangeItemNotification notification is sent when an item is changed. This
includes changes in state, title, and enabling or disabling of the item.

All three of these change notifications include an NSDictionary as the notification's userInfo
object. The dictionary contains a single key, @"NSMenuItemIndex", which returns an NSNumber
containing the index of the item affected. This is necessary to determine which menu item was actually
added, removed, or changed.

Other NSMenu Methods

The NSMenu class defines a few other methods. These methods can be used to manage submenus and
supermenus or perform key equivalents and actions. To attach a submenu to a menu item, use the -
setSubmenu:forItem: method. Alternatively, the NSMenuItem method -setSubMenu: can
be used before the item is added to an NSMenu.

Sometimes it is useful to know if an NSMenu has a supermenu. If an NSMenu is the submenu of
another menu, that other menu is the supermenu. The -supermenu method returns the menu that is
one level above the receiver. If the receiver isn't a submenu, -supermenu returns nil. When a menu
becomes a submenu of another menu, the -setSupermenu: method is called. Developers should
never call this method, but they can override it in a subclass. For example, this is a good way to find out
if a menu has become a submenu.

To make an NSMenu perform a key equivalent or action, use either -performKeyEquivalent: or
-performActionForItemAtIndex:, respectively. Key equivalents should be specified as
NSEvent objects so that both the key and the modifier flags are available. Note that performing an
action programmatically still causes the NSMenuWillSendActionNotification and
NSMenuDidSendActionNotification notifications to be sent.

Book: Cocoa® Programming
Section: Chapter 16. Menus

NSMenuItem Class

The NSMenuItem class contains all the information relating to a specific menu item. Several attributes, which are
shown in Table 16.1, are common to all menu items.

Table 16.1. Menu Item Properties

Menu Item Property Purpose

title The text displayed on the item, such as Cut. An NSString object.

image An optional NSImagethat is displayed to the left of the menu item's title.

key equivalent The key that can be used in conjunction with the Cmd key to activate the item from the
keyboard. (Cmd-C for Cut) An NSStringobject.

target The target object that will receive a message when the item is chosen. Often, this is nil,
which sends the message to the first responder.

action The Objective-C selector for the action message to be sent when the menu item is chosen.

state The menu item's state, one of NSOffState, NSOnState, or NSMixedState.

tag An integer that can be used to identify a menu item.

represented object An object that can be used to identify a menu item. It can be any object.

menu The submenu attached to this item, if any. An NSMenu instance.

Most of the work done to set up a menu programmatically is in creating and configuring NSMenuItem instances.

Creating an NSMenuItem

Like most objects, an NSMenuItem is created by using +alloc and -init. To set the title, action, and key
equivalent at the same time the object is being initialized, another initialization method is provided:

- (id)initWithTitle:(NSString *)aString action:(SEL)aSelector
 keyEquivalent:(NSString *)charCode;

When using this method, be sure to always pass in valid string objects for aString and charCode, even if they
are empty. Never use nil. It is acceptable for aSelector to be NULL, but be aware that doing so renders the
menu item invalid and permanently disabled until a proper action is set.

This method doesn't allow the item's target to be set. Nor does it allow any key modifiers to be set in conjunction
with the key equivalent. Because of this, it is likely that the new menu item will still require additional
configuration.

To obtain a separator item, use the +separatorItem method. Don't use the methods above for separators.

Configuring an NSMenuItem

There are accessor and -set methods for each of the properties in Table 16.1. They allow a menu's appearance,
key equivalents, target, action, state, and more to be inspected and configured.

Configuring the Appearance

The title and image properties affect the visual look of the menu item. The methods for changing the title and image
a menu item are -setTitle: and -setImage:, respectively. An item's title and image can be retrieved with -
title and -image. The title is an NSString, whereas the image is an NSImage. If a menu item lacks a title
and an image, it might be a separator, but not necessarily. Use the -isSeparatorItem method to make sure.

Some menu items also display state, such as check marks and dashes. See the "Configuring State" section later in
this chapter for information on setting state and controlling how it is displayed.

Configuring Key Equivalents

Key equivalents are set with a pair of methods, -setKeyEquivalent: and -
setKeyEquivalentModifierMask:. The first sets the key and the other sets the modifier mask. Four
constants can be used in a bitwise-or combination as the arguments for -
setKeyEquivalentModifierMask:. The constants are NSCommandKeyMask, NSAlternateKeyMask,
NSShiftKeyMask, and NSControlKeyMask. Note that Alternate and Option are the same key. Cmd and
Apple are also the same key.

For example, to have the key equivalent be Cmd-Option-Y, the key is "Y" even though an Option-Y produces a yen
symbol on most keyboards. Because all menu items should require the command key to be used, this example
requires both option and command to be specified. The following code would be used to configure a menu item to
accept Cmd-Option-Y as its key equivalent:

[myMenuItem setKeyEquivalent:@"y"];
[myMenuItem setKeyEquivalentModifierMask:
 (NSCommandKeyMask|NSAlternateKeyMask)];

To change this example to use Cmd-Shift-Option-Y, you would think that simply adding NSShiftKeyMask to
the bitwise-or would be correct. It is not. Instead, the key equivalent is capitalized, as follows:

[myMenuItem setKeyEquivalent:@"Y"];
[myMenuItem setKeyEquivalentModifierMask:
 (NSCommandKeyMask|NSAlternateKeyMask)];

The NSShiftKeyMask constant is only used in conjunction with special keys, such as the F1 and F2 function
keys, and navigation keys like Page Up, Home, and arrow keys. It is not used for letters or symbols painted on the

key caps. As another example, use @"#" as the key equivalent instead of using @"3" with the NSShiftKeyMask
set.

To see what the current key equivalent is, use the -keyEquivalent method. The -
keyEquivalentModifierMask method returns the associated modifier flags.

Configuring Target and Action

Just like an NSControl subclass, the target and action are set with the -setTarget: and -setAction:
methods. They can be retrieved with the -target and -action methods. As always, if the target is set to nil,
the action is sent down the responder chain, starting with the first responder. If the action is set to NULL, the menu
item remains disabled until a proper action has been set.

Configuring State

Some menu items show state. For example, a Bold menu item might show a check mark when the current selection
is all bold text. That's an on state. If some of the selection is bold, but not all of it, a dash would be displayed to
signify a mixed state. When none of the text is in boldface, that state display area on the menu item is blank,
meaning off.

To set the state of a menu item, use the -setState: method. The argument should be NSOffState,
NSOnState, or NSMixedState. The -state method returns the current state. Usually, a menu item's state is
updated during menu validation. See the "Menu Validation" section later in this chapter for more information.

There are methods that can be used to change and retrieve the images used by an item to signal each of the three
states. By default, a check mark is used for "on," a horizontal dash is used for "mixed," and a blank image is used
for "off." The methods to manipulate these images are

- (void)setOnStateImage:(NSImage *)image;
- (NSImage *)onStateImage;
- (void)setMixedStateImage:(NSImage *)image;
- (NSImage *)mixedStateImage;
- (void)setOffStateImage:(NSImage *)image;
- (NSImage *)offStateImage;

Although these methods are available, they should be used sparingly. Using them is likely to lead to applications
that violate Aqua's user interface guidelines.

Configuring Identifiers

All menu items offer two extra properties. Both are invisible to the user and are meant to have significance to
developers only. Cocoa ignores them. The first is the tag. Like controls, menu items can have integer tags. If the
tags assigned to the items are unique, each item can be distinguished by its tag. Tags are manipulated with the -
setTag: and -tag methods.

For menu items, it is sometimes useful to be able to store more than a tag. For example, it might be useful to
associate a color object with each menu item in a pop-up list of colors. To do this, NSMenuItem objects allow a
represented object to be tracked. The represented object is an object that is represented by the menu item, usually a
one-to-one mapping. In the color example, the represented objects would all be NSColor instances.

The methods to manipulate a represented object are -setRepresentedObject: and -
representedObject. A represented object can be literally anything. For example, NSString keys, full-file
paths, colors, and window objects could all be good choices for some situations.

Configuring a Submenu

Some menu items have submenus attached to them. Use -hasSubmenu to determine if this is the case. If there is a
submenu, -submenu will return it.

To set a submenu for an NSMenuItem, use the -setSubmenu: method. Pass it an NSMenu instance. It is
considered good form to make sure that the submenu and the menu item it is attached to both have the same title.

When a submenu is attached to an NSMenuItem, the menu item's target will become the submenu. The action sent
to the submenu is always -submenuAction:. The supermenu of an NSMenu will be set automatically as well.
Be aware that if a menu item previously had a different target and/or action, the original target and action will be
lost when a submenu is assigned.

NOTE

The NSMenu action method -submenuAction: causes the menu to be validated, and then to be
displayed in the correct place on the screen. When a user selects a menu item with a submenu, this
action is what makes the submenu appear onscreen. This action should be invoked only by the menu
item that opens the submenu. It should never be invoked directly, but it can be overridden.

The DynamicMenu Example

The DynamicMenu example on the www.cocoaprogramming.net Web site demonstrates four different things. The
interface is shown in Figure 16.2.

Figure 16.2. The user interface of the DynamicMenu example.

It can walk through its main menu and dump information about every menu item to the console. It can also add a
new submenu to the File menu when the user clicks a button. It then allows the user to add arbitrary items to the
new menu. The third demonstration is of adding items to a pop-up list. It is a list of colors, so images are used in the

http://www.cocoaprogramming.net/

menu items to display swatches of color. The last demonstration is of menu validation. The first three parts of this
example are described in this section, whereas the validation is discussed in the "Menu Validation" section later in
this chapter.

Only code excerpts are shown in the description of this example. The whole example should be downloaded from
the book's Web site at www.cocoaprogramming.net.

Walking Through the Main Menu

Walking through the main menu is remarkably simple. The example code defines the method -walkMenu:
withIndent: to walk through one NSMenu. An enumerator is used to pass over each item in the menu. It calls
itself recursively for every submenu found in the menu it is processing. This touches every menu item in the main
menu. An NSLog() call is made to dump information about each item to the console. The code for this method
and an action method to kick off the process are shown here:

- (IBAction)walkMainMenu:(id)sender
{
 [self walkMenu:[NSApp mainMenu] withIndent:@""];
}

- (void)walkMenu:(NSMenu *)menu withIndent:(NSString *)indentString
{
 NSArray *items = [menu itemArray];
 NSEnumerator *enumerator = [items objectEnumerator];
 id item = [enumerator nextObject];
 while (item) {
 BOOL hasSubmenu = [item hasSubmenu];
 NSLog(@"%@%@ 0x%08x: \"%@\" tag: %d action: %@ target: 0x%08x",
 indentString, (hasSubmenu ? @"Menu" : @"Item"), item,
 [item title], [item tag], NSStringFromSelector([item
action]),
 [item target]);
 if (hasSubmenu) {
 [self walkMenu:[item submenu]
 withIndent:[NSString stringWithFormat:@"%@ ",
 indentString]];
 }
 item = [enumerator nextObject];
 }
}

Adding a Submenu

Adding a submenu to the File menu involves several steps and is more complex than simply walking the main
menu. Both an NSMenu and an NSMenuItem need to be created in which the menu is set as the menu item's
submenu. Next, the location where they are to be inserted needs to be determined. Finally, the new menu item needs
to be inserted.

In the following code, this order is followed. The while() loop is used to find the File menu's Revert item. The
action method is used to determine which menu item is the Revert item, just in case the title has been localized. The
new submenu will be added after that item along with a separator. The new item and the separator are both inserted
at the same index. This means that the separator will appear in the menu above the new submenu.

- (IBAction)addSubmenu:(id)sender

http://www.cocoaprogramming.net/

{
 NSMenuItem *newItem;
 NSMenu *newMenu;
 NSEnumerator *enumerator = nil;
 id item;
 NSMenu *fileMenu = [[[NSApp mainMenu] itemAtIndex:1] submenu];
 NSMenuItem *revertItem = nil;
 int insertIndex = 0;

 newItem = [[NSMenuItem alloc] init];
 newMenu = [[NSMenu alloc] initWithTitle:NewMenuName];
 [newItem setTitle:NewMenuName];
 [newItem setSubmenu:newMenu];
 enumerator = [[fileMenu itemArray] objectEnumerator];
 while ((!revertItem) && (item = [enumerator nextObject])) {
 if ([item action] == @selector(revertDocumentToSaved:)) {
 revertItem = item;
 insertIndex = [fileMenu indexOfItem:revertItem] + 1;
 }
 }
 [fileMenu insertItem:newItem atIndex:insertIndex];
 [fileMenu insertItem:[NSMenuItem separatorItem] atIndex:insertIndex];
 [newItem release];
}

Manipulating a Pop-Up List

The DynamicMenu application has a pop-up list with items representing colors. Users can choose a color, name it,
and add it to the pop-up list. When a new item is chosen from the list, the associated color and name are copied into
a noneditable color well and text field, respectively. Because NSPopUpButton objects use NSMenu instances
internally, the implementation of this functionality exercises the NSMenu and NSMenuItem methods described in
this chapter. To show a swatch of color on each item in the list, an NSImage is created and used as the image for
the associated menu item.

The method that adds an item to the pop-up list is -addPopUpColor:name:. The first thing it does is to create a
small NSImage to be used as the menu item's image. Large images will not be scaled to fit well into the pop-up's
button when the menu is not being displayed. A size of 12.0 square seems to fit well and vertically centers nicely on
the button. After creating the image, it is filled with the color.

Because of the way NSPopUpButton works, it is best to let it create any new items. The -
addItemWithTitle: method creates a new NSMenuItem, sets its title accordingly, and adds it to the list.
Because additional configuration is needed, it is necessary to retrieve the menu item from the list. Seemingly
against all the other advice in this chapter, it is obtained using the -itemWithTitle: method. In this case, it is
acceptable because the exact title is known. Having just created the menu item, the code can safely and uniquely
identify the menu item with the title that was used when the item was created.

After the new menu item is obtained, final configuration is done. A new, unique tag is set. All further manipulation
of the menu item will be done using the tag, not the title. Finally, the image is added to the menu item. After the
image has been added, it must be released to avoid a memory leak. The menu item will retain it.

Here is the code to implement the -addPopUpColor:name: method:

- (void)addPopUpColor:(NSColor *)theColor name:(NSString *)theColorName
{

 NSMenuItem *theItem;
 NSImage *swatch = [[NSImage alloc] initWithSize:
 NSMakeSize(12.0, 12.0)];
 NSNumber *tagKey = [NSNumber numberWithInt:nextTag];

 [swatch lockFocus];
 [theColor set];
 NSRectFill(NSMakeRect(0.0, 0.0, 12.0, 12.0));
 [swatch unlockFocus];
 [colorPopUp addItemWithTitle:theColorName];
 theItem = [colorPopUp itemWithTitle:theColorName];
 [theItem setTag:nextTag];
 nextTag++;
 [theItem setImage:swatch];
 [swatch release];
}

Book: Cocoa® Programming
Section: Chapter 16. Menus

Menu Validation

Enabling and disabling menu items is done automatically by Cocoa. A menu item will be disabled
automatically if it has no action assigned or its target doesn't respond to its action. In the case of a nil target,
the responder chain is queried to see if there is an object that can respond to the action. If not, the menu item
will be disabled. In many cases, this is all that needs to be done, and there is nothing required of developers to
make it happen. Menu items will be enabled and disabled automatically as selections change.

For menu items that do not send actions to the first responder, however, further validation might be required.
Sending a particular message to an object might not make sense when the object is in a certain state. For
example, a -togglePause: action sent to a controller object in a game doesn't make much sense if a game
isn't in progress. In cases where a menu item's target does respond to an action, the target is offered an
opportunity to validate whether it is willing to receive the action. If not, the menu item will be disabled.

Implementing the -validateMenuItem: Method

To perform this validation, the NSMenuItem sends a -validateMenuItem: message to its target before
its enclosing NSMenu appears onscreen, or just before dispatching an action invoked by a key equivalent.
According to the return value of that message, the item will be enabled or disabled accordingly. If a target
doesn't implement the -validateMenuItem: message, then the menu item doesn't send the message. In
this case the menu item defaults to an enabled state. This is very much like delegation. The difference is that
NSMenuItem objects do not have delegates, so the message is instead being sent to the target object.

For the previous pause game example, the controller object would implement the method something like this:

- (BOOL)validateMenuItem:(id <NSMenuItem>)menuItem
{
 SEL theAction = [menuItem action];
 if (theAction == @selector(togglePause:)) {
 return (gameIsRunning ? YES : NO);
 }
 return YES; // we'll assume all else is OK, which should be the
default
}

The DynamicMenu example on the www.cocoaprogramming.net Web site shows a similar example with three
switches in a window being used to enable or disable three different menu items. The most important thing to
do is to correctly determine which menu item is being validated. All menu items connected to this object are
validated through this method. There are many ways to tell which menu item is being validated. Examining the
item's action, tag, or represented object is the best approach.

Doing a string comparison against the menu item's title is the one approach that should be avoided at all costs.
Because localizations of an application could cause titles to be different from what is expected, comparing titles
is prone to failure. Unfortunately, the most obvious example of validation in Apple's documentation compares
titles. Again, do not do this! It is the most common beginner mistake related to menu item validation. Most
Cocoa experts usually compare actions, but tags and represented objects exist just for this purpose and will
work fine.

http://www.cocoaprogramming.net/

If tags are compared, a C switch statement can be used. If actions are compared, a series of if-then
statements are needed instead. The downside to using tags is that it is easy to forget to set a tag properly in
Interface Builder. On the other hand, Interface Builder visually flags menu items that don't have an action set,
so developers are much less likely to forget to connect it to something. Represented objects are sometimes a
good choice, but configuring them always requires extra code, which can be cumbersome. That's why Cocoa
experts tend to gravitate towards checking the action. It is the least error prone method, and also the easiest to
set up in Interface Builder.

NOTE

The -validateMenuItem: method implementation is also an excellent place to update the
state of any menu items that display state such as check marks and dashes.

Disabling Automatic Validation

If automatic menu validation doesn't behave as needed, it is possible to turn it off for a given menu. Use -
setAutoenablesItems: with a YES or NO argument to turn it on or off. By default, it is set to YES of
course. If validation is turned off, it becomes the programmer's responsibility to enable or disable all items in
the menu manually using each item's -setEnabled: method. In nearly all cases, this should be avoided
because it is cumbersome and does not offer much, if any, improvement over the automatic system.

The NSMenu method -autoenablesItems can be used to see if validation is enabled for a particular
menu. The NSMenuItem method -isEnabled can be used to see if a given item is enabled or not.

Sometimes, rather than disabling automatic validation, it is better to force a menu to update its state
dynamically. If a menu has become stale while it is open, sending -update to it will cause it to revalidate all
its menu items. This might happen, for example, if a thread finishes while a menu is open. If the menu
contained a -stop: action, clearly the action should be disabled as soon as the thread completes. The
notification signaling completion of the thread could send an -update to the menu to make sure that the
menu correctly reflects the status of the application. For more about threads, see Chapter 24, "Subprocesses and
Threads."

Book: Cocoa® Programming
Section: Chapter 16. Menus

Contextual Menus

In addition to an application's main menu, Cocoa supports contextual menus. A contextual
menu is a menu that pops up when the user Control-clicks on a user interface object. The
menu changes depending on the item clicked. The idea is to offer a menu of commands that
are available for that particular user interface item. For example, clicking the document
area of the TextEdit application opens a menu similar to the one shown in Figure 16.3.

Figure 16.3. A contextual menu in TextEdit.

Contextual menus are defined on a per-view basis. There are three places that a contextual
menu can be defined.

With the lowest priority, is the NSView class method +defaultMenu. This method
should return an NSMenu to be used for any views not implementing one of the other
techniques. It enables a particular menu to be used for every instance of a class. The default
implementation in the NSView class returns nil. To change this behavior, override
+defaultMenu in your custom NSView subclasses.

To change the menu on a per-instance basis and override the default menu for the class, an
NSMenu can be set for a given view with the -setMenu: method. The -menu method
returns the view's contextual menu. If no menu has been set for the view, -menu returns
whatever is returned by +defaultMenu.

For more complex views, the contextual menu might need to change depending on where
the user has clicked. For example, a vector drawing program might need to present a
different menu depending on the type of object under the mouse. To do this, the -
menuForEvent: method should be overridden. This method is passed an NSEvent
object with the details of the event that is causing the contextual menu to open. The event
object can be used to determine the location of interest. An appropriate NSMenu instance
or nil should be returned. The default implementation returns whatever the -menu
method returns. The implementation of -menuForEvent: is quite straightforward, so no
example is shown here.

Book: Cocoa® Programming
Section: Chapter 16. Menus

Dock Menus

All Cocoa applications have dock menus. When the application's icon in the dock is
Control-clicked, the dock menu is shown. The default dock menu shows a list of all the
application's open windows, a Show In Finder command, and a Quit command. If a
window item is chosen, that window will be brought forward. In addition, the application
will be activated if it isn't already the active application. Figure 16.4 shows an example of a
dock menu taken from the TextEdit application.

Figure 16.4. The dock menu for TextEdit.

It is easy to add additional items to the dock menu. Removing the default items, however,
is not possible. There are two ways to extend an application's dock menu. The first is done
with only Project Builder and Interface Builder. The second involves writing some code in
the application's delegate object.

Extending the Dock Menu Without Code

This is the easiest way to extend an application's dock menu. Start in Interface Builder by
creating a new .nib file, and choose Empty under Cocoa when creating it. Save it
immediately with an appropriate name, such as DockMenu. Be sure it is added to the

project. Next, change the class of the file's owner to NSApplication or whatever class
is being used as the application object. If a class other than NSApplication is desired,
the class headers will need to be added to the .nib first, of course.

Drag an NSMenu object off the Cocoa-Menus palette and drop it into the .nib file. Drag a
connection from the application object (file's owner) to the menu and make the connection
to the dockMenu outlet.

Add menu items and submenus from the palette as desired. The next step is to hook up
each menu item to an appropriate action. The dock menu's items cannot be connected to the
first responder. Dock menus are not allowed to have nil-targeted actions, which means no
messages can be sent to the .nib file's first responder. Because the only object in the .
nib file other than the menu is the file's owner (the application object), it might be
necessary to create a "helper" object to forward messages from the dock menu to their
desired targets.

NOTE

The dock menu cannot have nil targets. This is the case because the dock
menu is actually running as part of the Dock application. It sends its
messages, over a Distributed Objects connection, to its corresponding
application. Because DO needs to have an explicit target, the menu items
must be wired up to a real object instead of the first responder. See the Helper
Objects sidebar for ways to work around this.

The final step in configuring the dock menu is to tell the application where to find the
menu. This is done in Project Builder by adding a key to Info.plist. Go to the
application target, select the Application Settings tab, and select the Expert button. Click
New Sibling and name the new key AppleDockMenu. Set the value of the key to be the
name of the .nib file minus the extension. For example, if the .nib is called
DockMenu.nib, the key's value should be DockMenu.

The DockMenu example on the book's Web site (www.cocoaprogramming.net) shows an
application configured with a dock menu .nib. It adds a menu item to the dock menu that
opens the application's About panel.

http://www.cocoaprogramming.net/

HELPER OBJECTS

Creating a helper object to be the target of a dock menu's menu items can solve
two problems at once. Dock menus in their own .nib files can't be connected
directly to other objects in the application. Also, there is no way to send a
message to the first responder because nil targets are not allowed. The helper
object is an object that is instantiated inside the dock menu's .nib file. It is the
target for all dock menu items and will then forward the actions on to other
objects in the application. Although it won't have direct connections to
application objects inside the .nib, it can query NSAppor its delegate to
find the objects with which it communicates. This object can also dispatch
appropriate messages to the first responder and down the responder chain. This
starts by asking NSApp for the -keyWindow. Windows respond to -
firstResponder.

Extending the Dock Menu with a Delegate

The other way to add items to an application's dock menu is through the application
object's delegate. The application's delegate object simply implements the -
applicationDockMenu: method so that it returns a preconfigured NSMenu instance.
Every time the user requests a dock menu, this method is called. This is by far the most
flexible option because the menu that is returned from the method can be reconfigured
dynamically before it is displayed.

The DockMenu example implements this method so that the user can choose which of two
menus should be shown when the dock menu is called up. The implementation is simple. It
checks the setting of a radio button to determine which menu to show. If the radio button is
set to show the menu from the .nib file, nil is returned. Returning nil signals the
application to use the default dock menu, as described previously.

- (NSMenu *)applicationDockMenu:(NSApplication *)sender
{
 if ([[menuRadio selectedCell] tag] == 0) {
 return nil;
 }
 return dockMenu;
}

Returning an NSMenu as shown in this code causes that menu to override any menus set
previously with .nib files and Info.plist keys. A more realistic implementation
would dynamically create a menu that reflects the application's current state and return it.

Book: Cocoa® Programming
Section: Chapter 16. Menus

Deprecated Functionality

When perusing the Cocoa reference and Application Kit headers, you are bound to
discover some classes and methods not discussed in this chapter. Most of them have not
been covered because they have become obsolete. With so many obsolete classes,
protocols, and methods, it is useful to at least list them here so that they don't confuse new
developers. It is important to know what can safely be ignored!

For example, prior to Aqua, each NSMenu had an associated NSMenuView object to lay
out and draw the menu. Each NSMenuItem had an NSMenuItemCell object to render
the menu item. The present version of Mac OS X uses Carbon functions to render menus,
so Cocoa no longer uses the NSMenuView and NSMenuItemCell classes.

Although the documentation and headers for NSMenuView and NSMenuItemCell
remain, neither class should be used. The "How Menus Work" documentation is also out of
date. It still refers to the NSMenuView and NSMenuItemCell classes, even though they
are no longer used.

For a while Cocoa didn't specify the NSMenuItem class and instead used an
NSMenuItem protocol. The protocol still exists and is used throughout the Cocoa headers,
but it is now deprecated in favor of the NSMenuItem class. References to the protocol
should be avoided. Only the class should be used in new code.

Cocoa also supports the concept of tear-off menus. A submenu could be dragged off of the
title bar and left on the screen indefinitely. A torn off menu has a close button and floats
above all other windows on the screen. Users would typically use it like a palette of options
or utility panel. With the move to the underlying Carbon menu functions, this functionality
has been lost. There are several methods for dealing with tear off menus that are not
discussed in this chapter. Apple has not explicitly marked them as deprecated, but they
should be avoided as long as Mac OS X lacks support for this feature.

Apple documentation also makes a few suggestions that developers should use to make
their applications "friendly" to tear-off menus. The most important is that additions to the
main menu that can be made during the "will finish launching" notification should be made
there instead of at a later time. It is wise to follow this as long as it will not alter the
behavior of current code. It will ensure that the code continues to function correctly should
Apple return this feature to Mac OS X in the future.

A final feature supported by Cocoa, but missing in Mac OS X, is the capability for users to
define preferred key equivalents in Preferences. These preferred equivalents override the
settings in the menu items, whether they were set in .nib files or programmatically. When

set, these user-preferred key equivalents are consistent across all Cocoa applications.
However, Carbon applications cannot have their key equivalents so easily overridden. As a
result, this functionality is disabled in Cocoa. Having only some applications support this
feature while others do not would lead to a large amount of user confusion. The
NSMenuItem methods referring to user key equivalents should be ignored unless this
functionality returns to Mac OS X. Like tear-off menus, these methods are not yet
deprecated, so they may again be significant someday.

Book: Cocoa® Programming
Section: Chapter 16. Menus

Summary

This chapter discussed the details of working with menus in Cocoa. The main menu, pop-
up menus, pull-down menus, contextual menus, and the dock menu were described. The
NSMenu and NSMenuItem classes were explained in depth, and the role of the responder
chain in handling menu actions and validation was covered. Creating menus in Interface
Builder and programmatically was also explained.

The next chapter explains how to use color with Cocoa. Cocoa provides a standard color
selection panel and color well user interface widget. Cocoa also offers the NSColor class
and a color list object, which together provide a rich set of functionality for manipulating
colors.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 17. Color

IN THIS CHAPTER

● NSColor Class
● Color Wells
● Color Panels
● Customizing the Color Panel
● NSColorList Class

Most applications have some use for color, whether as part of a document or to highlight
certain information. Cocoa supplies a fairly rich set of color creation and management
classes. This chapter explores the basic color storage object, NSColor, the associated
color list management class, NSColorList, and user interface items associated with
color, NSColorPanel and NSColorWell.

Book: Cocoa® Programming
Section: Chapter 17. Color

NSColor Class

The NSColor class is the public interface to a class cluster that encompasses the concept of a color in Cocoa. It is an
immutable class, meaning a new instance can be created, but it is not possible to modify the contents of an existing
NSColor instance.

An NSColor instance represents a unique location in a color space. The most common color space when dealing with
computer displays is RGB (red, green, blue), whereas in printing CMYK (cyan, magenta, yellow, black) is the standard.

The location components of an NSColor are float values between 0.0 and 1.0. For example, in RGB color space,
0.0,1.0,0.0 would represent a pure green.

Each color can also have a transparency level associated with it, referred to as an alpha value. An alpha value of 1.0 is
completely opaque, whereas an alpha value of 0.0 is completely clear. Alpha transparency is very useful when
combined with the available drawing modes in Cocoa.

Colors can be device-dependent or device-independent. In Cocoa, device-independent colors are referred to as
calibrated colors. Calibrated colors should display the same on any monitor or printer, provided that they have
appropriate ColorSync entries. Device-dependent colors aren't guaranteed to look the same on another device as they
do on the one on which they were created.

Another type of color space supported by Cocoa is a named color space, which is a simple list of color values indexed
by name. These usually correspond to some real-world color; for example specific ink, thread, or paint colors. Color
lists can be useful for keeping a set of application-specific colors in a configurable file rather than in code.

An NSColor can also be defined as a repeated image. This enables the implementation of complex patterns when
used in conjunction with NSImage instances that use varied alpha transparency. Colors of this type reside in the
pattern color space.

Table 17.1 contains a summary of the common color spaces and the constants used to refer to them.

Table 17.1. Color Space Constants

Device Color Spaces (Device Dependent)

Constant Color Components

Calibrated Color Spaces (Device Independent)

Constant Color Components

Miscellaneous Color Spaces

Constant Color Components

NSDeviceCMYKColorSpace Cyan, magenta, yellow, black (and alpha) components

NSDeviceWhiteColorSpace White (and alpha) components

NSDeviceRGBColorSpace Red, green, blue (and alpha) or hue, saturation, brightness (and alpha)

NSCalibratedWhiteColorSpace White (and alpha) components

NSCalibratedRGBColorSpace Red, green, blue (and alpha) or hue, saturation, brightness (and alpha)

NSNamedColorSpace Catalog name and color name components

NSPatternColorSpace NSImages used as a fill pattern

Creating Color Objects

A number of class methods are available to create both calibrated and device-dependent NSColor instances:

+ (NSColor *)colorWithCalibratedWhite:(float)white alpha:(float)alpha
+ (NSColor *)colorWithCalibratedHue:(float)hue saturation:(float)saturation
 brightness:(float)brightness alpha:(float)alpha
+ (NSColor *)colorWithCalibratedRed:(float)red green:(float)green
 blue:(float)blue alpha:(float)alpha
+ (NSColor *)colorWithDeviceWhite:(float)white alpha:(float)alpha
+ (NSColor *)colorWithDeviceHue:(float)hue saturation:(float)saturation
 brightness:(float)brightness alpha:(float)alpha
+ (NSColor *)colorWithDeviceRed:(float)red green:(float)green
 blue:(float)blue alpha:(float)alpha
+ (NSColor *)colorWithDeviceCyan:(float)cyan magenta:(float)magenta
 yellow:(float)yellow black:(float)black alpha:(float)alpha

Each of these class methods requires a float value for each component appropriate for the color space and returns an
NSColor. All values should be between 0.0 and 1.0. Values outside that range are pinned to the closest legal value.

Working with a color list creation of a new NSColor requires the specification of a color catalog name as well as the
color name.

+ (NSColor *)colorWithCatalogName:(NSString *)listName
 colorName:(NSString *)colorName;

If the list name and color name do not exist, the method returns nil.

Common colors are used by many applications, and Cocoa provides a number of convenience methods for creating
appropriate NSColor objects:

+ (NSColor *)blackColor
+ (NSColor *)darkGrayColor
+ (NSColor *)lightGrayColor

+ (NSColor *)whiteColor
+ (NSColor *)grayColor
+ (NSColor *)redColor
+ (NSColor *)greenColor
+ (NSColor *)blueColor
+ (NSColor *)cyanColor
+ (NSColor *)yellowColor
+ (NSColor *)magentaColor
+ (NSColor *)orangeColor
+ (NSColor *)purpleColor
+ (NSColor *)brownColor
+ (NSColor *)clearColor

Each of these returns a color in a calibrated color space. The specific calibrated color space is dependent on the color
requested and should not be assumed from the method name.

NSColor is also able to represent a pattern that should be used when drawing. An NSImage can be set for the
current color using

+ (NSColor*)colorWithPatternImage:(NSImage*)image

The NSColor returned is in the NSPatternColorSpace. The NSImage is not scaled when the pattern is used to
draw, rather it is offset and repeated as needed.

Setting the Current Color

Having created a color, the next most common task is to use it in a drawing operation. This is usually accomplished
with the -set method.

- (void)set

This method sets the color to the receiver for the current graphics context.

// draw a black box
[[NSColor blackColor] set];
NSRectFill(theRect);

// draw a red circle
[[NSColor redColor] set];
theCirclePath=[NSBezierPath bezierPathWithOvalInRect:theRect];
[theCirclePath fill];

Querying NSColor Settings

An NSColor can be queried to access its color components by using the methods that are appropriate for the color
space. For the NSCalibratedRGBColorSpace and NSDeviceRGBColorSpace color spaces, the components
can be returned in either RGB or HSB values using

- (float)redComponent
- (float)greenComponent
- (float)blueComponent
- (float)hueComponent
- (float)saturationComponent
- (float)brightnessComponent

- (void)getRed:(float *)red green:(float *)green
 blue:(float *)blue alpha:(float *)alpha
- (void)getHue:(float *)hue saturation:(float *)saturation
 brightness:(float *)brightness alpha:(float *)alpha

To retrieve individual component values in NSCalibratedCMYKColorSpace or NSDeviceCMYKColorSpace
color space, use

- (float)cyanComponent
- (float)magentaComponent
- (float)yellowComponent
- (float)blackComponent
- (void)getCyan:(float *)cyan magenta:(float *)magenta yellow:(float *)yellow
 black:(float *)black alpha:(float *)alpha

Likewise, individual components of colors in the NSCalibratedWhiteColorSpace or
NSDeviceWhiteColorSpace can be extracted using

- (float)whiteComponent
- (void)getWhite:(float *)white alpha:(float *)alpha

When a color is in the NSNamedColorSpace color space the color catalog name and the color name itself can be
returned. Methods also exist that allow the return of the name in the localized language (if available).

- (NSString *)catalogNameComponent
- (NSString *)colorNameComponent
- (NSString *)localizedCatalogNameComponent
- (NSString *)localizedColorNameComponent

The localized versions of the catalog name and the color name are typically used in the user interface portion of an
application, whereas the other implementations are used internally because they will not change dependent on the
user's language selection.

Regardless of the color space, the alpha transparency of an NSColor can be retrieved using

- (float)alphaComponent

If the receiving NSColor does not have an alpha component, the value for full opacity (1.0) is returned.

When using an NSColor in the NSPatternColorSpace the image rendered as the pattern is returned by a call to

- (NSImage*)patternImage

Visually Representing an NSColor

If an application needs to draw a representation of an NSColor solely for the purpose of displaying the selected color,
it's desirable to use the method:

- (void)drawSwatchInRect:(NSRect)rect

Subclasses of NSColor can display a visual indicator for the color, as shown in Figure 17.1. CMYK colors draw an
indicator in the upper-right corner, and all colors have a triangle in the background that shows through any
semitransparent colors. This method displays the color as well any appropriate adornments.

Figure 17.1. The visual representations for NSColor adornments.

Color Space Conversion

When a color is returned by a method other than those that specify the color space explicitly, it is often desirable to
convert the color specifically to a known color space. This is accomplished using one of the following methods:

- (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace
- (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace
 device:(NSDictionary *)deviceDescription

The method -colorUsingColorSpaceName: assumes that the current device (printer, screen, or window)
attributes should be used for the conversion. A target device can also be specified using -
colorUsingColorSpaceName:device:. Device description dictionaries are available from the NSScreen,
NSWindow and NSPrinter classes using -deviceDescription. In both cases, if the color can't be converted
to the target color space, nil will be returned.

It is possible to leave the target color space name unspecified, passing in nil instead of an NSString. In this case
the most appropriate color space is used based on the current device.

Caution is required, however, because these methods can be lossy. Not all colors in all color spaces can be fully
represented in other color spaces. For example, there are RGB colors that cannot be reproduced in CMYK space. In
such a case, a close value is substituted. It is best to be aware of this limitation and encourage the appropriate use of
color space based on the application's target market.

The color space of an NSColor can be returned using the -colorSpaceName method.

- (NSString *)colorSpaceName

An example of using -colorUsingColorSpaceName: would be a method that can create a string version of an
NSColor that can be used in HTML. The following example method can be used as a category on NSColor to
create a string with the appropriate hex representation of the NSColor.

- (NSString *)hexRepresentation {
 NSColor *rgbColorRepresentation;
 int red, green, blue;

 // create an NSCalibratedRGBColorSpace version of the color
 rgbColorRepresentation=[self colorUsingColorSpaceName:
NSCalibratedRGBColorSpace];

 // collect the components and scale them to the
 // web representation color space of 0 to 255
 red=[rgbColorRepresentation redComponent]*255;

 green=[rgbColorRepresentation greenComponent]*255;
 blue=[rgbColorRepresentation blueComponent]*255;

 // return a formatted string with the hex value
 return [NSString stringWithFormat:@"%02x%02x%02x",red,green,blue];
}

Creating Derived Colors

NSColor offers a method for blending colors together to create a new color:

- (NSColor *)blendedColorWithFraction:(float)fraction ofColor:(NSColor *)color

The -blendedColorWithFraction:ofColor: method makes it simpler to create a gradual blend from one
color to another in NSCalibratedRGBColorSpace. The fraction is a number between 0.0 and 1.0 that represents
the weighting of the color passed as an argument and the receiving object. As the value approaches 1.0, the returned
color becomes more like the passed NSColor. The following code can be used to draw a horizontal blend (or
gradient) between two colors.

- (void)drawRect:(NSRect)rect {
// compute the size of each of the individual rectangles
 // that need to be drawn
 float stepRectWidth=[self bounds].size.width/([self numberOfSteps]+1);
 NSRect baseRect=NSMakeRect(0.0,0.0,stepRectWidth,[self bounds].size.
height);
 int stepsIndex;

 // clear the contents of the view by
 // filling with a clear color, this is required
 // so that the underlying window contents are visible
 [[NSColor clearColor] set];
 NSRectFillUsingOperation([self bounds],NSCompositeSourceOver);

 // iterate over the number of steps required
 for (stepsIndex=0;stepsIndex<=[self numberOfSteps]+1;stepsIndex++) {
 NSRect localRect;
 NSColor *sourceColor=[self sourceColor];

 // calculate the fraction for the current step
 float fractionForStep=(float)(stepsIndex)/[self numberOfSteps];

 // use blendedColorWithFraction:ofColor: to create the new color
 NSColor *fillColor;
 fillColor=[sourceColor blendedColorWithFraction:fractionForStep
 ofColor:[self destinationColor]];

 // offset the rectangle that we're going to draw
 localRect=NSIntegralRect(NSOffsetRect(baseRect,
 stepsIndex*baseRect.size.width, 0.0));
 // calculate the next rectangle that we're going to draw
 nextRect=NSIntegralRect(NSOffsetRect(baseRect,
 (stepsIndex+1)*subRectWidth, 0.0));

 // adjust the current rectangle to not overlap the next
 // one, this prevents anti-alias problems
 localRect.size.width = nextRect.origin.x - localRect.origin.x;

 // set the current color
 [fillColor set];

 // draw, but use the NSCompositeSourceOver operator so that the
 // transparency is also used
 NSRectFillUsingOperation(localRect,NSCompositeSourceOver);
 }
}

This example implementation (a -drawRect: implementation in an NSView subclass) draws a color gradient
starting at the source color and ending up at the destination color in the specified number of steps, shown in Figure
17.2.

Figure 17.2. The Blended Color example user interface.

The -blendedColorWithFraction:ofColor: method includes the alpha component in the blended color just
as it does the other color components. Blends from opaque to transparent are therefore possible. If the receiving color,
or the specified color are unable to be converted to NSCalibratedRGBColorSpace, nil is returned.

There are two shorter forms of the -blendedColorWithFraction:ofColor: method.

- (NSColor *)highlightWithLevel:(float)highlightLevel
- (NSColor *)shadowWithLevel:(float)shadowLevel

Both of these methods return an NSColor that is the specified level (fraction) between the receiving color and the
System colors defined to display as a highlight and shadow, and returned by the methods -highlightColor and -
shadowColor, respectively. Both methods also return nil if the receiving color can't be converted to
NSCalibratedRGBColorSpace.

To create an NSColor that has the same color components as an existing color object, but with a different
transparency use

- (NSColor *)colorWithAlphaComponent:(float)alpha

This method attempts to create a new color in the same color space with the specified alpha for transparency. It will
return nil if the color is not able to support alpha. An example of this would be an NSColor created in the
NSPatternColorSpace.

System Color Values and Notification

In the user preferences of Mac OS X it is possible to personalize the environment. These colors can be retrieved using
the NSColor class methods:

+ (NSColor *)selectedControlColor
+ (NSColor *)selectedTextColor

When a user changes their preferences, an NSSystemColorsDidChangeNotification is posted allowing
currently running applications to refresh their displays to coordinate with the new settings.

Storing and Retrieving Colors

NSColor conforms to NSCoding, so it is simple to archive them as part of the standard object tree; however, there
are additional situations that can arise when dealing with NSColor. An NSColor can be dragged into an application
from another application. To facilitate that interaction these methods are used

+ (NSColor *)colorFromPasteboard:(NSPasteboard *)pasteBoard
- (void)writeToPasteboard:(NSPasteboard *)pasteBoard

The method +colorFromPasteboard: returns an NSColor from the pasteboard if one is present, otherwise
it returns nil. Calling -writeToPasteboard: writes the receiving color to the pasteboard, provided that the
pasteboard accepts color. If the pasteboard doesn't accept color, no action is taken.

When importing colors from the pasteboard, it is necessary to determine if an application can support alpha
transparency or not. Your application can specify that it does accept alpha by passing NO to the NSColor class
method +setIgnoresAlpha:.

The current value for an application can be accessed through the method +ignoresAlpha, which returns a
Boolean. The default value for an application is YES.

Perhaps the most common storage task is storing an NSColor in the user defaults as part of an application's
preferences. NSUserDefaults supports several object types, but not NSColor, so it's necessary to work around
this limitation. This is accomplished by first encoding the NSColor data using NSArchiver, and then storing the
returned NSData in the user defaults. When a color default is requested the NSData is read from the defaults, and the
NSColor is unarchived and returned.

- (void)setColor:(NSColor *)color forKey:(NSString *)key
{
 NSData *data=[NSArchiver archivedDataWithRootObject:color];
 [self setObject:data forKey:key];
}
- (NSColor *)colorForKey:(NSString *)key
{
 NSData *data=[self dataForKey:key];
 return (NSColor *)[NSUnarchiver unarchiveObjectWithData:data];
}

The previous methods can be added to a category on NSUserDefaults, and then the application can directly
request and set colors in the user defaults.

Book: Cocoa® Programming
Section: Chapter 17. Color

Color Wells

Color wells are the user interface that Cocoa provides for selecting and displaying a color.
A color well displays a swatch representing the current color settings, and when clicked,
the color panel is presented to the user. Most color wells are configured to show a border
around them, which indicates if the color well is the active color well in the application, as
shown in Figure 17.3. Color wells can be the target of a color dragging operation as well as
an originator.

Figure 17.3. The possible NSColorWell visual states.

NSColorWell Class

NSColorWell, a subclass of NSControl, is the implementation class of the color well
user interface. They can be created via code as any other NSControl, but the most
common method of adding them to an application's user interface is by dragging from the
controls palette in Interface Builder.

The NSColorWell inspector in Interface Builder allows setting of the initial color, as
well as the state of the continuous, border, and disabled flags (see Figure 17.4).

Figure 17.4. The Interface Builder Inspector for NSColorWell attributes.

- (NSColor *)color
- (void)setColor:(NSColor *)color

The current color reflected by an NSColorWell can be obtained by sending a -color
message to the object. A new color can be set on a color well by calling -setColor: and
passing the new color as the argument. A color well can also take another object's color by
calling

- (void)takeColorFrom:(id)sender

with the sender being the object to take the color from. That object must implement the -
color method.

- (void)activate:(BOOL)exclusive
- (void)deactivate
- (BOOL)isActive

Only a single NSColorWell can be active at a time in an application. The active state of
a color well can be changed using either the -activate: or -deactivate methods.
Determining if a specific color well is active is done using the -isActive method.

Because an NSColorWell is a subclass of NSControl, it can have a target object and
an action method assigned using -setTarget: and -setAction:, respectively. When
a color is dragged into the color well from the color panel (or another color well) the target
object is sent the action method.

NOTE

Unlike other controls, the NSColorWell lacks an associated cell object.
This means they can't be used directly inside of an NSMatrix, or any other
place that requires a cell.

NSColorWell also implements the NSControl methods -isContinuous and -
setContinuous:. If this is set to YES, the color well calls the target/action when the
color in the well is changed (either via the Color Panel, or by dragging a color into the well
from another source).

If -isContinuous is NO, however, the behavior is less predictable. If a noncontinuous
color well is made active, and the color is changed in the color panel, the color well will
update, but does not call the target/action method. Colors dragged into the well while
active also do not cause the target action to trigger. If the color well is inactive, dragging
colors into the well causes the target action to be called. This is likely a bug in the Mac OS
X 10.1 implementation, but it is something that developers should be aware of.

- (BOOL)isBordered
- (void)setBordered:(BOOL)bordered

A color well that can bring the color panel to the front and can be activated has a border
visible around it. This can be turned on and off using the method -setBordered: and
passing YES or NO for the argument. The current state can be retrieved using -
isBordered.

A subclass of NSColorWell might need to draw its contents differently than the standard
display. This is accomplished by overriding -drawWellInside:, which is passed an
NSRect representing the area that the NSColorWell subclass should draw within.

Book: Cocoa® Programming
Section: Chapter 17. Color

Color Panels

The Color Panel is the System-wide user interface for selecting and applying color. The panel
itself is a floating utility window, which is divided into four distinct areas: color picker
selection; color picker swap view area (which is different for each color picker); the user area
(which consists of a color well displaying the current color and the user's customized colors
area); and the optional accessory area, where an application can add functionality to the color
panel, as seen in Figure 17.5.

Figure 17.5. The anatomy of an NSColorPanel.

NSColorPanel Class

The NSColorPanel is a subclass of NSPanel, and a shared object, there is only one
instance of it for an entire application. The shared instance can be retrieved using the class
method:

+ (NSColorPanel *)sharedColorPanel

This method returns the shared NSColorPanel object, creating it, if necessary.

The default instance of an NSColorPanel has all the color picker modes available. An
application can control which of the pickers are available in the user interface by logically
ORing the following constants (defined in AppKit/NSColorPanel.h).

NSColorPanelGrayModeMask

NSColorPanelRGBModeMask

NSColorPanelCMYKModeMask

NSColorPanelHSBModeMask

NSColorPanelCustomPaletteModeMask

NSColorPanelColorListModeMask

NSColorPanelWheelModeMask

NSColorPanelAllModesMask

Pass the resultant mask to

+ (void)setPickerMask:(int)mask

For example, the following code would enable only the RGB slider picker and the color wheel
picker.

[[NSColorPanel sharedColorPanel] setPickerMask:
 (NSColorPanelRGBModeMask ||
NSColorPanelWheelModeMask)];

The picker mask is usually set early in the execution of the program, often in the -
applicationDidFinishLaunching: method of an NSApplication delegate.
Another setting that is often initially set in the -applicationDidFinishLaunching:
method is the support for setting the alpha transparency of colors. Alpha support is not
necessary for many applications, and the default behavior is to have it turned off. If your
application wants the color panel to support assignment of the alpha level, use the method

- (void)setShowsAlpha:(BOOL)flag

It is also possible to get the current value of this setting using -showsAlpha, which returns a
BOOL value. It is possible to also set the initial color mode for the NSColorPanel using the

method -setMode: and passing in one of the following constants (declared in
NSColorPanel.h) as the mode:

NSGrayModeColorPanel

NSRGBModeColorPanel

NSCMYKModeColorPanel

NSHSBModeColorPanel

NSCustomPaletteModeColorPanel

NSColorListModeColorPanel

NSWheelModeColorPanel

The color panel is made visible by using the NSApplication method -
orderFrontColorPanel: passing the requesting object as the sender. Applications that
support color should have a Show Colors menu item under the Format menu. This menu item
is connected to the first responder in Interface Builder to send the -
orderFrontColorPanel: message. The standard Format menu on the Interface Builder
Cocoa-Menus palette already includes a menu item connected appropriately. The other
common way for a color panel to be presented is in response to the user clicking the border of
an NSColorWell, which requires no action on the developer's part.

The color panel's currently selected color is accessed with the -color method. It returns the
value as an NSColor instance. The current color of the NSColorPanel is changed with a -
setColor: message, passing the NSColor it should be set to as the value.

An application can be notified when the NSColorPanel makes a change. There are three
techniques for being notified when a color has been set using the NSColorPanel: a target/
action can be triggered, the first responder is sent a -changeColor: message with the
NSColorPanel as the argument, and an
NSColorPanelColorDidChangeNotification is sent.

In the case of the target/action trigger, if the color panel has a target object set using -
setTarget: and an action set using -setAction: then that method is called on the target
object when the color changes.

If the target and action values are not set for an NSColorPanel, a check is run to determine
if the current first responder implements a method called

- (void)changeColor:(id)sender

If it does, -changeColor: is called with the NSColorPanel as the sender argument. The
implementation of -changeColor: can obtain the current color by calling [sender
color].

Finally, each time the color panel makes a change, the NSColorPanel posts an
NSNotification with the identifier
NSColorPanelColorDidChangeNotification. The notification object passed to any
objects registered for this notification contains the NSColorPanel.

If the NSColorPanel is in continuous mode, which is the default, the appropriate
methodology is triggered whenever the color changes, including in response to dragging the
mouse in the color wheel, or as changing slider values. If the color panel has been set to
noncontinuous mode by passing it a -setContinuous: message with NO as the argument,
the changes are only updated when the mouse is released in the NSColorPanel.

Dragging Colors

Another feature of the NSColorPanel class is that it is responsible for providing the
capability to drag colors from one user item to another. The class method

+ (BOOL)dragColor:(NSColor *)color withEvent:(NSEvent *)anEvent
 fromView:(NSView *)sourceView

makes it possible to drag a color to destination in response to a mouse down or mouse
dragging. The following is a simple example.

- (void)mouseDragged:(NSEvent *)theEvent {
 [NSColorPanel dragColor:[self viewColor]
 withEvent:theEvent fromView:self];
}

This fragment from an NSView subclass will respond to any mouse dragging by attempting to
drag the current color for this view (the -viewColor). The result from +dragColor:
withEvent:fromView: is always YES.

Book: Cocoa® Programming
Section: Chapter 17. Color

Customizing the Color Panel

Like the other standard application panels, NSColorPanel functionality can be extended by attaching an
accessory view. To do this, use the -setAccessoryView: method. Pass the NSView that contains the controls
as the argument. This is discussed in more depth in Chapter 9, "Applications, Windows, and Screens," which
discusses standard System panels.

Custom Color Pickers

Although Apple provides basic color picking methods, applications can also require custom color selection
behavior. A custom color picker class needs to implement both the NSColorPickingDefault and
NSColorPickingCustom protocols. Because the class NSColorPicker already implements the
NSColorPickingDefault protocol, most custom pickers are implemented as a subclass of that class,
overriding selected methods. All custom color pickers must fully implement the NSColorPickingCustom
protocol completely. This means writing code for the following methods declared in the
NSColorPickingCustom protocol:

- (void)setColor:(NSColor *)color
- (BOOL)supportsMode:(int)mode
- (int)currentMode
- (NSView *)provideNewView:(BOOL)initialRequest

It's also common to override the following methods in the NSColorPicker subclass.

- (id)initWithPickerMask:(int)mask
 colorPanel:(NSColorPanel *)owningColorPanel;
- (NSImage *)provideNewButtonImage;
- (void)alphaControlAddedOrRemoved:(id)sender;

The following sample code implements a color picker that uses Web-style color coding to create a six-digit hex
color string, as shown in Figure 17.6. It is a basic reimplementation of the standard RGB slider picker, returning
hex values in place of decimal values. Full code for the picker and the test harness are available at www.
cocoaprogramming.net.

Figure 17.6. The example Web Color custom color picker.

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

The custom color picker subclass should implement the method -initWithPickerMask:colorPanel:.
This gives the subclass the opportunity to determine if it is appropriate with the selected color masks. The Web-
style color picker requires one of the RGB color spaces to be available. If those are not available, the super
implementation is not called.

- (id)initWithPickerMask:(int)mask colorPanel:(NSColorPanel *)
owningColorPanel
{
 if (mask && NSColorPanelRGBModeMask) {
 // NSColorPanelRGBModeMask is enabled
 self=[super initWithPickerMask:mask colorPanel:owningColorPanel];
 }
 return self;
}

The custom color picker is asked for an NSImage to represent it in the color picker. To provide the image,
implement the -provideNewButtonImage method returning the appropriate NSImage.

- (NSImage *)provideNewButtonImage {
 return [NSImage imageNamed:@"WebColorPicker"];
}

When a user clicks on the image button for the custom color picker it needs to return the NSView that should be
swapped into the NSColorPanel. This is done using -provideNewView:. The argument is a Boolean that
indicates if this is the first time that the view has been requested. If it is the first time, a class should load any
custom nib file, or do any computational intensive preparation rather than in -initWithPickerMask:
colorPanel:. This prevents doing any unnecessary tasks when loading the color panel initially, which could
provide a significant delay if all the color pickers required loading nibs. The Web color picker implementation loads
the nib with itself as the owner, causing the outlets and actions set in Interface Builder to interact with this specific
instance of the class.

- (NSView *)provideNewView:(BOOL)initialRequest;
{
 if (initialRequest) {
 [NSBundle loadNibNamed:@"MyCustomColorPicker" owner:self];
 }

 return containerView;
}

Each color picker identifies itself by returning a unique value in it's implementation of -currentMode:. An
individual color picker can also implement submodes. For example, standard color panel implementation that
allows the setting of RGB/ CMYK/Grayscale/HSB color modes is implemented in this manner. Each of these is
implemented as a different mode, in spite of them appearing as submodes. If the custom picker supports multiple
modes, it should return a unique value for the current mode when -currentMode is called. In addition, it should
override -supportsMode: so that it can inform the color panel as to whether it supports a requested mode,
which is passed as the argument. Finally, if it does support multiple modes, it should implement -setMode: to
ensure that the appropriate mode is displayed. The Web color picker implements only a single mode.

- (int)currentMode;
{
 return CPWebColorPicker;
}

- (BOOL)supportsMode:(int)mode;
{
 return (mode == CPWebColorPicker);
}

- (void)setMode:(int)theMode
{
 return;
}

Only one more method must be implemented, -setColor:. This is called any time the color is changed in the
color picker, and when the custom color picker is selected in the color panel. This provides an ideal opportunity to
update the user interface to coincide with the currently selected color.

- (void)setColor:(NSColor *)color
{
 NSString *hexString;
 NSColor *forcedRBGColor;
 float red, green, blue;
 int scaledRed, scaledGreen, scaledBlue;

 // convert the color to calibrated RGB
 forcedRBGColor=[color colorUsingColorSpaceName:
NSCalibratedRGBColorSpace];

 // break out the components, values will be between 0 and 1
 red=[forcedRBGColor redComponent];
 green=[forcedRBGColor greenComponent];
 blue=[forcedRBGColor blueComponent];

 // update the sliders to reflect the current values of the color
 // the minimum and maximum values for the sliders are set to 0 and 1
 // respectively, so they directly map to the NSColor components
 [redSlider setFloatValue:red];
 [greenSlider setFloatValue:green];
 [blueSlider setFloatValue:blue];

 // scale the color components to the web rgb color range

 scaledRed = red * 255;
 scaledBlue = blue * 255;
 scaledGreen = green * 255;

 // update the text field that displays the web encoded value
 hexString=[NSString stringWithFormat:@"#%02x%02x%02x",scaledRed,
 scaledGreen,scaledBlue];
 [webColorTextField setStringValue:hexString];
}

All these methods are required for implementation by the protocols. Each custom color picker needs to interact with
the various user interface elements on a custom basis. When the user interface has changed, and the color should be
updated in the color picker, call the NSColorPanel method -setColor: passing the current color as the
argument. In the Web color picker implementation the target action for all three sliders has been set to a single
method that determines the color that should be set by getting the current values from the NSSliders. The color
picker can determine the color panel that it belongs to by calling -colorPanel.

- (void)updateColorInResponseToUIChange:sender
{
 NSColor *theColor;
 theColor=[NSColor colorWithCalibratedRed:[redSlider floatValue]
 green:[greenSlider floatValue]
 blue:[blueSlider floatValue]
 alpha:1.0];
 [[self colorPanel] setColor:theColor];
}

Having created a custom color picker, it is necessary to now make it available to an NSColorPanel. This isn't
done programmatically, but rather by creating a bundle within the application's wrapper that is stored in a directory
called ColorPickers. The name of the bundle without the suffix should match the class name of your custom
color picker. The bundle can be copied to the ColorPicker directory within the application wrapper by adding a
Copy Files Build Phase to the project target.

NOTE

As of 10.1.3, the code that implements a custom color picker can't reside within the color picker
bundle.

Book: Cocoa® Programming
Section: Chapter 17. Color

NSColorList Class

An NSColorList enables the storage of an ordered set of color presets, accessible by a key.
NSColorList can replace hard-coded color values in source code, allowing for easier
customization and changing of an application's user interface.

A new NSColorList instance can be created in memory by calling -initWithName:
and passing an NSString with the name of the color list.

When an application is launched the standard library paths are searched for Color directories
containing files ending with the suffix .clr. A list of the currently available color lists can be
retrieved using the class method +availableColorLists. This list only includes color
lists read from disk. Newly created NSColorList instances are not included in this list
unless they have already been written to disk using -writeToFile: with the path to the file
as the argument.

Color lists stored in one of the standard Library locations can be referenced by name using the
class method +colorListNamed: passing the name of the color list. This name is the
filename without the .clr suffix.

Another common requirement is to load an archived color list from within the application's
wrapper. This can be done using -initWithName:fromFile: passing the name that the
color list should be referred to in the NSColorPanel and the full path to the .clr file. An
example of this would be

thePathString=[[NSBundle mainBundle]
 pathForResource:@"CustomColors" ofType:@"clr"];
theColorList=[[NSColorList alloc]
 initWithName:@"CustomColorList" fromFile:
thePathString];

This example code loads a color list from the file CustomColors.clr within the
application wrapper and will be referred to by the name CustomColorList. Localization of
these files is done by putting the translated versions into the appropriate language, .lproj.
One caveat is that the color list name that is passed to initWithName: needs to be localized
independently by passing the localized version of the name string to the initWithName:
method, and referring to that color list by the localized name throughout the code.

A color list is editable only if it is created within memory or is stored on the disk in a writable
file. The editable state of a specific color list instance can be discovered using the -
isEditable method, which returns YES or NO.

An application can remove an archived NSColorList file from disk by using the -
removeFile method. This removes the file provided that it is within the standard Library
search path and is writable by the user. Upon success, the color list is removed from the
+availableColorLists.

An NSColorList that is created in memory, or read from within an application's wrapper, is
not available to the NSColorPanel automatically. They must be explicitly attached by
calling the shared NSColorPanel method -attachColorList: like so:

[[NSColorPanel sharedColorPanel] attachColorList:theColorList];

By calling the NSColorPanel method -detachColorList: and passing the color list as
the argument, it can be removed from the NSColorPanel. Currently there is no method of
preventing the user from modifying an NSColorList that is attached to an
NSColorPanel, but does not reside on disk. They are always editable.

The approach for dealing with specific entries in an NSColorList is largely the same as
working with NSMutableDictionary. The main difference is that keys in color lists are
ordered. The method -allKeys returns an array of NSString objects with the available
keys. A specific color key can be requested from the color list using -colorWithKey:, and
can be removed using -removeColorWithKey: in both cases passing the key name as the
argument. The -setColor:forKey: method behaves similar to the
NSMutableDictionary method -setObject:forKey:. The one extension to the
basic functionality is the capability to insert a new color at a specific index in the color list
using -insertColor:key:atIndex:. This method attempts to insert the specified color
with the key at the index provided. If a color already exists with that key, it is moved to this
new index.

Book: Cocoa® Programming
Section: Chapter 17. Color

Summary

The Cocoa color objects offer a rich framework for working with color in all applications.
Support for ColorSync technology is automatic with calibrated colors. Most applications
will be able to use the Cocoa classes without modification. Some applications can benefit
from the capability to customize and extend the supported color models and color picking
user interfaces.

The next chapter begins to move the discussion into more advanced topic areas. It covers
complex Cocoa views such as table views, outline views, and browsers.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 18. Advanced Views and Controls

IN THIS CHAPTER

● NSTableView, NSOutlineView, and NSBrowser Concepts
● Table Views
● Outline Views
● Browsers
● Combo Boxes
● Custom Controls
● Toolbars
● Status Bars
● NSQuickDrawView Class

Chapter 10, "Views and Controls," discussed most of the Cocoa user interface widgets, but
a handful were left out intentionally because of their complexity. This chapter covers the
remaining widgets, which are NSTableView, NSOutlineView, NSBrowser,
NSComboBox, NSStatusBar, and NSToolBar. This chapter also briefly touches on
how to create custom controls to supplement what the Application Kit offers. Finally, a
short discussion of the NSQuickDrawView class is provided. Before diving into these
classes, this chapter introduces a few new concepts that permeate the design of most of
these remaining user interface widgets.

Because the objects described in this chapter are some of the most complex classes Cocoa
has to offer, most of the example code in this chapter is abbreviated to highlight the topic
under discussion. The complete source code and project folders for all the examples in this
chapter can be found on the book's Web site, www.cocoaprogramming.net. To help keep
the examples simple and concentrate on the mechanics of using these complex views, most
of the examples are based on the NSDocument architecture described in Chapter 8,
"Application Kit Framework Overview." Additionally, all the internal data models are built
using standard Foundation Kit classes instead of using custom model classes.

http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

NSTableView, NSOutlineView, and NSBrowser Concepts

Cocoa's Application Kit framework contains the NSView subclasses NSTableView,
NSOutlineView, and NSBrowser. These views are designed to display large amounts
of structured data and are usually laid out inside of an NSScrollView instance. For
convenience, the instances on Interface Builder's Cocoa-Data palette are already wrapped
in a scroll view. Figure 18.1 shows where to find instances of each class on the Cocoa-Data
palette in Interface Builder.

Figure 18.1. Interface Builder's Cocoa-Data palette.

Developers new to Cocoa often struggle with these three classes. Typically, there are two
key points of confusion. First, developers should rarely subclass these three classes.
Instead, a special helper object called a data source is created. This is different from the
approach taken by most other application frameworks, where subclassing is the norm. The
following "Data Sources" section explains the concepts behind data sources. The second
point of confusion is when to use which class. The "Selecting an Appropriate User
Interface" section later in this chapter gives some general guidelines.

Data Sources

When using user interface widgets, developers normally think in terms of putting data
values into the user interface item. For example, if a myTextField is to display the text
"Hello," a [myTextField setStringValue:@"Hello"] message would be sent
to put the string "Hello" into the widget. For really large user interface objects such as an
NSTableView, which could have thousands of items to display, this approach is

extremely inefficient.

A better approach is to be aware of what items a view is displaying and only send the
visible items to the view. Unfortunately, keeping track of when things need to be updated
can be rather tedious. An even better approach is possible. To reduce the amount of code
written by Cocoa developers, Apple has taken the idea of putting information into the view
and turned it inside out. Instead of putting values into the view, the view asks for the values
that it needs, when it needs them. This is sometimes known as lazy loading and is the most
efficient way to handle these larger view objects.

One of the biggest advantages of lazy loading is achieved when data items are expensive to
find, store, and/or initialize. For example, reading a file system's directories can be
expensive. Rather than read an entire filesystem hierarchy into an object all at once, only
the directories that are displayed need to be loaded. If a directory is never displayed, it
never needs to be read. Also, old information can be thrown away to make room for new
information. This allows for more efficient memory usage. Other examples where
performance savings might be noticeable include interfaces for displaying values from
databases or very large documents, such as spreadsheets.

To facilitate lazy loading, Cocoa uses a special object known as a data source. A data
source is usually part of an application's controller layer, acting as a liaison between model
and view. The view can ask it questions such as "How much data is there?" and "What's the
data at this specific location?" The data source responds to these queries by looking up the
answer inside the model and returning what it finds. The NSTableView,
NSOutlineView, and NSBrowser classes all require a data source to provide them
with information to display. Until an appropriate data source is provided, they display
nothing.

NOTE

The NSComboBox class can also use a data source, but in this one case the
data source is optional.

Data sources are conceptually similar to delegates. Just like delegates, data sources enable
the behavior of a view to be modified, based on how they answer the view's questions. The
Cocoa classes that use data sources also have outlets for delegate objects, however. The
data source and the delegate could be the same object or they could be two separate
objects. In addition, any delegate or data source can be the delegate and/or data source for
more than one view.

Selecting an Appropriate User Interface

Each of the NSTableView, NSOutlineView, and NSBrowser classes works best for

displaying or manipulating data with a particular kind of structure. For instance, data that is
suitable for a table view is often not suitable for an outline view. Each view subclass also
has different screen real estate requirements that will further affect user interface design.

A table view is an excellent way to display tabular data. Any data set that can be displayed
as a two-dimensional sheet of cells, like a spreadsheet, is a candidate for display in a table
view. Tables tend to be two-dimensional in nature and might contain a lot of data. As a
result, they are generally the largest, and often the only, interface element in a given
window.

Browsers are specifically meant to display hierarchical data. Anything organized in a tree-
like structure, such as a file system, is a good candidate for an NSBrowser. The deeper
the hierarchy, the better the browser is at providing easy navigation while still offering the
user information about where they are at in the hierarchy. It is easy to see the path
traversed to a particular point in the hierarchy. Not all browsers are multicolumn, however.
A single-column browser or a single-column table view can both be used to display one-
dimensional lists of items. An example would be the list of screen savers in System
Preferences. Although single column browsers tend be vertically oriented like any list,
multicolumn browsers are definitely horizontal in nature. If the layout of an interface can't
accommodate a wide interface element, a browser element might be a less than ideal choice.

The outline view is good for data that exhibits both two-dimensional and hierarchical
properties simultaneously. It can display multiple columns containing additional attributes
for the item starting each row. For example, to display filesystem attributes beyond just a
filename, an outline view might be a reasonable choice. Outlines are primarily vertical in
nature, so they work well in layouts where this can be exploited. Consider Project Builder's
Files tab on the left side of the project window as an example. One drawback with outlines
is that they waste a lot of screen space when the hierarchy has many levels. Outline views
can become cumbersome for the user when the data set is deep and/or very large. If the
model has a deep hierarchy and the interface layout can accommodate a browser's width,
the browser might be the better choice.

Terminology Used with Hierarchical Data

Both outline views and browsers can be used to display hierarchical data. It is worth
reviewing some of the terminology commonly used when describing hierarchical data to
avoid confusion later in this chapter. If these concepts or terms are new or unfamiliar, it is
worth reading through an introductory computer science text on data structures. This
chapter assumes that these concepts are already understood.

When data is hierarchical, it is commonly called a tree. Tree structures are commonly
drawn from top to bottom. At the top is a single item, or node, called the root. The root
connects to several nodes on the next row down, and those nodes in turn connect to nodes
below them. When a node connects to nodes below it, it is called a branch node. If a node
has no nodes below it, it is the last node in its branch and is called a leaf node.

A common tree structure is the family tree, as found in genealogy. It is common to use
some genealogical terms for nodes in a tree. Consider any node as an example. Connected
nodes below it are called its children. Connected nodes above it are called its parents.
Parent and child are used to denote relationships between nodes. Therefore, a given node
could be parent to some nodes and child to others. If two nodes are both children of the
same parent, they are sibling nodes. Figure 18.2 illustrates this terminology as it would
apply to some of the nodes in a sample tree.

Figure 18.2. The terminology used in tree data structures.

The models used in this chapter place some restrictions on the tree hierarchy. Each node
has only one parent, but can have unlimited children. Cycles are disallowed, which means
that a node cannot be the parent of a node higher up the tree. Foundation Kit classes are
used to implement all the models in this chapter. Each node is represented by an
NSMutableDictionary instance containing its attributes. Each dictionary contains an
NSMutableArray object that points to all its children.

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

Table Views

Table views are extremely complex objects. There isn't room enough in this book to list every method of the table view
classes or to explain everything that can be done with table views. Instead, three examples are presented. The first example
shows the basic setup of a table view and the simplest possible data source. The second example expands on the first by
doing some custom formatting of the data displayed by the table view. The third and final example shows a complex data
source that implements a master-detail interface.

NOTE

In a master-detailinterface, a table view (the master) or other complex data-display objects display several
data records. Selecting a particular record in the master causes a detail area, made of many controls such as
text fields and switches, to be updated to show all the details of the record. The detail area can display extra
details about the record that are not shown in the table.

One additional feature of table views is shown in a later example. In Chapter 19, "Using the Pasteboard," the master detail
example in this chapter is extended to support drag and drop. These examples should be enough to demystify the table
view, but they should only be viewed as a starting point.

Table views are implemented by a suite of classes that form a Facade. The NSTableView class is the main interface.
Most developers can deal with it exclusively unless they need specialized behavior. Each table view is composed of several
NSTableColumn instances, one for each column. This class is used when it is necessary to add, delete, or change
columns. It is common to subclass NSTableColumn to change a table's formatting. The NSTableHeaderView and
NSTableHeaderCell classes are used to render the column titles. They are rarely accessed.

The entries in the table are by default all NSTextFieldCell objects, often with one cell per column that is shared by all
the rows. Creating a subclass to override methods in the NSTableColumn class can change the cell class and its
formatting. The "Custom Formatting the Cells in an NSTableView" section later in this chapter shows how to do this.

Setting Up an NSTableView

The first example program shows the basics of getting a table view up and running. The finished example is named
MultiplicationTable and can be found on www.cocoaprogramming.net. The program displays a multiplication table for the
numbers one through ten. There are 10 rows and 11 columns. The extra column is for the multiplicands and its cells serve
as row labels.

To set up the example, create a new Cocoa Application project called MultiplicationTable in Project Builder and open the
main .nib file.

Creating and Configuring an NSTableView in Interface Builder

Create an NSTableView instance by dragging one from the Cocoa-Data palette into the default window. (Only a
masochist would attempt to create a table view programmatically.) Figure 18.1 shows where to find the table view on the
Cocoa-Data palette. Resize the table view to fill the window. Open the table view's attributes inspector by selecting the
table view object and using Cmd-1. Add some columns by changing the 2 in the # Colms field to an 11. Figure 18.3 shows
the table view from the example and the NSTableView attributes inspector. The NSTableView inspector controls are
self explanatory, or mirror parameters seen on and described for other Cocoa objects in Chapter 10.

Figure 18.3. The MultiplicationTable example in Interface Builder with NSTableView inspector is shown here.

http://www.cocoaprogramming.net/

Finally, configure each of the individual columns. Double-click the table view so that the columns can be edited. Select
each column, one by one. (Columns are selected by clicking their titles.) For each column, set the title alignment to be
centered and the contents alignment to be right justified. Set the column titles to be Number for the first column and 1
through 10 for the remaining columns. A column's title can be modified by double-clicking a column title and modifying it
directly or by changing the Column Title field in the inspector. Set each column's identifier. The identifier should be zero
for the Number column and 1 through 10, matching the column title, for the rest of the columns. Figure 18.4 shows the
NSTableColumn inspector with the column titled 5 selected.

Figure 18.4. Configuring a table view column with Interface Builder's NSTableColumn inspector.

A Minimal NSTableView Data Source

To use a table view in an application, a suitable data source must be provided. The minimal data source must implement
these two methods:

- (int)numberOfRowsInTableView:(NSTableView *)tableView;
- (id)tableView:(NSTableView *)tableView

 objectValueForTableColumn:(NSTableColumn *)tableColumn
 row:(int)row;

The -numberOfRowsInTableView: method should return the number of rows in the model. The table view uses this
to determine its vertical size and decides which rows are visible, based on the size and position of its enclosing scroll view.

The -tableView:objectValueForTableColumn:row: method is called once for every visible cell in the table
view. The table view uses this method to determine the contents of every cell. The data source should return the model
object that should be displayed at the specified location. This method is called often, so implementations of it should be as
fast as possible.

This example is so simple that no model is even required. There are always exactly ten rows, so a constant 10 can be
returned from the -numberOfRowsInTableView: method implementation. The cell contents can be calculated on-the-
fly by multiplying the row and column together. Because row numbers from the table view will be from 0-9, the row
number needs to be incremented by one before the multiplication. In Interface Builder, the column identifiers are already
set to be the numbers 1 through 10, to match the column titles. The column number can, therefore, be obtained by taking
the -intValue of the column identifier. The identifier for the "Number" column is zero, which is handled in code as a
special case. The following code implements the MultiplicationTableController data source object.

File MultiplicationTableController.h:

#import <Cocoa/Cocoa.h>

@interface MultiplicationTableController : NSObject
@end

File MultiplicationTableController.m:

#import "MultiplicationTableController.h"

@implementation MultiplicationTableController

- (int)numberOfRowsInTableView:(NSTableView *)tableView
{
 return 10;
}

- (id)tableView:(NSTableView *)tableView
 objectValueForTableColumn:(NSTableColumn *)tableColumn
 row:(int)row
{
 int column = [[tableColumn identifier] intValue];
 int product = (row + 1) * (column == 0 ? 1 : column);
 return [NSString stringWithFormat:@"%d", product];
}

@end

Finishing the MultiplicationTable Example

After the data source code is created, parse the header in Interface Builder and create an instance of
MultiplicationTableController in the main .nib file. Drag a connection from the table view to the controller
and set the MultiplicationTableController instance to be the data source. The program can now be built and
should provide output resembling that of Figure 18.5.

Figure 18.5. The MultiplicationTable example.

Custom Formatting the Cells in an NSTableView

The next example shows how to change the way a table view's data cells are formatted. This example is a modification of
the MultipliationTable example described in the "Setting Up an I" section of this chapter. The code for this example is
found on www.cocoaprogramming.net under the name TableRowFormatting.

This example changes the way the table's cells are rendered. Every other row uses a light-green background for the cells
instead of the default white. Every column uses a different text color, ranging from red (column 1) to blue (column 10),
with the Number column in black. To make it even more interesting, the text color changes for each row, fading from black
(row 1) to the full color (row 10). This is all implemented with a custom subclass of NSTableColumn.

Subclassing NSTableColumn

One way to customize the way a table column is formatted is to make a custom subclass of NSTableColumn. Create a
new class called MyTableColumn and add it to the example's project. The header should look like this:

#import <Cocoa/Cocoa.h>

@interface MyTableColumn : NSTableColumn

+ (NSColor *)oddRowColor;
+ (NSColor *)evenRowColor;
- (NSColor *)textColorForRow:(int)row;

@end

Three methods can be used to calculate the background color and foreground (text) color for the cells. The
+oddRowColor and +evenRowColor methods return a constant NSColor. The -textColorForRow: method
uses the column's identifier and the row parameter to determine a text color. Some of the methods described in Chapter 17,
"Color," are used to implement these three methods.

To actually change the formatting of a cell in the column, the -dataCellForRow: method is overridden. Before
drawing a data cell, the table view asks the column for a cell to use in the rendering. It is possible to return a different cell
for each row and column, but the default NSTextField cell is fine for this example. The overridden method takes the
default cell from super, and then reconfigures the background and text colors as needed. The cell is then returned.

To make all this work, the implementation file for the MyTableColumn class should look like this:

#import "MyTableColumn.h"
#import "MultiplicationTableController.h"

@implementation MyTableColumn

+ (NSColor *)oddRowColor
{
 static NSColor *oddColor = nil;

http://www.cocoaprogramming.net/

 if (!oddColor) {
 oddColor = [NSColor colorWithCalibratedHue:0.3333333
 saturation:0.25 brightness:1.0 alpha:1.0];
 [oddColor retain];
 }
 return oddColor;
}

+ (NSColor *)evenRowColor
{
 return [NSColor whiteColor];
}

- (NSColor *)textColorForRow:(int)row
{
 NSColor *textColor = nil;
 int column = [[self identifier] intValue];
 if (column != 0) {
 float hue = 1 - ((float)column / ((float)TABLE_COLUMNS * 3.0));
 float brt = ((float)row / ((float)TABLE_ROWS - 1.0));
 textColor = [NSColor colorWithCalibratedHue:hue saturation:1.0
 brightness:brt alpha:1.0];
 } else {
 textColor = [NSColor blackColor];
 }
 return textColor;
}

- (id)dataCellForRow:(int)row
{
 id theCell = [super dataCellForRow:row];
 NSColor *textColor = [self textColorForRow:row];
 if (row % 2) {
 [theCell setBackgroundColor:[[self class] oddRowColor]];
 } else {
 [theCell setBackgroundColor:[[self class] evenRowColor]];
 }
 [theCell setTextColor:textColor];
 return theCell;
}

@end

Before compiling the code above, add the following lines of code to the top of the
MultiplicationTableController.h file:

#define TABLE_COLUMNS 10
#define TABLE_ROWS 10

Using a Custom Subclass of NSTableColumn

There are two ways to use a custom NSTableColumn subclass. The hardest is to empty all columns out of the
NSTableView created in Interface Builder when the .nib loads, and then programmatically replace each column with a
new column of the correct class. The easy way is to just change the class in Interface Builder. We'll take the easy route.

First, get Interface Builder to parse the header for the MyTableColumn class. Next, select each column of the table view
and change it to the MyTableColumn class in its Custom Class inspector (Cmd-5). When the application is rebuilt, it
should make use of the new table column class, coloring the cells as specified for this example. (No screenshot is shown

because the color changes won't be apparent in a black and white figure.)

It is time for a small confession: The TableRowFormatting example is contrived. Although it shows how to use a custom
NSTableColumn class, subclassing is actually not necessary at all to achieve the desired result. The NSTableView
class sends the following message to its delegate before it renders each cell in the table:

- (void)tableView:(NSTableView *)tableView willDisplayCell:(id)cell
 forTableColumn:(NSTableColumn *)tableColumn row:(int)row

The delegate has the opportunity to reconfigure the cell for each position in the table. If the data source is also connected as
the table view's delegate, the data source can implement this method to color the cells instead, removing the need for a
custom subclass of NSTableColumn and greatly simplifying the example. The TableRowFormatting2 example shows
how to use the delegate method instead of a subclass.

NOTE

In both cell-formatting examples, a minor issue has been glossed over. NSTableViewobjects from the
Interface Builder palette have the wrong kind of cells in them. The background color for these cells cannot be
set. But columns added with the inspector do have cells where the background color can be set. The
workaround used to construct the examples was to add 11 new columns and delete the original two columns
so that all columns have the same kind of cell. This was easier than using code to work around the issue.

The two approaches to formatting table cells highlight the fact that there's often more than one way to get something done
in Cocoa, and one of the approaches will invariably be more difficult. As a general rule, subclassing should always be
avoided whenever possible. Implementing the proper delegate method works in this case.

If formatting is being done on a per-column basis, with no changes from row to row, an even simpler approach exists. By
default, each table column has a single cell instance that is shared by all rows in the column for rendering and data entry.
The shared cell can be changed to any arbitrary cell with the NSTableColumn -setDataCell: method. Also, more
NSTableColumn methods are listed in Apple's documentation that can be used to make other advanced customizations.

NOTE

The TaskOutliner example later in this chapter creates a column of check box buttons in an outline view. An
NSButtonCell is handed to one of the columns to use as the shared cell for all rows in that column. No
subclassing is used to accomplish this. The technique works the same way for both outline and table views
because NSOutlineView is a subclass of NSTableView.

Controlling Selectability in an NSTableView

The current example application allows any row or column to be selected. It doesn't make much sense to select the Number
column, though. By implementing an NSTableView delegate method, it is possible to make the Number column
unselectable.

First, drag a connection from the table view to the MultiplicationTableController instance in the main .nib
file and set it to be the delegate. This object is already the data source. Now it will do double duty by performing as both
data source and delegate. Complex applications might use different objects, but there's nothing wrong with using the same
object for both functions in a simple design such as this example.

To control whether a table view will allow a column to be selected, the -tableView:
shouldSelectTableColumn: method must be implemented. Other table view delegate methods can control
selections of rows and notify the delegate of changes in the selection. To make the Number column unselectable, add this

code to MultiplicationTableController.m:

- (BOOL)tableView:(NSTableView *)tableView
 shouldSelectTableColumn:(NSTableColumn *)tableColumn
{
 int column = [[tableColumn identifier] intValue];
 return (column > 0 ? YES : NO);
}

When you rebuild the application, it should no longer be possible to select the Number column.

Master-Detail Interfaces with NSTableView

The ScoreTable example on www.cocoaprogramming.net shows how to implement a master-detail interface with a table
view. This example acts as an editor for high score tables. Each table row is a score entry with name, score, level, game
time, and whether the player cheated. The basic interface is shown in Figure 18.6.

Figure 18.6. Master-detail interface in the ScoreTable example.

In a master-detail interface such as this, one user interface object acts as a master, controlling what the associated detail
objects display. In this example, the table view at the top of the window is the master. The Details box in the lower half of
the window is the detail. The detail changes to reflect the row selected in the table view.

This example is implemented using the NSDocument application architecture. This architecture uses the Model-View-
Controller paradigm (MVC) introduced in Chapter 6 , "Cocoa Design Patterns." For this example, the view portion is built
entirely within Interface Builder using standard Cocoa classes. The MyDocumentModel class implements the model
portion. It is an NSObject subclass. The MyDocument class implements the controller portion. MyDocument is a
subclass of NSDocument.

To remain relatively simple, the document model is implemented using Foundation Kit objects. Each row of the table is
represented by an NSMutableDictionary. The whole table is represented by an NSMutableArray containing all
the dictionary objects. As dictionaries are added, removed, and modified the array is always kept in sorted order. The
model implements methods to pack and unpack itself into NSData objects. It also implements several accessor methods
that can be used to discover various information about the model's contents. Because it only contains relatively
straightforward manipulation of Foundation Kit objects, and to save space here, the source code for the model class will not
be shown. Refer to the full source code for this example on www.cocoaprogramming.net.

NSDocument Methods in ScoreTable's MyDocument Class

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

The MyDocument class implements the controller for the ScoreTable example. It has two primary purposes. First, pass the
results of user input on to the model. Second, reflect changes to the model in the user interface. As a subclass of
NSDocument, it must implement a basic set of methods to complete the Cocoa document initialization, loading, and
saving functionality. The implementations are

- (NSString *)windowNibName
{
 return @"MyDocument";
}

- (void)windowControllerDidLoadNib:(NSWindowController *) aController
{
 [super windowControllerDidLoadNib:aController];
 [self performSelector:@selector(updateDetail:) withObject:nil
afterDelay:0.01];
}

- (NSData *)dataRepresentationOfType:(NSString *)aType
{
 return [[self model] dataRepresentationOfType:aType];
}

- (BOOL)loadDataRepresentation:(NSData *)data ofType:(NSString *)aType
{
 return [[self model] loadDataRepresentation:data ofType:aType];
}

The -windowNibName method returns the name of the .nib file that implements the document's user interface. A copy
of the .nib will be loaded for each document opened. The -windowControllerDidLoadNib: method handles final
initialization details by sending a delayed invocation of the -updateDetail: method to self. The -updateDetail:
method synchronizes the detail user interface to match whatever is selected in the master table view.

The data methods implement save and load functionality, respectively, and simply forward the messages on to the model,
returning the results from the model. The -model method returns the document's model class. It is an instance of
MyDocumentModel and is created and configured the first time it is needed. The code for -model looks like this:

- (MyDocumentModel *)model
{
 if (!_model) {
 _model = [[MyDocumentModel alloc] init];
 [_model setDocument:self];
 }
 return _model;
}

MyDocument Communication with MyDocumentModel

A few methods are required to keep the user interface in synchronization with the model. An important part of that is to
keep the master and detail interfaces in sync. That is the -updateDetail: method's primary purpose. The code for it
looks like this:

- (void)updateDetail:(id)sender
{
 int row = [tableView selectedRow];
 MyDocumentModel *model = [self model];
 NSMutableDictionary *theRecord;

 [nextIDField setIntValue:[model nextID]];

 [totalRecordsField setIntValue:[model rowCount]];
 if (row < 0) {
 [currentIDField setStringValue:
 [[NSBundle mainBundle] localizedStringForKey:@"NoSelectionID"
 value:@"None" table:nil]];
 } else {
 [currentIDField setIntValue:[model recordIDForRow:[tableView
selectedRow]]];
 }
 [updateButton setEnabled:NO];
 [deleteButton setEnabled:NO];
 if (row < 0) {
 return;
 }
 theRecord = [[self model] recordForRow:row];
 [nameField setStringValue:[theRecord objectForKey:NAME_KEY]];
 [scoreField setStringValue:[theRecord objectForKey:SCORE_KEY]];
 [levelField setStringValue:[theRecord objectForKey:LEVEL_KEY]];
 [timeField setStringValue:[theRecord objectForKey:TIME_KEY]];
 [cheatedSwitch setState:[[theRecord objectForKey:CHEAT_KEY] intValue]];
 [currentIDField setIntValue:[[theRecord objectForKey:ID_KEY] intValue]];
 [deleteButton setEnabled:YES];
}

The implementation begins by copying attributes of the model into the detail user interface. It then disables the delete and
update buttons. The update button will be enabled only after the user changes something in the detail. (There's nothing to
update unless something is changed!) The delete button will be re-enabled near the end of the implementation if there is an
actual selection.

If there's no selection, the table view will claim that the selected row is -1. If no row is selected, as would be the case in an
empty document, this method returns without modifying the rest of the detail interface. It could have alternatively set all
the detail's fields to some default values.

If there is a selection, the model's dictionary for the selected row is retrieved. The various detail fields are populated with
values looked up from the dictionary that represents the selected row. Finally, because there's actually a row selected, the
delete button is enabled.

The model can send two messages to the MyDocument class. The first, -modelChanged, is sent whenever the model's
data changes. Both the master and detail views need to be updated to reflect the model's changes. The code for -
modelChanged is as follows:

- (void)modelChanged
{
 [tableView reloadData];
 [self updateDetail:nil];
}

The model can also send the -selectRecordWithID: method to change the master's selection programmatically. This
is done when a new record is added so that the new record is automatically selected by the master. The code determines
which row should be selected, and then sends a message to the table view, asking it to change its selection.

- (void)selectRecordWithID:(int)recordID
{
 int row = [[self model] rowForRecordID:recordID];
 [tableView selectRow:row byExtendingSelection:NO];
}

NSTableView Methods in ScoreTable's MyDocument Class

The important part of this example is the methods that connect the table view to the model. The MyDocument class
functions as both the data source and delegate for the table view. The required table view data source methods simply
query the model's attributes, as follows:

- (int)numberOfRowsInTableView:(NSTableView *)tableView
{
 return [[self model] rowCount];
}

- (id)tableView:(NSTableView *)tableView
 objectValueForTableColumn:(NSTableColumn *)tableColumn row:(int)row
{
 return [[self model] stringForColumnNamed:[tableColumn identifier] row:row];
}

The model implements the -rowCount method to return the number of objects in its internal array. The model method -
stringForColumnNamed:row: returns a string taken from one of the dictionaries stored in its array. It uses the row
parameter to choose the dictionary from the array, and the column name to choose which key to return from the dictionary.

The column identifiers have been set in Interface Builder to match the dictionary keys used by the model. This makes the
implementation very straightforward. The column identifier can be used without modification as a dictionary key. This also
means that items stored in the dictionary that are shown only in the detail could easily be added to the table by simply
adding a column with the correct identifier. This technique of using column identifiers as dictionary keys is common.
That's why identifiers can be any string and aren't restricted to only integers the way that control tags are.

The MyDocument class also implements the NSTableView delegate method -
tableViewSelectionDidChange:. When the table view's selection is changed, the controller needs to know about
it so that the detail can be updated. Here's the method implementation:

- (void)tableViewSelectionDidChange:(NSNotification *)notification
{
 [self updateDetail:nil];
}

MyDocument Action Methods

The only other important methods remaining in the MyDocument class implementation are four action methods to
respond to user input in the detail interface. Each of the three buttons (add, update, and delete) needs its own action
message. Another action for all the other user interface elements is used to alert the document to the fact that the user has
edited something in the detail.

To delete a record, the ID of the currently selected record is passed on to the model. The model will delete the record. The
code for the delete action is

- (IBAction)deleteSelectedRecord:(id)sender
{
 MyDocumentModel *model = [self model];
 int selectedID = [model recordIDForRow:[tableView selectedRow]];
 [model deleteRecordWithID:selectedID];
}

To change the values in an existing record, the values in the detail and the selected row are sent to the model. It replaces the
values in the dictionary for the selected row with the new values. The code looks like this:

- (IBAction)updateSelectedRecord:(id)sender
{

 MyDocumentModel *model = [self model];
 int selectedID = [model recordIDForRow:[tableView selectedRow]];
 [model changeRecordWithID:selectedID
 name:[nameField stringValue]
 score:[scoreField intValue]
 level:[levelField intValue]
 time:[timeField stringValue]
 cheated:[cheatedSwitch state]];
}

To add a new record, the information in the detail interface is sent to the model with a request to generate a new record. By
specifying an ID of -1, the model calculates and assigns a new, unique ID to the record. The only time an actual ID is
specified is when the undo machinery wants to undelete a record that was deleted by the user. Undeleted records need to be
reinstated with the same ID they originally had, not a new one. Here's the add action's code:

- (IBAction)addNewRecord:(id)sender
{
 [[self model] addRecordWithID:-1
 name:[nameField stringValue]
 score:[scoreField intValue]
 level:[levelField intValue]
 time:[timeField stringValue]
 cheated:[cheatedSwitch state]];
}

The last action method is called whenever the user alters a text field or check box in the detail. If there's a row selected in
the master, the change means that updates are now possible. Therefore, the update button is enabled. The code for the -
detailChanged: action is

- (IBAction)detailChanged:(id)sender
{
 if ([tableView selectedRow] >= 0) {
 [updateButton setEnabled:YES];
 }
}

Adding Undo/Redo Support to ScoreTable

The source code for the MyDocument action methods on the www.cocoaprogramming.net Web site also includes basic
support for undo. The add, delete, and update actions send the -setActionName: message to the document's default
NSUndoManager so that the undo and redo menu items can be named something more intelligent than just Undo or
Redo. For example, the add action sets the undo action name to a localized version of @"Add Record". After the user
adds a record to the document, the undo menu item reads "Undo Add Record." The single line of code added to the -
addNewRecord: action is this:

[[self undoManager] setActionName:
 [[NSBundle mainBundle] localizedStringForKey:@"AddRecordUndoAction"
 value:@"Add Record" table:nil]];

The -deleteSelectedRecord: and -updateSelectedRecord: actions have similar calls to set the undo
action's name to Delete Record or Change Record, respectively.

Inside the model itself, the undo stack is given actions to undo changes to the model. The method to add a record records a
delete action on the undo stack. To do this, the undo manager needs to know a message to send to reverse the operation. It
also needs to know where to send the message.

The -prepareWithInvocationTarget: message tells the undo manager the message's destination. The prepare

http://www.cocoaprogramming.net/

message returns the undo manager to allow for a nested message send. The next message sent to the undo manager is
captured and stored for later use if the user wants to do an undo. So, inside the add record method of the model is the
following line of code:

[[[document undoManager] prepareWithInvocationTarget:self]
 deleteRecordWithID:newID];

If the user later chooses to undo the add record operation, the undo manager sends the captured message. It would be as if
this code had been invoked:

[modelObject deleteRecordWithID:newID];

The model's delete method performs a similar call to the undo manager to add the deleted record back to the model. The
change record method sets up an undo call to itself to revert the values.

NOTE

No specific calls are needed to set up redo. The calls that set up undo also implicitly set up redo. The undo
manager knows that any undo operation set up while it is in the process of doing an undo amounts to a redo
operation. It handles these appropriately.

The complete implementation of undo in ScoreTable amounts to six lines of code. Three messages are sent from the action
methods in MyDocument to set the names of undo operations. They are optional, but add a nice touch to the user
interface. The other three messages are the ones sent from the MyDocumentModel to add undo operations to the undo
stack. The undo manager handles everything else.

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

Outline Views

Outline views display hierarchical information as an outline. Each branch node has a disclosure triangle to
indicate that it has children. Clicking the triangle toggles it between pointing right or down. If the triangle points
right, none of its children are displayed. If the triangle points down, all the children are displayed.

In Cocoa, the NSOutlineView class implements outline views. NSOutlineView is actually a subclass of
NSTableView. This chapter's discussion of table views is a prerequisite to understanding outline views. If that
material is unfamiliar, it should be reviewed before proceeding.

Because an outline view displays a model that is hierarchical and not tabular, the NSOutlineView class has
all new data source and delegate methods. These new methods are similar to what a table view would use, but
are crafted to better match a hierarchical data model. There are also a few new methods implemented by
NSOutlineView, but many of the inherited NSTableView methods are still used to manipulate outline
views. In Interface Builder, the Attributes inspectors for an outline view and its columns are identical to those
used for table views.

The TaskOutliner example from www.cocoaprogramming.net is referenced throughout the discussion of the
outline view class. The example is based on NSDocument and uses foundation classes for its data model. The
interface for a document is a single outline view with three columns. The columns contain a check box to
indicate task completion, the task name and outline, and a description of the task. Figure 18.7 shows the user
interface.

Figure 18.7. The user interface of the TaskOutliner example.

Internally, the TaskOutliner model uses an NSMutableDictionary for each node. The children of each node
are stored in NSMutableArray objects. The root level of the model is an NSMutableArray, containing all
the node objects (dictionaries) that are at the outline's top level. Besides the children array, each node also
contains NSString objects for its name and description and an NSNumber for the state of the check box.

The discussion of this example doesn't show all the NSDocument code or the code for manipulating the model.
Only code relating to the outline view's data source and delegate methods are shown in this book. Download the
example from www.cocoaprogramming.net to see the rest of the code.

The Outline Table Column

Outline views treat exactly one of their columns as the hierarchical or outline column. The outline column
usually displays the node's name and the disclosure triangles. All other columns are optional. Any additional
columns would be used to display node attributes other than the node's name. All columns other than the outline

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

column are standard NSTableColumn instances, so they can be manipulated just as they would be for a table
view.

When setting up an outline view in Interface Builder, the leftmost column is always the outline column. If
columns are dragged around so that a different column is moved into the leftmost slot, that column becomes the
outline column. This is only a limitation of Interface Builder, however. In code, any column can be designated at
the outline column. Just pass one of the outline view's NSTableColumn instances to the -
setOutlineTableColumn: method to mark it as the outline column. The current outline column is returned
by -outlineTableColumn. The -tableColumnWithIdentifier: method inherited from
NSTableView can be used to find an NSTableColumn instance.

Another way to have a column besides the leftmost column being the outline column is to programmatically
move another column into the leftmost slot. The TaskOutliner example takes that approach when setting up a
new document. In the -windowControllerDidLoadNib: method of the MyDocument class, one of the
columns is reconfigured to display its cell contents as a check box instead of a text string. That column is then
moved into the leftmost slot. The code looks like this:

- (void)windowControllerDidLoadNib:(NSWindowController *)aController
{
 int checkboxColumnIndex;
 NSTableColumn *checkboxColumn =
 [outlineView tableColumnWithIdentifier:CHECK_KEY];
 NSButtonCell *checkbox = [NSButtonCell new];
 [checkbox setButtonType:NSSwitchButton];
 [checkbox setTitle:@""];
 [checkbox setImagePosition:NSImageOnly];
 [checkboxColumn setDataCell:checkbox];
 checkboxColumnIndex = [outlineView columnWithIdentifier:CHECK_KEY];
 [outlineView moveColumn:checkboxColumnIndex toColumn:0];
}

This code first obtains the NSTableColumn that should display the check boxes. It then creates an
NSButtonCell object and sets it up to be a check box. That cell is set as the data cell for the column. All rows
in that column will display check boxes instead of a text string. Finally, the -moveColumn:toColumn:
method is used to move the check box column to the leftmost position. Because -moveColumn:toColumn:
requires column indices and not column objects, the index has to be looked up with the -
columnWithIdentifier: method.

NOTE

Avoid confusing the -tableColumnWithIdentifier: and -columnWithIdentifier:
methods. The first returns an NSTableColumn instance, whereas the second returns an integer
index.

NSOutlineView Data Sources

Data sources for outline views are similar to those for table views. The outline view keeps track of which
disclosure triangles are expanded and handles assigning rows to each visible item in the hierarchy. As a result,
the questions it asks of the data source are primarily about the model's hierarchy.

Instead of asking for things by row index, the outline view asks the data source about items. An item is an
arbitrary object that is passed back and forth between an outline view and its data source to identify a particular
node in the hierarchy. The item itself is a token; its purpose is like that of a tag or identifier in a control class.
The outline view will never send a message to the item itself. The root level of the hierarchy is a special case. It
is always specified as a nil item.

NOTE

It is common to use the model object that actually represents a particular model node as the item
passed between outline view and data source for that node. Doing this reduces the need to search
through the model to find nodes as the outline view requests them.

Required Methods

These four methods must all be implemented by an outline view's data source:

- (BOOL)outlineView:(NSOutlineView *)outlineView
 isItemExpandable:(id)item
- (int)outlineView:(NSOutlineView *)outlineView
 numberOfChildrenOfItem:(id)item
- (id)outlineView:(NSOutlineView *)outlineView
 child:(int)index ofItem:(id)item
- (id)outlineView:(NSOutlineView *)outlineView
 objectValueForTableColumn:(NSTableColumn *)tableColumn
 byItem:(id)item

NOTE

When implementing these four methods, it is important to take care to make them as efficient as
possible. The NSOutlineView object calls these methods very often, so the performance of an
outline view depends heavily upon these methods being fast.

The -outlineView:isItemExpandable: method is used to determine if a given item has children. If NO
is returned, the node for the item in question is treated as a leaf node and no disclosure triangle appears.
Returning YES tells the outline view that there are children and a disclosure triangle appears.

If a disclosure triangle is opened, the outline view needs to expand that part of the outline. It asks the data source
how many rows need to be added for all the children of the expanding node. The -outlineView:
numberOfChildrenOfItem: method is used to get this number.

After the outline view knows how many children belong to the node, it sends the -outlineView:child:
ofItem: message multiple times to obtain each of the children. If model objects are being used as the items,
this method simply needs to return the requested child node. The child indices run from zero to one less than the
number returned previously by the -outlineView:numberOfChildrenOfItem: method. If the model
stores its nodes' children in NSArray objects, the index can be used directly to find the child object in the array.

The final required method is the -outlineView:objectValueForTableColumn: byItem: method.
This is the only method that actually puts a value into a cell in the outline view. This method is called for every

row of every column, including the outline column. The return value should be an NSString, NSNumber, or
other object that can be used as an argument to the NSCell method -setObjectValue:. As with the table
view, the column's identifier makes a nice key for looking up information in an NSDictionary. If model
objects are used as items and the model object for a node is an NSDictionary, the implementation of this
method becomes trivial, as seen in the TaskOutliner example.

Required Methods as Implemented by TaskOutliner

The TaskOutliner example implements all four required outline view data source methods by using model
objects as the item objects passed between data source and outline view. The model is composed of an
NSArray at the root level. The array contains all the top-level nodes. A completely unexpanded outline view
displays only these nodes. Each node in the model is an NSDictionary. The constant CHILD_KEY is used as
a key in every node's dictionary to return an NSArray containing a list of all the children nodes.

To simplify the implementation of the data source methods, a macro is used to obtain the children array. The
macro is given an item, or node, in the hierarchy with the name item. If item is nil, the root level NSArray
object, named dataStore, is used as the child array. Otherwise, the child array is retrieved from the node/item
itself. The code is as follows:

#define GET_CHILDREN NSArray *children; \
if (!item) { \
 children = dataStore; \
} else { \
 children = [item objectForKey:CHILD_KEY]; \
}

With this macro, the data source methods become simple. The item is expandable if the children array exists and
contains at least one object. The number of children is equal to the object count of the children array. And the
child for a particular index is the object at that index in the child array. The object value for a given cell is found
by using the table column's identifier as a dictionary key. Remember that the item passed to these methods is
always a node object from the model, an NSDictionary. Here is the code for all four required data source
methods in TaskOutliner:

- (BOOL)outlineView:(NSOutlineView *)ov isItemExpandable:(id)item
{
 GET_CHILDREN;
 if ((!children) || ([children count] < 1)) return NO;
 return YES;
}

- (int)outlineView:(NSOutlineView *)ov numberOfChildrenOfItem:(id)item
{
 GET_CHILDREN;
 return [children count];
}

- (id)outlineView:(NSOutlineView *)ov child:(int)index ofItem:(id)item
{
 // item is an NSDictionary...
 GET_CHILDREN;
 if ((!children) || ([children count] <= index)) return nil;
 return [children objectAtIndex:index];
}

- (id)outlineView:(NSOutlineView *)ov objectValueForTableColumn:
 (NSTableColumn *)tableColumn byItem:(id)item
{
 return [item objectForKey:[tableColumn identifier]];
}

Optional Methods

The main optional method for outline views enables cells to be edited in place. Most data sources will want to
allow this. The prototype for the delegate method is long:

- (void)outlineView:(NSOutlineView *)outlineView setObjectValue:(id)object
 forTableColumn:(NSTableColumn *)tableColumn byItem:(id)item

Implementations of this method should use the column's identifier to determine what attribute of the item's node
should be changed. In the case of the TaskOutliner example, the item passed to this method is an
NSMutableDictionary, a node in the model, so the new object value can be inserted right into the
dictionary. The method also sets up an undo action to call itself with the old value so that the user can revert the
change. Here's the code.

- (void)outlineView:(NSOutlineView *)outlineView setObjectValue:(id)object
 forTableColumn:(NSTableColumn *)tableColumn byItem:(id)item
{
 NSString *theKey = [tableColumn identifier];
 NSString *oldValue = [item objectForKey:theKey];
 if (([theKey compare:CHECK_KEY] == NSOrderedSame) ||
 ([oldValue compare:object] != NSOrderedSame)) {
 [[[self undoManager] prepareWithInvocationTarget:self]
 outlineView:outlineView setObjectValue:oldValue
 forTableColumn:tableColumn byItem:item];
 [item setObject:object forKey:theKey];
 [outlineView reloadItem:item];
 }
}

Notice that this whole method is bracketed inside of an if/then statement. The change to the node's dictionary is
not made if the value is a string that is the same value as what's already there. Without the if/then, the user action
of entering a cell to edit it, and then exiting immediately without making a change, would cause a spurious undo
operation to be added to the stack.

The actual method implementation of the -outlineView:setObjectValue:forTableColumn:
byItem: method in the TaskOutliner example is actually a bit more complex than the code shown here because
it uses more intelligent names for undo actions based on the column that was altered.

NOTE

In this implementation, the outline view is forced to reload the changed item. If the outline view is
calling this method, the reload is actually unnecessary because the outline view already knows
about the change and has already redisplayed the cell. The reload is needed only when the undo
manager is making the call in response to an undo or redo because the outline view needs to be
alerted to the change in the model.

Two additional data source methods are used to translate an item object into a persistent object and vice versa.
They are required for outline views that want to automatically save persistent state data about which nodes are
expanded and which are not. These features are beyond the scope of this book and, therefore, aren't discussed
here. The two methods in question are

- (id)outlineView:(NSOutlineView *)outlineView
 itemForPersistentObject:(id)object;
- (id)outlineView:(NSOutlineView *)outlineView
 persistentObjectForItem:(id)item;

There are also several optional data source methods that enable drag-and-drop support. Chapter 19 presents these
methods and discusses how they are implemented in TaskOutliner.

NSOutlineView Delegate Methods

Because outline views reference everything by item instead of by row number, the standard table view delegate
methods are not called by outline views. However, many of the new outline view methods are nearly identical to
the table view delegate methods, so understanding one set of methods makes the other easy to understand as
well. For example, the following outline view delegate methods function just like their table view counterparts
except for using an item instead of a row index and outlineView instead of tableView in the method
name:

- (void)outlineView:(NSOutlineView *)outlineView willDisplayCell:(id)cell
 forTableColumn:(NSTableColumn *)tableColumn item:(id)item
- (BOOL)outlineView:(NSOutlineView *)outlineView
 shouldEditTableColumn:(NSTableColumn *)tableColumn item:(id)item
- (BOOL)selectionShouldChangeInOutlineView:(NSOutlineView *)outlineView
- (BOOL)outlineView:(NSOutlineView *)outlineView shouldSelectItem:(id)item
- (BOOL)outlineView:(NSOutlineView *)outlineView
 shouldSelectTableColumn:(NSTableColumn *)tableColumn

Two outline view-specific delegate methods can be used to restrict the expanding or collapsing of an item:

- (BOOL)outlineView:(NSOutlineView *)outlineView shouldExpandItem:(id)item
- (BOOL)outlineView:(NSOutlineView *)outlineView shouldCollapseItem:(id)
item

Return YES or NO to signal whether to expand or collapse operation should be allowed to proceed.

Several notifications are sent by outline views to notify of changes in selection, changes in column position and
size, and expanding or collapsing nodes. Each notification has an associated delegate message. Rather than
listing them all here, refer to the Cocoa documentation for all the details.

Other NSOutlineView Methods

Outline views are dealt with primarily through implementing the data source and delegate methods. They do
implement several useful methods, however. For example, an outline can be controlled with the following
methods:

- (void)expandItem:(id)item expandChildren:(BOOL)expandChildren
- (void)collapseItem:(id)item collapseChildren:(BOOL)collapseChildren
- (void)reloadItem:(id)item reloadChildren:(BOOL)reloadChildren
- (void)expandItem:(id)item
- (void)collapseItem:(id)item
- (void)reloadItem:(id)item

Expanding an item is like clicking a disclosure triangle to open a branch of the outline. Collapsing an item hides
its children. Reloading an item causes it to be redisplayed, and should be used to notify the outline view of any
model changes.

The three methods that take a Children argument allow for recursive expanding, collapsing, or reloading of
items. The other methods assume a value of NO and do no work recursively. To see whether an item is expanded,
use the -isItemExpanded method.

Outline views do the hard work of tracking which nodes are expanded and mapping all the visible items to rows.
To access that mapping facility, use the -itemAtRow: and -rowForItem: methods.

Indentation amounts for each row are also tracked by the outline view. To see what the indentation level is, use -
levelForItem: or -levelForRow:. The indentation level is an integer from 0 on up. Pass a floating-point
number to -setIndentationPerLevel: to set how many pixels the outline is indented per indentation
level. The current amount is returned by -indentationPerLevel.

When the outline column is rendered, it is actually rendered with two cells. One displays the disclosure triangle,
if any, and the other displays the column's contents. The contents cell is indented as necessary. The disclosure
triangles can be indented or not. The default is to indent the triangles with the contents, so the marker can be said
to "follow" the content cell. The other option is to have all the disclosure triangles aligned vertically. Sending NO
to the -setIndentationMarkerFollowsCell: method aligns the disclosure triangles vertically. The
current setting is returned by -indentationMarkerFollowsCell.

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

Browsers

Browsers present a multiple column interface and are designed to display hierarchically organized information.
For example, the column mode of the Finder uses a browser to navigate the file system.

Cocoa uses the NSBrowser and NSBrowserCell classes to implement browsers. An NSBrowser instance is
a composite of many other objects. The object itself is normally contained within a horizontally scrolling scroll
view and offers the option of showing or hiding the horizontal scrollbar. Each column of the browser is a single
column NSMatrix containing one cell for each row. The cells are usually NSBrowserCell instances. The
column matrix is wrapped inside of a vertically scrolling scroll view. Because each column has its own scroll
view, each column can be scrolled independently. By having a different matrix for each column, the number of
rows can vary per column as well. Figure 18.8 shows how the various subview components of an NSBrowser
are laid out.

Figure 18.8. The subview layout used by the NSBrowser class.

Configuring an NSBrowser in Interface Builder

Because of the complexity of configuring browsers using code, they are usually set up in Interface Builder. The
Cocoa-Data palette, shown in Figure 18.1, has an NSBrowser instance on it. Figure 18.9 shows the Interface
Builder attributes inspector for NSBrowser instances.

Figure 18.9. Interface Builder's NSBrowser attributes inspector.

The browser's title, if present, appears in the browser's upper-left corner. It is set in the Browser Title box, but the
Is titled switch must also be turned on for the title to appear. The NSBrowser methods -setTitle:, -title,
-setTitled:, and -isTitled each correspond to this field and switch pair.

There are three switches to control what the browser allows regarding selections. One allows empty selections,
and another allows multiple selections. The third controls the selection of branches (cells with right pointing
arrows) and leaves simultaneously.

If empty selections are allowed, the rightmost column doesn't have to have any items selected. Typically, a
multiple column browser allows empty selections. Single column browsers sometimes require that something
always be selected. The -setAllowsEmptySelection: method can be used to manipulate this setting
programmatically. The current setting can be determined with the -allowsEmptySelection method.

If multiple selection is allowed, the rightmost column will allow more than one cell to be selected simultaneously.
The -setAllowsMultipleSelection: method can be used to control this. The -
allowsMultipleSelection method can be used to determine if multiple selections are allowed.

When multiple selection is allowed, the "Allow branch selection" switch has an effect. Although this switch is
always enabled, it only affects multiple selections. If turned on, a multiple selection can include a branch node. If
turned off, only leaf nodes can be selected. It is most common to allow branch selection. Consider the browser in
the Finder, where multiple selections can include files and folders. Sometimes a model precludes selecting
branches and leaves simultaneously, however. Use the -setAllowsBranchSelection: method to control
this from code. Use -allowsBranchSelection to see what the setting is.

The Separates columns switch is sometimes disabled. If the Is titled switch is on, the browser always separates its
columns. If there is no title, the Separates columns switch can be turned off to make the browser layout its
columns flush up against each other horizontally. Separated columns have a small gap between them. The -
setSeparatesColumns: method manipulates this setting. The -separatesColumns method can be used
to inspect this setting.

There is a scrollview enclosing the NSBrowser. The Has horizontal scroller switch turns on the scroll view's

horizontal scrollbar. There is no vertical scrollbar for the enclosing scroll view because all vertical scrollbars are
handled by scroll views inside of the browser. There is a separate scroll view for each column, and each always
has a vertical scrollbar that can't be turned off. Turning off the horizontal scrollbar is common for single column
browsers and browsers displaying a hierarchy of a known depth that are guaranteed to have enough room to show
all the columns they will ever display. Turning off the horizontal scrollbar should usually be avoided for multiple
column browsers because the user would have difficulty returning to columns that have scrolled out of view. As a
convenience, the NSBrowser class implements -setHasHorizontalScroller: to turn the horizontal
scroller of its enclosing scroll view on or off. Use -hasHorizontalScroller to see if the horizontal scroller
is available to the user.

Users can navigate a browser using the arrow keys if the Accepts Arrow Keys switch is on. The -
setAcceptsArrowKeys: method also controls this and the -acceptsArrowKeys method returns the
current setting.

All browsers created in Interface Builder send their actions when the user clicks a new cell or uses an arrow key to
move to a new cell. The behavior of sending an action when arrow keys are used can be turned on or off
programmatically using the -setSendsActionOnArrowKeys: method. There is no way to do this from
Interface Builder directly. The -sendsActionOnArrowKeys method returns the current setting.

The final setting in the inspector is Visible Columns. This sets how many columns will be shown simultaneously
and only affects what the user sees at a given moment. It does not set a cap on the total number of columns that
the browser can have; the model being displayed by the browser controls that. The content area of the scroll view,
whatever size it is, is distributed evenly between all the visible columns. As the browser changes in size, perhaps
in response to resizing the window, the number of columns remains constant, but their widths change. The -
setMaxVisibleColumns: method can be used to change this setting. The -maxVisibleColumns method
returns the current setting.

The primary strength of browsers is that they offer contextual information about a hierarchy as it is navigated.
Therefore, the more visible columns there are, the more useful the browser is for the end user. A single column
browser should be set for only one visible column, of course, because it is really just displaying a list. Multiple
column browsers should almost always display at least three columns so that there's enough navigation context to
help the user keep his bearings. The exception to this rule of thumb is a hierarchy that is only two levels deep or a
narrow interface such as the Open and Save panels.

Important NSBrowser Methods

Interface Builder lets the target and action of a browser be set. A browser can also have a double-click action, but
that cannot be set in interface builder. It must be set programmatically using the -setDoubleAction: method.
The -doubleAction method returns the selector of the current double click action. The double action is sent to
the same target as the regular action. Double actions enable the user to use single-clicks to navigate and double-
clicks to perform an operation on the selection. For example, a browser showing the filesystem would typically
use the double-click action to open selected files and launch selected applications.

When a browser is first displayed, it loads up the leftmost column with the items for the root of the hierarchy
automatically. There is also a method to trigger it to reload the root column. Because columns are numbered from
left to right, starting at zero, the -loadColumnZero method should be used to reload the browser from scratch
if a change in the model necessitates it. If a model change only affects one level of the hierarchy, there's no need
to reload the entire browser. A single column can be reloaded with the -reloadColumn: method. Only that
column is reloaded, so the method might need to be called more than once if a change requires children columns
(those to the right) to be reloaded. The -isLoaded method can be used to determine if a browser has been
loaded.

When a selection is made in a browser, it is tracked internally as a path through the model's hierarchy. Many of

the methods dealing with NSBrowser selections work in terms of the browser's path. For example the -path
method returns the current path selected in the browser. The return value is an NSString containing all the path
elements separated by a separator string. The separator is manipulated with the -setPathSeparator:
method. The current path separator string is returned by the -pathSeparator method. To programmatically
set the browser to a new path, use the -setPath: method, but remember to use the correct path separator.

If the path to the selection is unimportant, any of the -selectedColumn, -selectedRowInColumn:, -
selectedCellInColumn:, -selectedCell, or -selectedCells methods can be used to get the
selection. Unless a browser disallows multiple selections, though, the -selectedCells method should be
favored over the -selectedCell method. While -selectedCell still works for browsers that allow
multiple selections, the method only returns one item from the current selection. Code that always assumes there
is only one item in a selection is likely to not behave the way the user expects. The -
selectedCellInColumn: method can be used to get a single path element, but shouldn't be called for the
last column in the browser, as returned by the -selectedColumn method, if multiple selections are allowed.
Again, in the last column, there may be more than one cell selected. When changing the selection
programmatically, in lieu of the -setPath: method, a specific cell can be selected with the -selectRow:
inColumn: method.

Horizontal scrolling of the browser can be manipulated programmatically as well. The -
scrollColumnToVisible: method guarantees a particular column will be made visible. The -
numberOfVisibleColumns, -firstVisibleColumn, and -lastVisibleColumn methods return
information about what columns are visible.

A few other methods implemented by the NSBrowser class haven't been discussed here because they are used
more rarely. Consult the documentation to learn about the advanced functionality NSBrowser can offer that goes
beyond what is discussed here. The NSBrowser documentation is in the file /Developer/
Documentation/ Cocoa/Reference/ApplicationKit/ObjC_classic/Classes/NSBrowser.
html.

NSBrowserCell Class

Browsers use the NSBrowserCell class. This cell class adds the little arrow icon on the right side of the cell.
The arrow is used to differentiate between branch and leaf cells. A leaf cell is at the end of a hierarchy. It can be
selected, but won't cause an extra column to be added. A branch cell, when selected, causes the next column to the
right to be created and loaded.

When configuring a browser cell, the normal -setTitle:, -title, -setImage:, -image, and other cell
accessor methods apply. The -setLeaf: and -isLeaf accessors are added to change or determine,
respectively, whether the cell is a leaf or branch.

NOTE

A common mistake is to equate YES and NO with the presence of the arrow in a browser cell. The
message [browserCell setLeaf:YES] removes the little arrow from the cell. Branches have
arrows and leaves do not. If the cell should have an arrow, you should send the [browserCell
setLeaf:NO] message.

NSBrowser Delegates

Unlike table and outline views, browsers don't make a distinction between their data sources and delegates. The

browser's delegate is its data source. Furthermore, the browser doesn't ask for the string to be displayed in a cell.
Instead, it passes the cell to the delegate and lets the delegate configure the cell itself. This typically amounts to
setting the cell's title and flagging it as a leaf or branch in the hierarchy.

There are two types of browser delegates. A passive delegate allows the browser to manufacture cells as
necessary. This is the easiest way to implement browser delegates. All the examples in this chapter use this
approach. If custom cells are required, however, an active delegate would be used. Active delegates manufacture
all the cells for the browser. The browser determines whether its delegate is passive based on what methods it
implements. A passive delegate implements this method:

- (int)browser:(NSBrowser *)sender numberOfRowsInColumn:(int)column

The number of rows for the specified column should be returned. The browser uses the return value to
manufacture the needed cells to populate the column's matrix. An active delegate should implement this method
instead:

- (void)browser:(NSBrowser *)sender createRowsForColumn:(int)column
 inMatrix:(NSMatrix *)matrix

This method creates the cells for the requested column and puts them into the column's matrix. One these two
methods must be implemented. However, it is illegal to implement both. A delegate must be passive or active; it
cannot be both simultaneously.

This delegate method is used to configure the cell used for a given row in a particular column:

- (void)browser:(NSBrowser *)sender willDisplayCell:(id)cell
 atRow:(int)row column:(int)column

It is called for every cell that is visible. Cells that aren't visible are not configured until they have been scrolled
into sight, so this method is often called as the user scrolls through a column for the first time. The implication is
that showing a new column happens very fast because only the bare minimum of cells are configured when the
new column is selected.

The -browser:willDisplayCell:atRow:column: method is required for passive delegates, but is
optional for active delegates. If an active delegate chooses to configure all its cells in the -browser:
createRowsForColumn:inMatrix: method, it doesn't need to implement the -browser:
willDisplayCell:atRow:column: method.

Several other delegate methods described in the NSBrowser documentation allow the delegate to provide
column titles and affect programmatic changes in the browser's selection. There are also methods to notify the
delegate of any horizontal scrolling performed by the user. The details of these methods won't be covered in this
book. Refer to the documentation for the specifics.

Single-Column Browser Delegates

It is easy to create a browser delegate for a single column browser. As an example, the ClassBrowser example on
www.cocoaprogramming.net implements the ArrayBrowserDelegate class to display an array of
NSString objects in a single-column browser. This is a generic, reusable class that works well as the delegate
for any single-column browser.

There are two instance variables in the ArrayBrowserDelegate class. The first, browserElements, is the
array of strings to be displayed in the browser. Get and set accessor methods are implemented for this instance

http://www.cocoaprogramming.net/

variable. The other instance variable, browser, is a pointer to the browser that displays the array of values. The
pointer to the browser is used in the browserElements set accessor so that the browser can be notified that the
array changed and that it needs to have its data reloaded. The code for the set accessor is as follows:

- (void)setBrowserElements:(NSArray *)newArray
{
 [newArray retain];
 [browserElements release];
 browserElements = newArray;
 [browser loadColumnZero];
}

Two other important methods are the browser delegate methods. To keep this class simple, it is implemented as a
passive delegate. That means it enables the browser object to create all the row cells. A passive delegate
implements the -browser:numberOfRowsInColumn: method. Because it is displaying a one-dimensional
array, column zero should have as many rows as there are elements in the array. Any other column has zero rows.
Therefore, the method is implemented this way:

- (int)browser:(NSBrowser *)sender numberOfRowsInColumn:(int)column
{
 return ((column == 0) ? [browserElements count] : 0);
}

The other required delegate method is -browser:willDisplayCell:atRow:column:. This method is
required to configure each browser cell before it is displayed. Because the -browser:
numberOfRowsInColumn: method returns zero for every column other than zero, it is safe to assume that the
column argument to this method will always be zero. With that in mind, the row argument is used to pick a string
from the array. That string is used as the title for the browser cell. The implementation looks like this:

- (void)browser:(NSBrowser *)sender willDisplayCell:(id)cell
 atRow:(int)row column:(int)column;
{
 [cell setTitle:[browserElements objectAtIndex:row]];
 [cell setLeaf:YES];
}

The call to set the browser cell as a leaf ensures that the cell will not display the little arrow that would lead to the
next column. There is only one column in this browser, so all cells are leaf cells.

Multiple-Column Browser Delegates

Writing a delegate for a full-blown, multiple-column browser is more difficult than the single column case. The
browser asks for the number of rows in a given column by specifying column number. Column numbering starts
at the left and moves to the right. The leftmost column is the root of the hierarchy and is column zero.

The difficulty with multiple-column delegates is in associating the column number with a particular node in the
hierarchy. This process usually starts with a -path call to the browser. The browser's path is a string that lists
every column that is traversed to arrive at the currently selected cell. A path separator string separates the
elements of the path. The default is the Unix path separator /, but it can be set to anything. Code to take a path
string and turn it into an array of path element strings is as follows:

NSString *path = [classBrowser path];
NSString *separator = [classBrowser pathSeparator];

NSArray *selectionArray = [path componentsSeparatedByString:separator];

The column number passed to the delegate methods can be used as an index into selectionArray. It is also
possible to find a particular node in the hierarchy by traversing selectionArray as far as needed. Normally,
the root column (column zero) will have to be treated as a special case. Element zero of selectionArray is
always an empty string.

A complete example showing the implementation of a delegate for a multiple column browser is shown in the
ClassBrowser example on www.cocoaprogramming.net and is explained in the following section.

ClassBrowser Example

The ClassBrowser example shows how to create both multiple and single column browsers in a master-detail
relationship. The basic interface uses a multiple-column browser at the top of a window to browse the Objective-C
class hierarchy. The class browser is the master. The lower half of the window is a detail area to show information
about whatever class is selected in the master. The detail shows the class name and the superclass name in text
fields. It also contains two single-column browsers. One lists the name of all the instance variables in the class,
whereas the other browser lists all the methods implemented by the class. Figure 18.10 shows a screenshot of the
example program.

Figure 18.10. User interface of the ClassBrowser example.

ClassBrowser's Internal Model

This example uses two classes. The ArrayBrowserDelegate class has been described previously in this
chapter in the "Single Column Browser Delegates" section. The ClassBrowserController class
implements a multiple column browser delegate and manufactures the model used by the class browser.

The model displayed by the master class browser is built of standard Foundation Kit classes. For every class in the
Objective-C runtime, there is a class dictionary. The class dictionary has two keys. The first is NAME_KEY, which
points to an NSString instance containing the class name. The other is SUBCLASSES_KEY, which points to an

http://www.cocoaprogramming.net/

NSMutableArray. The array contains pointers to the class dictionaries of all the subclasses. This structure
creates a tree, with a dictionary at each node and the subclasses array defining the branches.

To define the top of the hierarchy, there is a rootClasses array containing the class dictionaries of all root
objects, or those that do not have superclasses. There is also a dictionary called classes, which contains all the
class dictionaries referenced by using the class names as keys. This makes it easy to look up a given class without
having to traverse the hierarchy. Because class names must be unique, this works well. (It wouldn't work for a
filesystem where node names aren't unique.)

Walking through the Objective-C runtime structures creates the model. The code to do this isn't shown here.
Appendix A, "Unleashing the Objective-C Runtime," shows example code to obtain a list of all the Class objects
in the runtime. It also shows how to obtain lists of every instance variable and methods in a given class. The code
used by ClassBrowserController to build its internal model mirrors those examples.

NOTE

One interesting aspect of building the data structure should be mentioned because the question arises
fairly often. The Objective-C runtime doesn't maintain a list of subclasses for each class. It only
knows the superclass of a given class. Because the model needs a list of each object's subclasses,
how do we get it? To do this, the model-creation code creates subclass lists as it walks through the
class objects creating class dictionaries. Each class is registered as a subclass of its superclass. One
by one, objects are added to the appropriate subclass array or the root class array. After the code has
passed through all the objects, the list of subclasses for every object is complete. Walking through all
the objects in the runtime in this manner is the only way to get a list of all the subclasses of a
particular class.

ClassBrowser Interface Builder Connections

The main .nib for the ClassBrowser example contains two instances of ArrayBrowserDelegate, one
instance of ClassBrowserController, and a single window. The window contains the interface shown in
Figure 18.10.

The instance variable and method browsers are each connected to their respective ArrayBrowserDelegate
object. The ArrayBrowserDelegate is connected as a delegate of the browser, and the browser is connected
to the browser outlet of the ArrayBrowserDelegate. The ivarController and
methodController outlets of the ClassBrowserController instance are connected to the appropriate
ArrayBrowserDelegate instance.

The ClassBrowserController object also has connections to the master class browser and the class and
superclass text fields. The master class browser has the ClassBrowserController set as its delegate. The
master class browser is also connected for target/action using the ClassBrowserController instance as a
target with the action -classBrowserChanged:.

Download the ClassBrowser example from www.cocoaprogramming.net, if you haven't already, and explore the .
nib file to see how these objects are connected together. Figure 18.11 shows a graph of all the connections in the
main .nib file.

Figure 18.11. The Interface Builder connections use by the ClassBrowser example program.

http://www.cocoaprogramming.net/

ClassBrowserController Model Accessors

A few methods to access the model are needed to be able to implement the browser delegate methods. The -
subclassCountForClassNamed: method returns the number of subclasses that a particular class has. This
is used to determine how many rows a particular column has. In the class browser, a given column shows all the
subclasses of the class selected in the column to its left. Therefore, a handy way to get the count of subclasses is
required. This method can also be used to determine if a class is a leaf or branch node. If no subclasses exist, it is a
leaf. The code for -subclassCountForClassNamed: is

- (int)subclassCountForClassNamed:(NSString *)className
{
 NSDictionary *classDictionary = [classes objectForKey:className];
 NSArray *subclassArray = [classDictionary objectForKey:SUBCLASSES_KEY];
 return [subclassArray count];
}

A more complex method is used to determine the class name that should be displayed at a given row and column
in the browser. To make this determination, it is necessary to parse the browser's path. The column name can be
determined from the parsed path array. The column name is the superclass of all the classes in the column, so the
row number can be used as an index into the subclass array of the superclass's class dictionary. A special case is
made for column zero, where the row number is the index into the root class array. The code looks like this:

- (NSString *)classNameAtRow:(int)row column:(int)column
{
 NSArray *selectionArray = [[classBrowser path]
 componentsSeparatedByString:[classBrowser pathSeparator]];
 NSArray *classArray = nil;
 NSString *className = nil;
 if (column == 0) {
 classArray = rootClasses;
 } else if (column <= [selectionArray count]) {
 NSDictionary *classDictionary;

 className = [selectionArray objectAtIndex:column];
 classDictionary = [classes objectForKey:className];
 classArray = [classDictionary objectForKey:SUBCLASSES_KEY];
 }
 className = [[classArray objectAtIndex:row] objectForKey:NAME_KEY];
 return className;
}

ClassBrowserController Implementations of NSBrower Delegate Methods

Because passive delegates are simpler to implement, the ClassBrowserController object acts passively.
Therefore, it must implement the -browser:numberOfRowsInColumn: method. The implementation is
straightforward. Column zero is the root, so the number of objects in the root class array is returned for that
column. For all other columns, the browser's path is parsed to get the name of the column. The number of rows is
the number of subclasses for the class with the column name. Using the -subclassCountForClassNamed:
model accessor, the number of subclasses is returned. The code is as follows:

- (int)browser:(NSBrowser *)sender numberOfRowsInColumn:(int)column
{
 NSArray *selectionArray = [[sender path]
 componentsSeparatedByString:[sender pathSeparator]];
 NSString *columnSuperClassName;
 if (column == 0) {
 int rootCount = [rootClasses count];
 return rootCount;
 }
 columnSuperClassName = [selectionArray objectAtIndex:column];
 return [self subclassCountForClassNamed:columnSuperClassName];
}

Passive browser delegates must also implement the -browser:willDisplayCell:atRow:column:
method. The -classNameAtRow:column: accessor is used to get the class name that should be displayed in
the cell. The subclass count for that class name is used to determine whether the cell is a branch. The method
implementation configures the browser cell based on this information.

- (void)browser:(NSBrowser *)sender willDisplayCell:(id)cell
 atRow:(int)row column:(int)column;
{
 NSString *className = [self classNameAtRow:row column:column];
 int subclassCount = [self subclassCountForClassNamed:className];
 [cell setTitle:className];
 [cell setLeaf:((subclassCount == 0) ? YES : NO)];
 return;
}

ClassBrowserController's Action Method

The final method is the action method. This action is sent whenever the user clicks a cell in the browser or uses
the arrow keys to move to a new cell. The ClassBrowserController treats it as a notification that the class
browser's selection has changed. When the selection changes, the detail needs to be updated. The very last element
in the browser's selection path is the currently selected object, parsing the path and taking the last object gives the
class name.

In the action method implementation, the class name and superclass name fields are updated with the relevant
information. The two controllers for the method and instance variable lists are also updated. The
MethodNamesForClass() and InstanceVariableNamesForClass() functions return arrays of
method or instance variable names. Passing these to the ArrayBrowserDelegate instances cause the
associated browsers to be reloaded. The code looks like this:

- (IBAction)classBrowserChanged:(id)sender
{
 NSArray *selectionArray = [[classBrowser path]
 componentsSeparatedByString:[classBrowser pathSeparator]];
 NSString *selectedClassName = [selectionArray lastObject];
 Class selectedClass = NSClassFromString(selectedClassName);
 Class superClass = selectedClass->super_class;
 NSString *superclassName = @"";

 if (superClass) {
 superclassName = [NSString stringWithCString:superClass->name];
 }
 [classNameField setStringValue:selectedClassName];
 [superclassNameField setStringValue:superclassName];
 [ivarController setBrowserElements:
 InstanceVariableNamesForClass(selectedClass)];
 [methodController setBrowserElements:MethodNamesForClass
(selectedClass)];
}

With this method, the implementation of ClassBrowserController is complete. For the full source of the
ClassBrowserController class, including the model creation code, refer to the ClassBrowser example on
www.cocoaprogramming.net.

http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

Combo Boxes

Combo boxes are a cross between a text field and a pop-up button. A combo box contains an editable text field
cell and a button to the right of the text field cell. The button cell has a down pointing arrow, similar to a pull-
down list. Clicking the button opens a list of items from which the user can choose a value. Combo boxes also
support autocompletion as an option.

Cocoa uses the NSComboBox and NSComboBoxCell classes to implement combo boxes. These classes
inherit from NSTextField and NSTextFieldCell, respectively. All the text field manipulations
described in Chapter 10 apply to the text field portion of the combo box.

Because a combo box has a pull-down list from which a user can choose, it acts much like a pop-up button, a
collection of radio buttons, or single-column browser. Of these user-interface elements, the combo box is the
least preferred. The only time it should be used is when the user might want to be able to choose something that
isn't on the preset list of items. The other selection controls offer the user a rigid set of options. Combo boxes
offer that same list combined with a text field's capability to accept arbitrary data.

Although a combo box is a cell-based control, it has some additional complexity. The list portion of the combo
box can be maintained by the combo box or by a data-source object. When setting up a combo box, it is
important to decide early on whether it will use an external data source to manage the pop-up list. The methods
that can be sent to an NSComboBox or NSComboBoxCell without raising exceptions depend on the type of
data source.

Combo Boxes in Interface Builder

An NSComboBox instance can be found in Interface Builder on the Cocoa-Other palette between the pop-up
button and the horizontal sliders. Figure 10.7 in Chapter 10 shows this palette. Most of the features in the
NSComboBox inspector manage the text-field aspects of the combo box and work as described in Chapter 10
for text fields. Also, a few controls are specific to combo boxes. The inspector is shown in Figure 18.12.

Figure 18.12. The NSComboBox inspector in Interface Builder.

The Options box in the inspector adds three controls that aren't in the NSTextField inspector. The Uses data
source check box determines whether the combo box uses an external data source. If turned on, be sure to
connect a suitable object to the combo box's dataSource outlet. The Completes check box turns on auto
completion. The Number of visible items field determines how big the pop-up list is. The list has a scrollbar, so
this number should normally be kept small; the default value of five is usually best. These methods can be used
with NSComboBox or NSComboBoxCell to access these settings from code:

- (BOOL)usesDataSource
- (void)setUsesDataSource:(BOOL)flag
- (BOOL)completes
- (void)setCompletes:(BOOL)completes
- (int)numberOfVisibleItems
- (void)setNumberOfVisibleItems:(int)visibleItems

The other addition to the inspector beyond the text-field inspector is the Items box. This box only applies if the
Uses data source switch is off. This enables the list of items to be edited. Type an item into the text field and
click the plus (+) button to add it to the list. Select an item in the list, change it in the text field, and click the
button with the two circular arrows to change an item's value. Select an item in the list and click the minus (-)
button to delete it. The section "Managing a Combo Box Item List" later in this chapter shows how to manage
the list of items programmatically.

Other Combo Box Methods

A few combo box configuration options are not exposed by the Interface Builder inspector.

To get rid of the scrollbar in the pop-up list, use the -setHasVerticalScroller: method. Use the -
hasVerticalScroller method to see if the scroller is present. If the user moves the mouse pointer near
the top or bottom edge of the pop-up list, it autoscrolls. So a list without a scrollbar can still be useful, though
they might seem unfriendly to most users.

The height of the items in the pop up list can be changed and accessed with the -setItemHeight: and -
itemHeight methods, respectively. Both methods use float values. The spacing between items in the list
is set by sending an NSSize structure to the -setIntercellSpacing: method. The -
intercellSpacing method returns an NSSize.

The -scrollItemAtIndexToVisible: method makes sure that a particular item is found among the
visible items in the pop-up list. This can be sent even if the list is not currently visible. (In that case, the item
will be visible when the list pops up next.)

Managing a Combo Box Item List

The way the list of items in a combo box is managed depends on whether there is a data source. The methods
for manipulating internal data sources will raise exceptions if the combo box has an external data source and
vice versa. Regardless of how the item list is maintained, the -numberOfItems method always works. It
returns the number of items in the pop-up list.

Internal Data Sources

Several methods can be sent only to combo boxes that do not use a data source. They all raise exceptions if the
combo box is set to use an external data source. These methods work just like the NSMutableArray
methods with the similar names:

- (void)addItemWithObjectValue:(id)object
- (void)addItemsWithObjectValues:(NSArray *)objects
- (void)insertItemWithObjectValue:(id)object atIndex:(int)index
- (void)removeItemWithObjectValue:(id)object
- (void)removeItemAtIndex:(int)index
- (void)removeAllItems
- (NSArray *)objectValues

External Data Sources

An external data-source object must be provided when a combo box is set to use a data source. The -
dataSource and -setDataSource: methods are the accessors for the combo box's data-source outlet.
Both methods will raise an exception if the combo box isn't set to use a data source. The external data source is
expected to maintain the list of items by itself. When the list is changed, -reloadData should be sent to the
combo box.

The data source is required to implement two methods. The first is -numberOfItemsInComboBox:. It
must return the number of items in the combo box list as an integer. The second is -comboBox:
objectValueForItemAtIndex:. The object value returned should be a standard object such as an
NSString or NSNumber. Other object classes are usable only if the combo box has previously been
provided with a custom formatter to deal with the class in question. Both methods are quite basic. For example,
an object with a list of NSString instances inside the NSMutableArray itemArray could implement
these two methods like this:

- (int)numberOfItemsInComboBox:(NSComboBox *)aComboBox
{
 return [itemArray count];
}

- (id)comboBox:(NSComboBox *)aComboBox objectValueForItemAtIndex:(int)
index
{
 return [itemArray objectAtIndex:index];
}

NOTE

Two other optional data-source methods exist. They aren't discussed here because they are rarely
needed. The primary function of these extra methods is to speed up searches through the list of
items when doing autocompletion. Autocompletion works fine without them, however. For most
lists, the simple linear search done by NSComboBox is fast enough.

Selecting an Item Programmatically

The -selectItemAtIndex:, -deselectItemAtIndex:, and -indexOfSelectedItem methods
deal with the selection in a combo box. These only affect the pop-up list portion of the object. They do not
change the value of the text field portion. Conversely, the -setStringValue: and other value setting
methods don't change the selection in the combo-box list.

To make it easier to change both simultaneously, use the SetAndSelect category to NSComboBox and
NSComboBoxCell. The code is as follows:

File NSComboBox+SetAndSelect.h:

@interface NSComboBoxCell(SetAndSelect)

- (void)setAndSelectStringValue:(id)stringValue;
- (void)setAndSelectItemAtIndex:(int)index;
@end

@interface NSComboBox(SetAndSelect)

- (void)setAndSelectStringValue:(id)stringValue;
- (void)setAndSelectItemAtIndex:(int)index;

@end

File NSComboBox+SetAndSelect.m:

@implementation NSComboBoxCell(SetAndSelect)

- (void)setAndSelectStringValue:(id)stringValue
{
 [self setStringValue:stringValue];
 [self selectItemWithObjectValue:stringValue];
}

- (void)setAndSelectItemAtIndex:(int)index

{
 id objectValue;
 if ([self usesDataSource]) {
 int selectedIndex;
 id ds = [self dataSource];
 [self selectItemAtIndex:index];
 selectedIndex = [self indexofSelectedItem];
 objectValue = [ds comboBox:self
 objectValueForItemAtIndex:selectedIndex];
 [self setObjectValue:objectValue];
 } else {
 [self selectItemAtIndex:index];
 objectValue = [self objectValueOfSelectedItem];
 [self setObjectValue:objectValue];
 }
}

@end

@implementation NSComboBox(SetAndSelect)

- (void)setAndSelectItemAtIndex:(int)index
{ // pass it through to the cell object
 [[self cell] setAndSelectItemAtIndex:index];
}

- (void)setAndSelectStringValue:(id)stringValue
{ // pass it through to the cell object
 [[self cell] setAndSelectStringValue:stringValue];
}

@end

This category adds the -setAndSelectStringValue: and -setAndSelectItemAtIndex:
methods to NSComboBoxCell. Both methods are implemented so that they work correctly for both internal
and external data sources. A parallel category adds the same methods to NSComboBox, but implements them
to call the cell's counterpart methods. For most controls, the cell does all the work, so the methods on the
NSControl subclass just forward the message to the cell.

Combo Box Delegate Methods

Combo boxes can have delegates. The delegates will be warned when the combo box list is about to appear or
disappear. Delegates are also notified of any change in the selection. The following four methods are sent to
delegates that implement them:

- (void)comboBoxWillPopUp:(NSNotification *)notification
- (void)comboBoxWillDismiss:(NSNotification *)notification
- (void)comboBoxSelectionDidChange:(NSNotification *)notification
- (void)comboBoxSelectionIsChanging:(NSNotification *)notification

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

Custom Controls

Cocoa offers a rich set of user interface controls. Even so, there are times when a custom control is desired.
Usually, the controls provided in Cocoa are sufficient if enough creativity is employed. New kinds of controls can
be confusing to users, so they should be avoided unless absolutely necessary.

Much of the time it is possible to subclass an existing control, making just a minor alteration in the standard
behavior. Because each control is a little different, it is beyond the scope of this book to show the subtle details of
how to subclass every kind of control. Instead, an example of subclassing the NSControl and NSActionCell
classes directly is shown. The techniques used in the example show more about the internals of controls and
provide a starting point for working with the other classes. Subclassers should also study the Cocoa
documentation provided by Apple. Space limitations prevent this discussion from covering every option available.

The PieWidget example on www.cocoaprogramming.net shows how to create a simple pie widget. Visually, the
object is a circle. The value, representing an angle, is displayed by drawing a pie-shaped wedge. Figure 18.13
shows the user interface of the completed example.

Figure 18.13. The user interface of the PieWidget example.

The user interface is built in Interface Builder. Use a CustomView object off the Interface Builder Cocoa-
Containers palette as a stand-in for the PieWidget object. After the source code is part of the project, parse the
PieWidget.h file and set the custom view to the PieWidget class. Only two custom connections are in the .
nib file. The text field and the pie widget are each other's target, and each sends the -
takeDoubleValueFrom: action message. This way a change in the value of either the text field or the pie
causes the other object to change its value to match.

Subclassing NSControl

When subclassing NSControl, the one thing that absolutely must be done is to specify what cell subclass the
control uses. This is done by overriding the +cellClass method to return the desired cell class object. In the
case of the PieWidget, the cell subclass is PieWidgetCell. The code, therefore, looks like this:

+ (Class)cellClass
{
 return [PieWidgetCell class];
}

http://www.cocoaprogramming.net/

The NSControl subclass should also implement methods that mirror any methods the cell subclass adds to
NSCell and/or NSActionCell. This allows other programmers to send messages to the control or the cell
without having to know which kind of object they have. These are called cover methods because they simply pass
the message on to the control's cell and return anything the cell returns. The PieWidgetCell doesn't implement
anything special, so no cover methods are needed.

The final thing to add to the control subclass is overrides of any NSView or NSResponder methods. The
default implementations provided by NSControl are surprisingly rich, so normally very few methods actually
need to be overridden. Because the PieWidget behaves like a slider, it does need to override the -
acceptsFirstMouse: method, like this:

- (BOOL)acceptsFirstMouse:(NSEvent *)theEvent
{
 return YES;
}

That's all the code there is in the PieWidget class. There are no added instance variables, and only two one-line
methods. The PieWidgetCell class does all the real work. In most control/cell pairings, this is the case.

Subclassing NSCell

A custom cell subclass typically has two primary functions. First, it needs to draw itself. Second, it needs to
handle user events. If a custom cell is to participate in target/action, NSActionCell should be subclassed
instead of NSCell.

Cells that hold a value need to add one or more instance variables to maintain the value. Accessor methods also
need to be written. In the case of the PieWidgetCell, the value is an angle in degrees, so an instance variable
name value of type double is declared in the class. The basic accessors for this are

- (double)doubleValue
{
 return value;
}

- (void)setDoubleValue:(double)aDouble
{
 value = aDouble;
 [[self controlView] setNeedsDisplay:YES];
}

Accessors that use the float type, int type, and NSString objects are also implemented in the example code,
but they are not shown here. There is no need to implement methods such as -takeDoubleValueFrom:
because the NSCell implementations do the right thing.

Initialization of Custom Cells

Cells have two designated initializers. Certain cells generally favor one over the other. The two methods are

- (id)initImageCell:(NSImage *)image
- (id)initTextCell:(NSString *)aString

It is wise to provide a sane implementation of both methods so that things work well, no matter which method is

called. The -init method should also be overridden to call one of the designated initializers. The -init
method is used by a control subclass to set up its cell, so an implementation that calls the designated initializer is
necessary.

The PieWidgetCell class is set up from the PieWidget class using a call to -init. The
PieWidgetCell class implements all three methods. They aren't shown here because they don't do very much
beyond setting the control's double value to 0.0.

Custom Drawing in Cells

Most custom cells need to do custom drawing. Two methods can be overridden. The -drawWithFrame:
inView: method is used to draw the entire cell. If the custom drawing needs to control everything, including
borders around the cell, this is the method to override. If just the cell's contents are special, the -
drawInteriorWithFrame:inView: method can be overridden instead. It is only meant to draw the inner
contents of the cell.

The PieWidgetCell overrides the -drawInteriorWithFrame:inView: method. The code is as
follows:

- (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView
{
 NSBezierPath *path = [NSBezierPath bezierPath];
 NSRect drawFrame = cellFrame;
 double theAngle = [self doubleValue];

 theAngle = in360(theAngle);
 if (cellFrame.size.width > cellFrame.size.height) {
 drawFrame.size.width = cellFrame.size.height;
 }
 if (cellFrame.size.height > cellFrame.size.width) {
 drawFrame.size.height = cellFrame.size.width;
 }
 drawFrame = NSInsetRect(drawFrame, 1.0, 1.0);
 center = NSMakePoint(cellFrame.size.width / 2.0 + cellFrame.origin.x,
 cellFrame.size.height / 2.0 + cellFrame.origin.y);
 radius = center.x - 1.0;
 [[[self class] _fillColor] set];
 [path setLineWidth:1.0];
 [path moveToPoint:center];
 [path appendBezierPathWithArcWithCenter:center radius:radius
 startAngle:0.0 endAngle:theAngle clockwise:NO];
 [path closePath];
 [path fill];

 [[[self class] _borderColor] set];
 [path setLineWidth:1.0];
 [path moveToPoint:center];
 [path appendBezierPathWithArcWithCenter:center radius:radius
 startAngle:0.0 endAngle:theAngle clockwise:NO];
 [path closePath];
 [path stroke];
 [path removeAllPoints];

 [[NSColor blackColor] set];

 [path setLineWidth:2.0];
 [path appendBezierPathWithOvalInRect:drawFrame];
 [path stroke];
}

The variables radius and center are instance variables of the double and NSPoint types, respectively. They are
both used by the event methods to cache information about the cell's geometry. This method takes the cell's
current value and geometry and uses that information to calculate its center, radius, and angle for drawing the pie
wedge. An NSBezierPath object is used to do all the drawing.

Custom Event Handling in Cells

Event handling inside of a cell is handled by a tracking loop. The method that implements the tracking loop has
this prototype:

- (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame
 ofView:(NSView *)controlView untilMouseUp:(BOOL)flag

The -trackMouse:inRect:ofView:untilMouseUp: method is called by the cell's view when a mouse-
down event occurs within the cell's bounds. It sets up a loop to read mouse events until a mouse-up event occurs.
Through the process, the following three methods are called:

- (BOOL)startTrackingAt:(NSPoint)startPoint inView:(NSView *)controlView
- (BOOL)continueTracking:(NSPoint)lastPoint at:(NSPoint)currentPoint
 inView:(NSView *)controlView
- (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint
 inView:(NSView *)controlView mouseIsUp:(BOOL)flag

These three methods are the ones that should be overridden to customize a cell's behavior. It is normal to call the
super implementations of these methods when overriding them.

The -startTrackingAt:inView: method is sent when the initial mouse-down is received. The point where
the mouse-down occurred and the cell's view object are sent as parameters. This method should handle anything
that needs to be taken care of when the mouse-down occurs, such as becoming the first responder. The super
implementation returns NO if the cell isn't configured to deal with mouse drags, or is not continuous. If NO is
returned, this is the only event-handling message that is sent.

The PieWidgetCell implementation claims first-responder status for the control. It also sets a new value for
the cell based on the location where the mouse-down occurred. By calling the super implementation from
NSActionCell, the cell's action is sent. Here is the code:

- (BOOL)startTrackingAt:(NSPoint)startPoint inView:(NSView *)controlView
{
 BOOL ret = [super startTrackingAt:startPoint inView:controlView];
 float theAngle = angle(startPoint.x - center.x, startPoint.y - center.
y);
 NSView *cv = [self controlView];
 [[cv window] makeFirstResponder:cv];
 [self setDoubleValue:theAngle];
 return ret;
}

Every time the mouse moves during the tracking loop, the -continueTracking:at:inView: method is

sent. This method provides the point from the previous event as well as the current event's point. As with the start
of tracking, NSActionCell subclasses can call the super implementation so that the cell's action is sent.
Returning NO ends the tracking loop. The PieWidgetCell implementation changes the cell's value:

- (BOOL)continueTracking:(NSPoint)lastPoint at:(NSPoint)currentPoint
 inView:(NSView *)controlView
{
 BOOL ret = [super continueTracking:lastPoint
 at:currentPoint inView:controlView];
 float theAngle = angle(currentPoint.x - center.x,
 currentPoint.y - center.y);
 [self setDoubleValue:theAngle];
 return ret;
}

When the mouse exits the cell's boundaries or a mouse-up is received, the tracking ends. The -stopTracking:
at:inView:mouseIsUp: message is sent at that time. As with the continue messages, the previous and
current points are provided. Calling the super implementation in an NSActionCell subclass causes the cell's
action to be sent.

The mouse-up flag can be used to determine why the tracking ended. If it is YES, the mouse-up event was
received. If the mouse hasn't been released, and is dragged back within the bounds of the cell, the tracking starts
all over again with the start message. Overriding the +prefersTrackingUntilMouseUp to return YES
alters the tracking behavior so that the tracking never ends until the mouse is released.

The PieWidgetCell class overrides the stop method to set the cell's value. The code is

- (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint
 inView:(NSView *)controlView mouseIsUp:(BOOL)flag
{
 float theAngle = angle(stopPoint.x - center.x, stopPoint.y - center.y);
 [self setDoubleValue:theAngle];
 [super stopTracking:lastPoint at:stopPoint
 inView:controlView mouseIsUp:flag];
}

To get a cell to handle a complete tracking loop all the way until mouse-up, some of the cell's default settings need
to be changed when the cell is initialized. In particular, the cell needs to know that it is interested in handling
mouse drags, and it needs to know when to send actions. The PieWidgetCell class implements the following
method, which is called from the -init methods:

- (void)_setup
{
 [self setDoubleValue:0.0];
 [self setShowsFirstResponder:YES];
 _cFlags.actOnMouseDragged = YES;
 _cFlags.actOnMouseDown = YES;
 _cFlags.dontActOnMouseUp = NO;
 _cFlags.refusesFirstResponder = NO;
 [self setContinuous:YES];
}

Control Tint

Mac OS X supports two user-selectable tinting schemes for Aqua controls, blue and graphite. Blue is the default.
Graphite is a nearly, but not quite, grayscale color scheme. Custom controls should attempt to draw themselves
according to the user selected color scheme. The PieWidget class is designed to do this. The class methods
+_borderColor and +_fillColor return the two main colors used to render the cell. The current tint setting
is determined by using the following code:

int tint = [[NSUserDefaults standardUserDefaults]
 integerForKey:@"AppleAquaColorVariant"];

The value of tint is 6 for graphite and 1 for blue. The code in PieWidgetCell uses the graphite color scheme
if tint is 6 and defaults to blue for any other value. (There do not seem to be any constants in the Cocoa headers
for these values as of Mac OS X 10.1.) The code for the PieWidgetCell color handling isn't shown here, but it
can be found on www.cocoaprogramming.net. The full example caches the color values the first time they are
requested so that they can be looked up quickly thereafter.

When the user changes the tint in Preferences, the NSControlTintDidChangeNotification notification
is sent inside every Cocoa application on the system. The PieWidgetCell class object receives this
notification and resets its drawing colors to match the new tint setting. If the drawing colors aren't cached, there is
no need for the control itself to receive this notification. Cocoa ensures that all windows and controls are
redisplayed automatically whether they listen to the notification or not.

http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

Toolbars

Toolbars in Cocoa are strips of controls that can be used as shortcuts. A toolbar can display its items as a text menu
or as a graphical item. Items that don't fit across the window are put into an overflow menu accessed by a right-
pointing double arrow at the right edge of the toolbar. Toolbars are displayed in a strip across the top of the window,
just under the title bar, and are managed by the window itself.

The NSToolbar class implements a toolbar, and the NSToolbarItem class implements the individual items in a
toolbar. A toolbar item normally acts like a borderless button, sending an action message when it is clicked. This
kind of item needs to be assigned an image, title, target, and action. Toolbar items can also be configured to contain
any custom view or control instead. Subclassing NSToolbar and NSToolbarItem is very rare. Both classes are
flexible so customization can be done by calling instance methods instead of through subclassing. Custom code is
concentrated in the toolbar's delegate.

All toolbars require a delegate to function. The delegate actually acts as a delegate and a data source. Several
methods must be implemented before an object can be used as an NSToolbar delegate. As of the April 2002
developer tools release, Interface Builder doesn't support creation or modification of toolbars. Toolbars are set up
completely in code, primarily in the delegate implementation.

The ToolbarExample on www.cocoaprogramming.net shows the basics of setting up a toolbar in an NSDocument-
based application. It demonstrates the creation of a toolbar delegate. It also shows how to create an
NSToolbarItem that uses a custom view class. In this case, the PieWidget control developed in the "Custom
Controls" section of this chapter is embedded in the toolbar. Figure 18.14 shows a document window with the toolbar
and pie widget.

Figure 18.14. A document window with its toolbar visible.

NSToolbar Class

The NSToolbar class implements the toolbar itself. It must have a proper delegate to function correctly. Most of
the interaction with NSToolbar instances takes place when it is initially set up. The "Toolbar Setup" later in this
chapter section describes the methods commonly called when configuring a new toolbar instance. The "Other
NSToolbar methods" section covers other available toolbar methods.

Toolbar Setup

http://www.cocoaprogramming.net/

The first step in setting up a toolbar is to determine which object will perform as the toolbar's delegate. Any object in
the controller layer is appropriate. In an NSDocument-based application, it is most convenient for the
NSDocument subclass to be the toolbar's delegate. Some object, usually the delegate, needs to implement some
method that can be called to create the toolbar and attach it to the window. In the ToolbarExample code, the
MyDocument class implements -initializeToolbar and calls it from the -
windowControllerDidLoadNib: method.

The toolbar creation method needs to create a new toolbar instance, set basic toolbar attributes, set the toolbar's
delegate, and attach the toolbar to the window.

A new toolbar is initialized with the -initWithIdentifier: method. Identifiers for toolbars are a little
different from identifiers for other controls. Most controls use them as a unique way to identify the control. Toolbars
use identifiers as a means of determining the toolbar's type. Often, many instances of NSToolbar within a single
application have the same identifier. All toolbars that have the same identifier are automatically kept in sync across
the entire application. The identifier is also used for autosaving a toolbar's configuration. As a result, all toolbars for a
particular kind of document should use the same identifier. The -identifier method will return a toolbar's
identifier. There is no way to change the identifier after initialization.

The delegate object is accessed with the standard -setDelegate: and -delegate accessor methods. The -
setAllowsUserCustomization: method can be used to allow or disallow customization of the toolbar. The -
allowsUserCustomization method returns the current setting. In most cases, this should be enabled to
provide the greatest flexibility to the user.

The toolbar's configuration can be automatically saved in user preferences. The -
setAutosavesConfiguration: method controls autosaving. The -autosavesConfiguration method
returns the current setting. Autosaving is normally the easiest way to save and restore configuration information. It's
not usually worth the trouble to turn off autosaving, but those who insist on doing things the hard way have the
option to do so. The class documentation describes how to access the configuration dictionary for manual save and
restore of this information.

The toolbar's display mode determines whether the toolbar items are displayed as icons, text, or icons with text. It can
be controlled programmatically with the -setDisplayMode: method. The -displayMode method returns the
current setting. Both of these methods can work with one of four constants: NSToolbarDisplayModeDefault,
NSToolbarDisplayModeIconAndLabel, NSToolbarDisplayModeIconOnly, and
NSToolbarDisplayModeLabelOnly.

After a toolbar has been created and is ready to be used, it must be attached to a window. The NSWindow method -
setToolbar: is used to assign a toolbar to a window. The toolbar initialization code in ToolbarExample's
MyDocument class creates a toolbar, configures it, and attaches it to the document's window. It looks like this:

- (void)initializeToolbar
{
 NSToolbar *toolbar = [[NSToolbar alloc]
 initWithIdentifier:MyDocumentToolbarIdentifier];
 [toolbar setAllowsUserCustomization:YES];
 [toolbar setAutosavesConfiguration:YES];
 [toolbar setDisplayMode:NSToolbarDisplayModeIconOnly];
 [toolbar setDelegate:self];
 [[self window] setToolbar:toolbar];
 [toolbar release];
}

Other NSToolbar Methods

A few other methods implemented by NSToolbar might come in handy.

The -setVisible: method shows or hides the toolbar as if the user had clicked the lozenge at the upper right of a
window that has a toolbar. The current state can be determined with -isVisible. The customization palette is
brought up by calling the -runCustomizationPalette: action method. The -
customizationPaletteIsRunning method returns YES when the palette is in use.

The toolbar items can also be manipulated and reconfigured programmatically. Remember that changes to a toolbar
are automatically propagated to all other toolbars with the same identifier. The -items and -visibleItems
methods return immutable arrays listing the toolbar items. All items are returned with -items. If items have spilled
off the toolbar because it isn't wide enough to display them all, the -visibleItems method returns a list omitting
the items that have spilled off the right side of the toolbar.

Items can be removed with the -removeItemAtIndex: method. The index should match with the item's index in
the -items array. New items are added with the -insertItemWithItemIdentifier:atIndex: method.
It is important to realize that an identifier for the item is passed to this method, but not an actual NSToolbarItem
instance. The toolbar always uses its delegate to create the actual toolbar item.

Configuring NSToolbarItem Instances

Before describing how to implement a delegate for the NSToolbar class, it is necessary to explain how to configure
NSToolbarItem objects. This is because the toolbar delegate is required to create and configure toolbar items.

Toolbar items are initialized by specifying their identifier with the -initWithItemIdentifier: method.
Several predefined identifiers exist, as shown in Table 18.1. Toolbar items other than those in the table require the
developer to define their own identifiers. An item's identifier is returned by the -itemIdentifier method. After
the item has been added to a toolbar, the toolbar containing the item is returned by the -toolbar method.

Table 18.1. Standard Toolbar Item Identifiers

Constant Item Description

NSToolbarSeparatorItemIdentifier Draws a thin vertical separator line.

NSToolbarSpaceItemIdentifier Draws a fixed size gap between items.

NSToolbarFlexibleSpaceItemIdentifier Draws a variable-sized gap that will use up any
available space in the toolbar. Items to the right of this
item are pushed to the right edge of the toolbar.

NSToolbarShowColorsItemIdentifier Shows the standard color panel.

NSToolbarShowFontsItemIdentifier Shows the standard font panel.

NSToolbarCustomizeToolbarItemIdentifier Sends -runCustomizationPalette:to its
toolbar.

NSToolbarPrintItemIdentifier Sends -printDocument:to the first responder.

After an item has been initialized, it can be further configured. Most toolbar items are icon-based and behave like
buttons. When clicked, they send their action. Some items are configured to use a custom view instead. Any arbitrary
view subclass can be used. To set up an icon-based item, access the toolbar's icon image using -setImage: and -
image. To match the other icons, the image should be 32x32 pixels in size or smaller.

To use an arbitrary view, don't use the image methods. Use -setView: and -view instead. If a custom view is
being used, the -setMinSize:, -minSize, -setMaxSize:, and -maxSize methods can be used. These
methods define the acceptable sizes for the toolbar item. If there's room in the toolbar, the item will be at the
maximum size. As the toolbar gets crowded, the size will be shrunk to the minimum size. The custom view should be
usable and look good at all sizes within the range set by these methods. Be aware that toolbars are only 40 pixels
high, therefore, items taller than 32 pixels will look cramped in that space. The height of the sizes passed to these
methods should take that into account.

Whether the toolbar item uses a custom view or an icon, it can have a label. There are actually two labels: One label
is used in the toolbar itself, the other is used in the configuration palette. The label used in the toolbar is accessed
with -setLabel: and -label. The label for the palette is accessed with -setPaletteLabel: and -
paletteLabel. All four methods work with NSString objects. A ToolTip can be set and inspected for the item
using the standard ToolTip accessors -setToolTip: and -toolTip, respectively. Refer to Chapter 20,
"Adding Online Help," to learn more about ToolTips.

When a toolbar is in text-only mode, its items behave like menu items. This is also true for items that have been
pushed off the right end of the toolbar into the overflow menu. For icon-based toolbar items, this is not a problem.
For custom view-based items, the standard menu item form is always disabled. This can be changed by creating a
menu item and, perhaps, a submenu for the toolbar item. Use the normal NSMenu and NSMenuItem methods to
configure a menu item and submenu as appropriate. Use the NSToolbarItem -
setMenuFormRepresentation: and -menuFormRepresentation methods to set and get the
NSMenuItem used to represent the toolbar item when it is forced into a text-only mode.

The NSToolbarItem class also implements several of the typical NSControl and NSCell methods even
though it isn't a subclass of either class. The -setTarget:, -target, -setAction:, and -action methods
are supported for configuring the toolbar item's target and action. A tag can be manipulated with -setTag: and -
tag. The item can be explicitly enabled or disabled with the -setEnabled: and -isEnabled methods.

NOTE

Enabling can also be handled through automatic validation. The "Toolbar Item Validation" section later
in this chapter explains how to use automatic validation.

Creating an NSToolbar Delegate

The majority of code required to set up a toolbar is found in the toolbar's delegate. The delegate is required to
implement three methods that are much like data source methods.

The first of these required delegate methods, -toolbarAllowedItemIdentifiers:, tells the toolbar what
items it can legally contain. An NSArray containing item identifiers should be returned. This array must be all-
inclusive; items such as spaces, dividers, and so on all need to be included. All custom identifiers that can be used
should be returned in this array. The order of the items in the returned array determines the order that they appear in
the customization sheet. This method is implemented as follows by ToolbarExample:

- (NSArray *)toolbarAllowedItemIdentifiers:(NSToolbar *)toolbar
{
 return [NSArray arrayWithObjects:
 AngleToolbarItemIdentifier, SaveToolbarItemIdentifier,
 NSToolbarPrintItemIdentifier, NSToolbarShowColorsItemIdentifier,
 NSToolbarShowFontsItemIdentifier,
 NSToolbarCustomizeToolbarItemIdentifier,
 NSToolbarFlexibleSpaceItemIdentifier, NSToolbarSpaceItemIdentifier,
 NSToolbarSeparatorItemIdentifier, nil];
}

The next required delegate method is -toolbarDefaultItemIdentifiers:. It also returns an NSArray.
This time, the array contains the identifiers of the default toolbar configuration. It determines what appears in the
toolbar the first time the application is run. It is also shown in the toolbar configuration sheet, allowing the user an
easy way to reset the toolbar to the factory default settings. The implementation from ToolbarExample looks like this:

- (NSArray *)toolbarDefaultItemIdentifiers:(NSToolbar *)toolbar
{
 return [NSArray arrayWithObjects:
 NSToolbarPrintItemIdentifier, NSToolbarSeparatorItemIdentifier,
 NSToolbarShowColorsItemIdentifier, NSToolbarShowFontsItemIdentifier,
 NSToolbarFlexibleSpaceItemIdentifier,
 NSToolbarCustomizeToolbarItemIdentifier, nil];
}

The last required method is -toolbar:itemForItemIdentifier:willBeInsertedIntoToolbar:.
This method is required to return new NSToolbarItem instances that have been configured to match the identifier
specified. A flag is also provided to let the method know whether the item is destined for the toolbar or the
configuration sheet. Implementations of this method tend to be long because they have to completely configure each
kind of custom item supported by the toolbar. A typical implementation consists of a large if/then that has a clause
for each type of supported item.

NOTE

This delegate method is only called to configure custom items. Cocoa's predefined items, such as
NSToolbarSeparatorItemIdentifier, are configured by the toolbar itself. They are not the
delegate's responsibility.

The code in ToolbarExample creates two custom toolbar items. The first, SaveToolbarItemIdentifier, is a
simple icon-based toolbar item. The labels, ToolTip, image, target, and action are all configured appropriately.

The other toolbar item uses the PieWidget custom control, which was developed previously in this chapter. An
instance of PieWidget is created and configured. Some developers prefer to configure a control in Interface
Builder and connect it to an outlet of the delegate. This can save some code in the delegate's implementation if a
control that is supported by Interface Builder is used. After the PieWidget is created, it is added to the toolbar
item, and then the toolbar item's configuration is completed.

Finally, if the toolbar item identifier isn't recognized, nil should returned. Here is the code for the entire method:

- (NSToolbarItem *)toolbar:(NSToolbar *)toolbar
 itemForItemIdentifier:(NSString *)itemIdent
 willBeInsertedIntoToolbar:(BOOL)willBeInserted

{
 NSToolbarItem *toolbarItem = [[NSToolbarItem alloc]
 initWithItemIdentifier:itemIdent];

 [toolbarItem autorelease];
 if ([itemIdent isEqual:SaveToolbarItemIdentifier]) {
 [toolbarItem setLabel: @"Save"];
 [toolbarItem setPaletteLabel: @"Save"];
 [toolbarItem setToolTip:@"Save Document"];
 [toolbarItem setImage:[NSImage imageNamed: @"SaveDocumentItemImage"]];
 [toolbarItem setTarget: self];
 [toolbarItem setAction: @selector(saveDocument:)];
 } else if([itemIdent isEqual:AngleToolbarItemIdentifier]) {
 PieWidget *itemView = [[PieWidget alloc]
 initWithFrame:NSMakeRect(0.0, 0.0, 32.0, 32.0)];
 [itemView setDoubleValue:[angleField doubleValue]];
 [itemView setTarget:angleField];
 [itemView setAction:@selector(takeDoubleValueFrom:)];
 [angleField setTarget:itemView];
 [angleField setAction:@selector(takeDoubleValueFrom:)];
 [toolbarItem setLabel: @"Angle"];
 [toolbarItem setPaletteLabel: @"Angle Control"];
 [toolbarItem setToolTip: @"Set Angle"];
 [toolbarItem setView:itemView];
 [toolbarItem setMinSize:NSMakeSize(32.0, 32.0)];
 [toolbarItem setMaxSize:NSMakeSize(32.0, 32.0)];
 angleItem = toolbarItem;
 } else {
 return nil;
 }
 return toolbarItem;
}

There are two optional NSToolbar delegate methods, and both are also available as notifications. The first is the -
toolbarWillAddItem: method. This method is parallel to the NSToolbarWillAddItemNotification.
This method gives the delegate the opportunity to adjust the configuration of a toolbar item before it is added to the
toolbar. The notification's userInfo dictionary contains the item key to provide access to the toolbar item about
to be added.

All items, including the built-in ones, pass through this method. The ToolbarExample uses this fact to catch the
NSToolbarPrintItemIdentifier item. The ToolTip and target are changed. Here is the implementation's
code:

- (void)toolbarWillAddItem:(NSNotification *)notification
{
 NSToolbarItem *addedItem = [[notification userInfo] objectForKey:
@"item"];
 if ([[addedItem itemIdentifier] isEqual:NSToolbarPrintItemIdentifier]) {
 [addedItem setToolTip: @"Print Document"];
 [addedItem setTarget:self];
 }
}

The -toolbarDidRemoveItem: method and NSToolbarDidRemoveItemNotification notification are
sent when an item is removed from a toolbar. The ToolbarExample program connects a user interface element in the

document to the item in the toolbar, so that connection needs to be reset as part of the cleanup. The code for this is as
follows:

- (void)toolbarDidRemoveItem:(NSNotification *)notification
{
 NSToolbarItem *removedItem =
 [[notification userInfo] objectForKey: @"item"];
 if (removedItem == angleItem) {
 [angleField setTarget:nil];
 }
}

Toolbar Item Validation

Toolbar items are validated in a manner similar to the way menu items are validated. In fact, if the toolbar item is text
only or in the overflow menu, normal menu item validation is used. Toolbar items that are based on a custom view
might need to be validated explicitly by called -setEnabled:. Items that use icons are automatically validated by
calling the -validateToolbarItem: method on their targets. This method should be implemented just like the
-validateMenuItem: method. See Chapter 16 for more information about automatic control validation in
Cocoa.

In the ToolbarExample program, the toolbar item for saving the document is validated by checking to see if the
document has been edited. The print item is always validated, whereas other items are disabled by default. The code
for this is as follows:

- (BOOL)validateToolbarItem:(NSToolbarItem *)toolbarItem
{
 BOOL ret = NO;
 if ([[toolbarItem itemIdentifier] isEqual:SaveToolbarItemIdentifier]) {
 ret = [self isDocumentEdited];
 } else if ([[toolbarItem itemIdentifier]
 isEqual:NSToolbarPrintItemIdentifier]) {
 ret = YES;
 }
 return ret;
}

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

Status Bars

Cocoa programs can create their own status bar items. These are views that are inserted at the right side of the main
menu bar. When the status bar item's icon is clicked, a custom view appears in a fashion similar to opening one of the
menus in the menu bar. Some status items, such as the monitor resolution and airport controls, open menus. Others, such
as the sound volume control, open as a slider for system volume. Some example status items can be seen in Figure 18.15
in the "StatusItems Example" section later in this chapter.

Figure 18.15. Interface for StatusItems example with both status items turned on.

Status bar items have limitations. They are only available when the application that provides them is running. If space is
at a premium, they might not be available at all. If the active application's menu is so big that it would overlap a status
bar item, the item is dropped from the menu bar to make room for the application's menu. Some or all the items might
not be visible at any given time, especially on smaller resolution screens.

This means that status bar items should be created as handy shortcuts and should not contain any user interface controls
that aren't available in some other way from their host application. For example, many of the status bar items offered by
Apple, such as the monitors and sound controls, can be accessed through the Preferences application. Also, any
application that can add an item to the status bar should offer a user preference to turn the item on and off.

Working with NSStatusBar and NSStatusItem

The status bar portion of the menu bar is represented by the NSStatusBar class, which is a Singleton. It is used to
create new items. New items created by NSStatusBar are instances of the NSStatusItem class. These objects are
not available directly from within Interface Builder. Custom code is always required to create and manage status bar
items.

Creating an NSStatusItem

The NSStatusBar class is used to create a new status bar item. It is a Singleton, so it is never allocated directly.
Instead, the shared instance is obtained with the +systemStatusBar class method. The main function of the status
bar class is to act as a factory, manufacturing instances of NSStatusItem. Never allocate instances of
NSStatusItem directly. Use the NSStatusBar -statusItemWithLength: method to obtain an autoreleased
NSStatusItem.

NOTE

Because new NSStatusItem instances are autoreleased, they must be retained as long as they are to
remain a part of the status bar. When an item is deallocated, it is removed from the status bar. If an item
isn't appearing in the status bar, either there isn't room for it or the -retain was forgotten.

The length passed to -statusItemWithLength: really refers to the width of the status item. It can be one of three
things. For status items that are text-based, such as the menu bar clock, the length should be the constant
NSVariableStatusItemLength. This is the most flexible because it automatically adjusts the item's width to
match its size as the title is changed. For icon-based status items, such as the sound, display, and airport items built into
Mac OS X, use the constant NSSquareStatusItemLength. The icon should fit in the menu bar, which means it
should be no larger than 22x22 pixels. The third way to specify the length argument is by passing a constant width for
the status item. This is usually avoided because it is so inflexible.

The process of creating a status item causes it to automatically be added to the system-wide status bar. Nothing special
needs to be done to add it to the status bar.

Configuring an NSStatusItem

Status items are not NSControl subclasses; they inherit only from NSObject. However, NSStatusItem instances
respond to many of the NSControl methods and behave much like controls. For instance, status items can have a
target and action as if they were controls. The standard -setTarget:, -target, -setAction:, and -action
methods control the target and action.

Most status items actually have an associated menu instead of a target and action. In this case, the target and action are
used to invoke the menu. The menu is attached to the status item with the -setMenu: method and returned by the -
menu method. Both methods work with NSMenu instances. Refer to Chapter 16, "Menus," for information on creating
and manipulating menus. To make the status item behave like the other main menu entries, the status item should be
sent [myItem setHighlightMode:YES].

Whether the status item uses target/action or has a menu, it can be enabled and disabled. Use the -setEnabled: and -
isEnabled methods to control and inspect this setting, respectively. Because menu bar space is at such a premium, it
is often preferable to remove an item instead of just disabling it.

If the status item has a text title, such as the menu bar clock, the -setTitle: and -title methods can be used to
change the text. The item resizes as necessary to accommodate the text. Because menu bar space is limited, keep the text
as short as possible-a single word is best. If the text requires special font or formatting attributes, use the -
setAttributedTitle: and -attributedTitle methods.

Status items that use an icon instead of text should use an NSImage instance with the -setImage: and -image
methods to change the image used for the icon.

The final type of status item uses an arbitrary NSView object to render itself. This is far more flexible than using text or
an image, but also requires more work from the developer. View-based status items don't make use of their target/action
abilities. The view itself has to appropriately handle all events it receives. The -setView: and -view methods can
set up a view-based status item.

Removing an NSStatusItem

When a status item is no longer needed, it should be removed from the status bar. Use the NSStatusBar method -
removeStatusItem: to do this. After removing an item, be sure to release the item itself. Simply releasing an item
removes it from the status bar, but usually leaves an unsightly gap and/or artifacts in the bar. It is best to remove the
item explicitly before releasing it.

StatusItems Example

In the StatusItems example on www.cocoaprogramming.net, two status items can be added to the system-wide status
bar. One item creates a menu, named Menu, in the status bar. The other is a progress view that doesn't have an
associated menu and does nothing if the user clicks it. There is a check box to turn each item on and off. The

http://www.cocoaprogramming.net/

StatusItemsController class implements action methods for each of the check boxes to call. The interface for
this example is shown in Figure 18.15.

A Menu-Based NSStatusItem

The -toggleMenuStatusItem: action method is used to turn the menu-based status item on and off. The item is
turned on by asking the system-wide NSStatusBar to create a new NSStatusItem of variable length. The new
item is retained and stored in the menuItem instance variable. The Title is set to be Menu, and the menu is taken from
the menuItemMenu outlet. The outlet was set in Interface Builder to point to a custom configured NSMenu instance.
To turn the item off, it is removed from the status bar and released. The code for the -toggleMenuStatusItem:
method is

- (IBAction)toggleMenuStatusItem:(id)sender
{
 if ([sender state]) {
 if (!menuItem) { // turn it on
 NSStatusBar *bar = [NSStatusBar systemStatusBar];
 menuItem = [bar statusItemWithLength:NSVariableStatusItemLength];
 [menuItem retain];
 [menuItem setTitle:NSLocalizedString(@"Menu",@"")];
 [menuItem setHighlightMode:YES];
 [menuItem setMenu:menuItemMenu];
 }
 } else { // turn it off
 [[NSStatusBar systemStatusBar] removeStatusItem:menuItem];
 [menuItem release];
 menuItem = nil;
 }
}

A View-Based NSStatusItem

The -toggleProgressStatusItem: action method is used to turn the view-based status item on and off. The key
difference is that no title or menu is set. Instead, the status item's view is set from the progressItemView outlet.
This outlet is connected to a tiny NSBox that contains an NSProgressView. The box enables the progress view's
position in the menu bar to be more carefully controlled. It is important to make the box exactly 22 pixels high, just like
the menu bar. The code for the -toggleProgressStatusItem: method is

- (IBAction)toggleProgressStatusItem:(id)sender
{
 if ([sender state]) {
 if (!progressItem) { // turn it on
 NSStatusBar *bar = [NSStatusBar systemStatusBar];
 progressItem = [bar statusItemWithLength:
NSVariableStatusItemLength];
 [progressItem retain];
 [progressItem setView:progressItemView]; // instead of title
 [progressView startAnimation:nil];
 }
 } else { // turn it off
 [progressView stopAnimation:nil];
 [[NSStatusBar systemStatusBar] removeStatusItem:progressItem];
 [progressItem release];
 progressItem = nil;
 [progressItemView removeFromSuperview];
 }

}

Removing the status item is a little different from before because the progress view's animation needs to be stopped.
Also, the box needs to be explicitly removed from its superview to avoid leaving artifacts behind in the menu bar.

NOTE

Because the view used for this status item can be added to and removed from a visible location multiple
times, the StatusItemsController class retains it in the -awakeFromNib method. This keeps the
progressItemView outlet from ever being released accidentally.

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

NSQuickDrawView Class

The NSQuickDrawView class is an NSView subclass designed to make it easy to use
QuickDraw from within Cocoa. Just like any other view subclass, custom drawing code
should be put in the -drawRect: method implementation. The big difference is that
QuickDraw drawing commands, such as PaintRect(), FrameOval(), and so on can
all be used instead of Quartz calls.

NOTE

It is beyond this book's scope to discuss the QuickDraw API. Refer to
Chapters 11 and 12 of Carbon Programming by K.J. Bricknell, Sams
Publishing, ISBN 0-672-32267-6 for a discussion of QuickDraw.

During the time that a QuickDraw view is focused, the -qdPort method returns a
QuickDraw GrafPtr. A view is always focused before the Application Kit calls -
drawRect:, so custom drawing code in that method can safely assume that the return
value of -qdPort is valid. Because the GrafPtr returned is only valid when focus is
locked on the view, the return value shouldn't be kept past the view's next -
unlockFocus.

Although the NSQuickDrawView class allows QuickDraw commands, it doesn't require
them. It is possible to mix Quartz and QuickDraw drawing arbitrarily while doing custom
drawing. The QuickDraw example on www.cocoaprogramming.net shows an example of
this intermingling of drawing models. In the example, the two models are shown side by
side in the same view. Some of the differences between models, such as antialiasing,
become very apparent.

When mixing the two drawing models, it is important to remember that QuickDraw uses
what Quartz and Cocoa would call a flipped coordinate system. The origin is at the upper-
left corner of the view, and y-axis values increase as you move down the view. For
example, a point with a y-coordinate of 100 is below a point with a y-coordinate of 50. To
make sure that (0.0, 0.0) in Quartz refers to the same point in the view as (0, 0) in
QuickDraw, all NSQuickDrawView instances have flipped coordinate systems. This
means that coordinates passed to QuickDraw will work as expected, whereas the same
coordinates passed to Quartz will work as would be expected for a flipped coordinate
system instead of the default Quartz coordinate system.

http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Chapter 18. Advanced Views and Controls

Summary

This chapter describes several of the more complex Cocoa views and controls. The
NSTableView, NSOutlineView, NSBrowser, and NSComboBox classes are
explained in detail. Examples of data sources are provided for the table view, outline view,
and browser classes. Toolbars and status items are also covered. Several examples are
provided to show how to use some of the more complex options available.

The next chapter discusses the Mac OS X pasteboard and the Cocoa classes that work with
it. The pasteboard underlies the implementation of cut, copy, and paste as well as drag and
drop and services. Some of the examples from this chapter are extended to show how to
add drag and drop to them. New examples are also provided.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 19. Using Pasteboards

IN THIS CHAPTER

● Pasteboard Concepts
● Implementing Cut, Copy, and Paste
● Implementing Drag and Drop
● Implementing Services

Pasteboards are pervasive throughout Cocoa. They implement the Mac OS X clipboard,
drag and drop, file-type filters, and services. This chapter begins by discussing the basic
concepts underlying pasteboards on Mac OS X, and it explains the NSPasteboard
object in detail. It also shows how to implement basic cut, copy, and paste as well as drag
and drop. The chapter ends with information about implementing filters and services.

Book: Cocoa® Programming
Section: Chapter 19. Using Pasteboards

Pasteboard Concepts

Before diving into code, it is important to explain the basic concepts relating to
pasteboards. Although the code to work with pasteboards is generally simple, it is hard to
follow without understanding the concepts and designs employed in Cocoa and Mac OS X.

Mac OS X allows for multiple pasteboards. Every pasteboard is meant to be used for a
different purpose. For example, one pasteboard is the general pasteboard, also known as
the clipboard. Data involved in cut, copy, and paste operations pass through this
pasteboard. Another pasteboard is the drag and drop pasteboard. Any item being dragged is
placed on and retrieved from the drag and drop pasteboard. The "Obtaining a Pasteboard"
section later in this chapter describes all the available pasteboards.

NOTE

Don Yacktman also describes the concepts discussed in this chapter in broad
terms in the "Pastries" and "Service Call" developer articles on www.stepwise.
com. "Pastries" is found at http://www.stepwise.com/Articles/Technical/
Pastries.html, and "Service Call" is at http://www.stepwise.com/Articles/
Technical/Services.html.

Pasteboard Server

So that pasteboard data can be passed between applications easily, Mac OS X has a
pasteboard server. The pasteboard server is a hidden program running at all times. When
data is placed on the pasteboard, it is sent to the pasteboard server. When data is retrieved
from the pasteboard, the data comes from the pasteboard server.

The NSPasteboard class manages all communication with the pasteboard server
automatically. There should never be any need to deal with the pasteboard server directly.

NOTE

Curious developers might be interested in some other details of the
pasteboard server. The program's binary is found at /System/Library/
CoreServices/pbs and it is launched by the loginwindow program.
To see details about the running process, look for pbs in the list of processes
in ProcessViewer.

http://www.stepwise.com/
http://www.stepwise.com/
http://www.stepwise.com/Articles/Technical/Pastries.html
http://www.stepwise.com/Articles/Technical/Pastries.html
http://www.stepwise.com/Articles/Technical/Services.html
http://www.stepwise.com/Articles/Technical/Services.html

Pasteboard Data Types

Data can be represented in many different formats. Not every application or object can be
expected to deal with every data type. Pasteboards are aware of this and offer a solution.

Pasteboards call a particular data format a type. For example, data could be presented as a
Unicode string. The same data could also be a rich text string in HTML, RTF, or RTFD
format. The various types supported natively on Mac OS X are discussed in the
"Pasteboard Types" section later in this chapter.

To facilitate greater interoperability and communications between applications, developers
are encouraged to place data on a pasteboard in as many different types as possible. For
example, a string copied from a word-processor document should be placed on the
pasteboard as both RTF and Unicode data. The word processor might even choose to place
the data on the pasteboard in a custom, internal format that preserves formatting features
not representable in RTF. When the data is pasted, the recipient can look through the
available data types and take the one it prefers. If the paste happens in the word processor,
the custom format can be used. Pasting into other applications will still work well, though,
because the RTF and Unicode formats that they are more likely to understand are also
available.

When taking data off the pasteboard, developers are encouraged to take the richest data
type that they can handle. For example, an application that can deal with RTF should
always choose the RTF data type instead of Unicode, if both are available.

Lazy Evaluation

Putting the same data on the pasteboard in many different formats could be a very
expensive operation. Because the data is probably only required to be in one of the possible
types, it is also wasteful. Ideally, only the needed data format(s) would be placed on the
pasteboard. The pasteboard doesn't know which data formats are needed until the paste
operation occurs, however.

The solution to this is to allow lazy evaluation of pasteboards. When data is being placed
on a pasteboard, the program tells the pasteboard all the types that are valid for the data.
However, some or all the data types are not actually placed on the pasteboard at that time.
Instead, the object placing data on the pasteboard declares itself as the owner of that
pasteboard data type.

When it comes time to do a paste, the recipient requests the data type it wants. At that time,
the pasteboard returns to the owner object to request the data. The required data type is
provided to the pasteboard. The pasteboard then passes the data on to the object that is

trying to do the paste.

Lazy evaluation is optional. If an owner provides the data in all the declared types up front,
there is no need to call on it to provide other data types. The object doing the pasting
doesn't need to know if the pasteboard's data is being evaluated lazily. The pasteboard
handles all the details automatically.

If the application containing the pasteboard data's owner is about to quit and some of the
data types haven't been provided to the pasteboard yet, the owner is required to provide the
additional data types before the application is allowed to quit.

Applications that handle multiple documents should be careful to force pasteboard
evaluation if a document containing the pasteboard owner is about to be closed. If the data
owner is deallocated when the pasteboard is in an incomplete state, it could cause a crash
when the pasteboard tries to perform evaluation later. If all the data has already been put on
the pasteboard, it is safe to release the owner and the data. The pasteboard retains the
information it requires.

Services

Services is a simple, but very powerful, concept. The premise is that users prefer their
applications work well together. Also, a small application that does one thing really well is
better than a monolithic application that does a lot of things only half as well. If the small
applications can all communicate together, the user can choose the application they prefer
for a particular function and put them together to form their own custom suite of tools. The
hard part is getting that communication between applications.

Because pasteboards already exist and provide a common language for communication
between applications, the communication problem can be solved. Services adds a little bit
of structure to the whole process. Services can receive data from another application, send
data to another application, or both.

For example, Grab is an application that offers services to take different kinds of screen
shots. If one of the services is invoked while typing in a word processor, the screen shot is
inserted in the document at the current cursor location. This is a service that provides data.
An example of a service that sends data is Mail's Mail Text. The selected text is sent to
Mail and placed in a compose window. A bidirectional service replaces the current
selection with something new. For example, a list of items could be replaced by a sorted
version of the list. An image could be run through a redeye filter. Services can even return
types that differ from what they receive. One possibility is a service to convert an image
into text by running it through optical character recognition.

In implementation, a service that receives data is really just a shortcut. The user could
switch applications, copy the desired data onto the clipboard, switch back to the original
application, and paste the data. The service does all this in one shot without having to

switch applications. A bidirectional service uses this sequence: copy, switch applications,
paste, perform some operation, copy, switch back, and paste-all in one click from the user.

Services can be published by any application. After a service is published, every
application containing a services menu will offer that service. In effect, adding one
application to the system extends the abilities of every other application.

When a user logs in for the first time, Mac OS X scans all the installed applications to see
what services are offered and builds a database containing the information. Future logins
update the database to reflect changes caused by new, upgraded, or deleted applications.
Cocoa takes this database and automatically builds a services menu as part of an
application's launch. A developer doesn't have to do anything to take advantage of services.
Cocoa sets everything up.

Publishing and using services takes a little bit of effort. Existing Application Kit responder
objects are already set up to make use of services automatically. If a custom responder
subclass implements cut and paste, adding the capability to use services is almost trivial.
Publishing services requires a bit more work, but is still easy to do. It is nearly always
worth the minimal amount of effort needed to publish and use services. The concepts
behind services might seem very simple to a developer, yet they are extremely powerful for
the user.

Filters

Data can come in a wide variety of formats. For example, bitmapped images can be TIFF,
PICT, GIF, JPG, PNG, or one of many other formats. It is unreasonable to expect every
application to be able to natively handle every possible format of data. Mac OS X tends to
favor certain data formats such as TIFF, PDF, AIFF, and so on. When data is available in
another format, though, it would be nice for it to be available to all applications.

Through its services functionality, Mac OS X supports the capability to have one
application perform data conversion for all other applications on the system. For example,
a GIF to TIFF converter could be installed. From that point on, every application that could
deal with TIFF data would instantly gain the capability to read GIF data. A service such as
this is known as a filter service because it filters data from one type into another.

All services, including filter services, use pasteboards. Pasteboards and Application Kit
classes work in concert to do filtering transparently. It is also possible to invoke filtering
explicitly or to determine what filters are available.

Book: Cocoa® Programming
Section: Chapter 19. Using Pasteboards

Implementing Cut, Copy, and Paste

Custom subclasses of NSView and NSControl need to implement the -cut:, -copy:, and -paste: action
methods if they want to support cut, copy, and paste operations. Because these actions are only sent to the first
responder, it only makes sense to implement them for objects that accept first responder status. Sometimes, it might
make sense to implement these actions in an NSDocument class instead of a view. (Any class in the responder chain
could implement them.)

NOTE

The NSTextView class is different. The -cut:, -copy:, and -paste: actions should not be
overridden in subclasses of NSTextView. Instead, there is a large group of methods that should be
overridden to extend the existing NSTextView cut, copy, and paste support. There's not room to
describe all the methods here, so refer to the class documentation and header file for all the details. Start
with the "Managing the pasteboard" group of methods in /Developer/Documentation/Cocoa/
Reference/ApplicationKit/ObjC_classic/Classes/ NSTextView.html.

Throughout this chapter, cut, copy, paste, and drag and drop support are added to the PieWidget control from
Chapter 18, "Advanced Views and Controls." The PieWidget2 example on www.cocoaprogramming.net contains the
updated project.

The functionality of the cut, copy, and paste commands centers around the NSPasteboard class. When working
with a pasteboard, the main tasks are to obtain a pasteboard, declare or check a pasteboard's types, and read data from
or write data to the pasteboard.

Obtaining a Pasteboard

When implementing a -cut: or -copy: command, the data needs to be put on a pasteboard. The first task is to
obtain a pasteboard. Any one of three NSPasteboard class methods can be used.

The +generalPasteboard method returns the pasteboard used for normal cut, copy, and paste operations. This is
the pasteboard that is known to Mac users as the clipboard.

A more specific way to get a particular pasteboard is to ask for it by name. The +pasteboardWithName: method
returns a specific pasteboard. It takes an NSString argument containing the pasteboard's name. Any name can be
used. If a pasteboard with a particular name doesn't yet exist, it is created. There are five predefined pasteboard names.
The constants for the predefined pasteboards and the intended uses for the pasteboards are shown in Table 19.1. It is
always possible to send a -name message to an NSPasteboard instance to see what its name is.

Table 19.1. Pasteboard Constants and Uses

Constant Purpose

NSGeneralPboard Used by cut, copy, paste

http://www.cocoaprogramming.net/

NSFontPboard Stores fonts

NSRulerPboard Stores paragraph formatting

NSFindPboard Storesthe current find string

NSDragPboard Used by drag and drop

The font and ruler pasteboards are used by the TextEdit application to store text and paragraph formatting information.
Look in the Text and Font submenus of the Format menu to see the menu items that control copy and paste of font and
ruler information. The NSText object implements actions that can make use of these pasteboards.

The find pasteboard is used by find panels to store the most recently used search string. When applications pay
attention to this pasteboard, it is possible for the user to use the "find next" or "find previous" commands to search for
the most recently used search string, even if the last search was performed in another application

NOTE

There's often more than one way to do something in Cocoa. The messages [NSPasteboard
generalPasteboard] and [NSPasteboard pasteboardWithName:NSGeneralPboard]
both return the same object.

Sometimes a private pasteboard is needed to perform a particular operation. Pasteboards excel at moving data around
quickly, so private pasteboards are often used as a relatively inexpensive form of interprocess communication. To
obtain a private, temporary use pasteboard, use the +pasteboardWithUniqueName method. The pasteboard is
only accessible to applications that know the name. Of course, the -name method returns the name and the name can
be passed on to any clients that need access to the pasteboard. There is no documented way to obtain a list of the
pasteboards currently in existence.

When a unique pasteboard or custom named pasteboard is no longer needed, the -releaseGlobally message
should be sent to it. This method releases the pasteboard server resources consumed by the pasteboard. It does not
release any pasteboard objects. The normal reference counting mechanisms still apply for the NSPasteboard
instances.

Pasteboard Types

All pasteboard data is typed. Many of the NSPasteboard methods require the names of pasteboard types. All type
names are NSString objects. Several constants refer to predefined type strings. Table 19.2 shows the constants and
the data type they represent. The Object column of the table shows the type of object normally passed to the
pasteboard object to put the data on the pasteboard. Usually, a conversion to an NSString or NSData object is
required to place data on the pasteboard.

Table 19.2. Pasteboard Types

Constant Object Data Type

NSStringPboardType NSString Unicode string

NSFilenamesPboardType NSString Tab Unicode delimited list of filenames

NSPostScriptPboardType NSData Image Unicode data (EPS format)

NSTIFFPboardType NSData Image Unicode data (TIFF format)

NSRTFPboardType NSData Rich Unicodetext (RTF format)

NSTabularTextPboardType NSString Generic Unicode tab-delimited data

NSFontPboardType NSData Font Unicode information

NSRulerPboardType NSData Paragraph Unicode information

NSFileContentsPboardType NSData File Unicode contents

NSColorPboardType NSColor Unicode Color

NSRTFDPboardType NSData Rich Unicode text (RTFD format)

NSHTMLPboardType NSData Rich Unicode text (HTML format)

NSPICTPboardType NSData Image Unicode data (PICT format)

NSURLPboardType NSURL URL Unicode

NSPDFPboardType NSData Image Unicode data (PDF format)

Filtering an NSPasteboard

To learn what type of filtering is available on the system, the class method +typesFilterableTo: can be used.
Pass it a target type and it returns an NSArray containing a list of all the types that can be turned into the target type.
The three NSPasteboard methods can be used to invoke filter services are

+ (NSPasteboard *)pasteboardByFilteringFile:(NSString *)filename
+ (NSPasteboard *)pasteboardByFilteringData:(NSData *)data
 ofType:(NSString *)type
+ (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:(NSPasteboard *)pboard

These methods create new pasteboard objects that contain all the possible data types available post-filtering. They are

not terribly expensive to invoke, though, because the pasteboards that come back are all lazily evaluated. A filter is
actually invoked only when it is needed.

NOTE

The NSImageRep and NSSound classes support several methods to make filtering easier and more
transparent. Refer to their class documentation to learn more.

Writing Data to an NSPasteboard

Data is written to a pasteboard in two steps. First, the pasteboard is told what types of data can be provided. Sending
the -declareTypes:owner: method to a pasteboard object does this. This method must be sent before writing
anything to the pasteboard. The first argument is an array of NSString pasteboard types. The constants from the
previous section "Pasteboard Types" are used most commonly.

The second argument is the pasteboard types' owner. This should be the object that knows how to put data on the
pasteboard in the types specified. Most often, self is used for this argument. If and only if all the data is to be
provided immediately for all types declared, a nil owner is acceptable.

NOTE

Be careful about releasing any pasteboard-type owner objects provided to NSPasteboard instances.
Problems might occur if an owner object is released before providing its data to the pasteboard. If the
pasteboard later determines that it needs the data, a message is sent to the released owner. This usually
crashes the application.

The -declareTypes:owner: method returns an integer representing the pasteboard's change count. The change
count increments when new types are declared to indicate that the pasteboard's contents have been altered. It is
common to ignore the return value since it is usually unnecessary to know the actual change count of a pasteboard. The
-changeCount method returns the current change count if it is needed.

A pasteboard type owner object that wants to be released can monitor the change count of its associated pasteboard.
When the count changes, it can be assumed that the data on the pasteboard has been altered and the owner is therefore
no longer needed.

A complex program might not know all the types that can be added to the pasteboard without calling several other
methods in the controller or model. These other methods can add new types to the pasteboard with the -addTypes:
owner: method. This works just like declaring types. The owner that can produce the added types should be sent as
the second argument. Each type can have its own owner. The pasteboard keeps track of which object can produce a
particular data type.

After a data type has been declared or added to a pasteboard, the actual data of that type can be sent to the pasteboard.
Many methods can be used to do this. The NSPasteboard class implements the following methods:

- (BOOL)setData:(NSData *)data forType:(NSString *)dataType
- (BOOL)setPropertyList:(id)plist forType:(NSString *)dataType
- (BOOL)setString:(NSString *)string forType:(NSString *)dataType
- (BOOL)writeFileContents:(NSString *)filename
- (BOOL)writeFileWrapper:(NSFileWrapper *)wrapper

The data and string methods are by far the most commonly used. The NSURL, NSSound, and NSColor classes all
implement the -writeToPasteboard: method as a convenience. Because the Foundation Kit doesn't know about
NSPasteboard objects, the NSURL support for -writeToPasteboard: is added by an Application Kit
category. It converts the receiver into an NSData and places it on the pasteboard with the correct type. A view object
can be asked to put EPS or PDF data onto a pasteboard with one of these two methods:

- (void)writeEPSInsideRect:(NSRect)rect toPasteboard:(NSPasteboard *)pasteboard
- (void)writePDFInsideRect:(NSRect)rect toPasteboard:(NSPasteboard *)pasteboard

The PieWidget2 example shows how to write data to the pasteboard. It implements -cut: and -copy: in the
PieWidget control class. There is no way to delete a control's value; it always has a value. Therefore, the -cut:
method calls the -copy: method to do the work. The -copy: method registers the control as being able to provide a
string value or a TIFF bitmap. Only the string value is placed on the pasteboard immediately. The TIFF is provided
lazily, upon request. The code is as follows:

- (IBAction)copy:(id)sender
{
 BOOL success;
 NSArray *types = [NSArray arrayWithObjects:
 NSStringPboardType, NSTIFFPboardType, nil];
 NSPasteboard *pb = [NSPasteboard pasteboardWithName:NSGeneralPboard];
 [pb declareTypes:types owner:self];
 success = [pb setString:[self stringValue] forType:NSStringPboardType];
 if (!success) { // very unlikely!
 NSBeep();
 }
}

- (IBAction)cut:(id)sender
{
 [self copy:sender];
}

Providing Data Lazily

When data of a particular type is not written to the pasteboard, an owner for the data must be provided. The owner
needs to be able to provide the data in the requested format at any later time. If the data is required, this owner method
is called

- (void)pasteboard:(NSPasteboard *)sender provideDataForType:(NSString *)type

The required type is passed in as an argument to the method. The pasteboard that needs the data is also passed into the
method. Data of the requested type should be placed onto the sender pasteboard. If it is not, there is a good chance
that the owner's application will crash or face other undesirable consequences.

The hardest part of implementing this method is that the data that needs to be put on the pasteboard might be long
gone. For example, suppose the user copies a selection out of a bitmap image, and then changes the selection. When a
copy or cut takes place, the application then needs to keep track of the data that was copied or cut so that the correct
data can be placed on the pasteboard later.

This is even true for simple controls. With the PieWidget control, the user could have moved the control after
copying the value. The PieWidget2 example doesn't save the value, however. It knows that the value it needs is saved
on the pasteboard already. The solution is to set the pie to the value on the pasteboard, render the image, and then
restore the pie's value. The user never sees the value change because no screen updates happen while the image is
rendered.

To make this easier, PieWidget implements another method. The -imageValue method returns an NSImage
snapshot of the control in its current state. The implementation of -imageValue and -pasteboard:
provideDataForType: in PieWidget2 are

- (NSImage *)imageValue
{
 NSRect bds = [self bounds];
 NSImage *ret = [[NSImage alloc] initWithSize:bds.size];
 [ret lockFocus];
 [self drawRect:bds];
 [ret unlockFocus];
 [ret autorelease];
 return ret;
}

- (void)pasteboard:(NSPasteboard *)sender provideDataForType:(NSString *)type
{
 NSImage *imageValue;
 NSData *tiffData;
 double trueValue;
 NSString *pbString = [sender stringForType:NSStringPboardType];
 if ([type compare:NSTIFFPboardType] != NSOrderedSame) {
 NSLog(@"Pasteboard type \"%@\" requested, unable to comply.", type);
 [sender setString:pbString forType:type]; // put something on
return;
 }
 trueValue = [self doubleValue]; // save original value
 [self setStringValue:pbString]; // set ourselves to value on pasteboard
 imageValue = [self imageValue]; // draw an image of ourself at pb value
 [self setDoubleValue:trueValue]; // restore original value
 tiffData = [imageValue
 TIFFRepresentationUsingCompression:NSTIFFCompressionLZW factor:0];
 [sender setData:tiffData forType:type];
}

One other method can be sent to a pasteboard data type owner. If the pasteboard's owner is changed, the previous
owner is warned by being sent a -pasteboardChangedOwner: method. This method is optional and most
owners don't bother with it. It is only needed in the rare circumstance that a change in ownership is significant.

Reading Data from an NSPasteboard

Reading data from a pasteboard is similar to writing data. First, the available types must be queried. When the
available types are known, then data for a particular type can be read. Even if the type of data that should be on the
pasteboard is known, the pasteboard won't allow anything to be read until a type query is performed.

To determine what types are on the pasteboard, use either the -types or -availableTypeFromArray: method.
The -types method returns an NSArray containing all the types the pasteboard can offer. The -
availableTypeFromArray: method returns a single type. Pass it an NSArray containing the types that can be
accepted in order of priority (preferred types first). The method returns the first type in the array that the pasteboard
supports, or nil if nothing matches.

After a type query has been performed, data can be read from the pasteboard. The following NSPasteboard
methods are available for reading data:

- (NSData *)dataForType:(NSString *)dataType

- (id)propertyListForType:(NSString *)dataType
- (NSString *)stringForType:(NSString *)dataType
- (NSString *)readFileContentsType:(NSString *)type toFile:(NSString *)filename
- (NSFileWrapper *)readFileWrapper

An NSColor object can be read from the pasteboard with +colorFromPasteboard:. An NSURL object can be
read from the pasteboard with +URLFromPasteboard:. NSSound and NSImage objects can be initialized from a
pasteboard with -initWithPasteboard:.

To implement a paste operation, data must be read from the pasteboard. The PieWidget2 example breaks the paste
operation into two private methods. One method evaluates the pasteboard to see if it contains a type that the
PieWidget class can handle. It returns a YES or NO:

- (BOOL)_canTakeValueFromPasteboard:(NSPasteboard *)pb
{
 NSArray *typeArray = [NSArray arrayWithObjects:NSStringPboardType, nil];
 NSString *type = [pb availableTypeFromArray:typeArray];
 if (!type) {
 return NO;
 }
 return YES;
}

The next private method reads a value off the pasteboard, if possible, and sets it as the control's value. If a value cannot
be read, an alert panel is provided to the user to show that the operation failed. If there was success, the control's action
is also sent so that the target knows the value changed. Here is the code:

- (BOOL)_takeValueFromPasteboard:(NSPasteboard *)pb operationName:(NSString *)
op
{
 NSString *stringValue;
 if (![self _canTakeValueFromPasteboard:pb]) {
 NSRunAlertPanel(@"Paste",
 @"Unable to perform %@ operation for PieWidget.",
 @"OK", nil, nil, op);
 return NO;
 }
 stringValue = [pb stringForType:NSStringPboardType];
 [self setStringValue:stringValue];
 [self sendAction:[self action] to:[self target]];
 return YES;
}

With the previous two methods, the implementation of -paste: becomes almost trivial:

- (IBAction)paste:(id)sender
{
 NSPasteboard *pb = [NSPasteboard pasteboardWithName:NSGeneralPboard];
 [self _takeValueFromPasteboard:pb operationName:@"paste"];
}

The previous code is sufficient to implement pasting. However, if the user has copied something like an image onto the
pasteboard, the pie widget won't be able to do a paste. An alert will be shown, but that's a bit of a pain for the user.
Because the pasteboard can be examined prior to a paste operation, it makes sense to validate the -paste: menu item
so that the user can only invoke a paste operation when the pasteboard contains valid information. The added

advantage is that looking at the Edit menu's Paste item will provide immediate feedback about the pasteboard without
having to do a paste. Here's the menu validation code from the PieWidget class:

- (BOOL)validateMenuItem:(id <NSMenuItem>)menuItem
{
 if ([menuItem action] == @selector(paste:)) {
 NSPasteboard *pb = [NSPasteboard pasteboardWithName:NSGeneralPboard];
 return [self _canTakeValueFromPasteboard:pb];
 }
 return YES;
}

Book: Cocoa® Programming
Section: Chapter 19. Using Pasteboards

Implementing Drag and Drop

Drag and drop on Mac OS X is implemented using a few standard protocols and pasteboards. All drag and drop
operations have three major elements, a source, a destination, and the data being dragged. The source and destination
are usually NSView objects, but any NSWindow can also be a source or destination. The data being dragged is
placed on a pasteboard. A standard pasteboard, NSDragPboard, has been set aside for drag and drop, but it is
possible to use a private pasteboard instead if desired.

The term dragging session (or just drag session) is used to describe the whole process from the initiation of a drag at
mouse-down until the mouse-up event is received. The source, destination, data, and all mouse-dragged events
between mouse-down and mouse-up are all properties of a drag session.

Drag and Drop in Custom View and Window Objects

Objects that are to be used as drag sources implement the NSDraggingSource informal protocol. Dragging
destinations implement the NSDraggingDestination informal protocol. While a drag operation is in progress,
the destination is given an object that implements the NSDraggingInfo formal protocol. A dragging info object
encapsulates data about the drag, including the pasteboard containing the dragged data.

Initiating a Drag

A dragging source must call a method to initiate a drag when it determines it is time to start a drag. Both NSWindow
and NSView implement this method to initiate a drag:

- (void)dragImage:(NSImage *)anImage at:(NSPoint)viewLocation
 offset:(NSSize)initialOffset event:(NSEvent *)event
 pasteboard:(NSPasteboard *)pboard source:(id)sourceObj
 slideBack:(BOOL)slideFlag

This method should be sent from within a -mouseDown: or -mouseDragged: event-handling implementation.
It might be sent when a particular modifier key is held down or when the mouse has been dragged a certain distance
and/or direction. The data to be dragged needs to be placed on a pasteboard before calling this method.

The method name is very long, but it's not as bad as it looks. Taking the arguments one at a time in order, let's start
with anImage. This is the image that is displayed under the mouse as the user drags. The viewLocation is the
location of the drag image's lower-left corner in the coordinate system of the object starting the drag. For example, if
the drag image is a rendering of the entire view, the point would be (0,0).

The argument initialOffset is used to handle drags that start when a mouse-dragged event is received. It
should be the difference between the current event location and the initial mouse-down event. If calling from within -
mouseDown:, this is (0, 0). If a drag might be started later, the -mouseDown: method should save the mouse-
down event so that an offset can be calculated when the drag actually starts.

The mouse-down event that initiated the drag needs to be provided as the event argument. In a -mouseDown:
method, this is the event passed in to the method. If the call is made from a -mouseDragged: method, the -
mouseDown: method should have retained the mouse-down event so that it can be used here.

The data to be dragged should already be on a pasteboard. The pasteboard is provided as the pboard argument. Any
pasteboard, even a private one, can be used. The pasteboard is handed off to any drag destinations. The sourceObj
argument is an object that implements some or all of the methods in the NSDraggingSource informal protocol,

usually self.

Finally, slideFlag determines what should happen if the drag fails. If YES, the image slides back to where the
drag started. If NO, it disappears. Most drags use YES. If the drag performs a delete or remove operation, such as
dragging an icon out of the dock, NO would be used.

In the PieWidget2 example, this method is called from within the -mouseDown: method. To preserve the normal
operation of the control when the mouse is dragged, a drag operation is only started when the option key is held
down.

It is generally bad form to have a window come to the front when initiating a drag because it is likely to obscure the
destination. To get around this, the PieWidget class implements the -
shouldDelayWindowOrderingForEvent: method to signal to the application that perhaps the window
should not be brought forward.

The -shouldDelayWindowOrderingForEvent: message is sent before the mouse-down is processed. After
the -mouseDown: knows that a drag is starting, it sends the -preventWindowOrdering message to the
application object to disable bringing the window forward. If no drag is started, no message is sent. When the
application finishes the event loop, it assumes that it is okay to bring the window forward and does so.

Here is the code used by PieWidget to initiate the drag operation:

- (BOOL)shouldDelayWindowOrderingForEvent:(NSEvent *)theEvent
{
 return YES;
}

- (void)mouseDown:(NSEvent *)theEvent
{
 unsigned int flags = [theEvent modifierFlags];
 if (flags & NSAlternateKeyMask) { // option click starts a drag
 NSSize dragOffset = NSMakeSize(0.0, 0.0);
 NSPoint dragPoint = NSMakePoint(0.0, 0.0);
 NSPasteboard *pboard = [NSPasteboard pasteboardWithName:NSDragPboard];
 NSImage *image = [self imageValue];
 NSArray *pbTypes = [NSArray arrayWithObjects:NSTIFFPboardType, nil];
 [pboard declareTypes:pbTypes owner:self];
 [pboard setData:[image TIFFRepresentation] forType:NSTIFFPboardType];
 [NSApp preventWindowOrdering];
 [self dragImage:image at:dragPoint offset:dragOffset event:theEvent
 pasteboard:pboard source:self slideBack:YES];
 } else { // normal click gets normal operation
 [super mouseDown:theEvent];
 }

 return;
}

There is one other way to initiate a drag operation from an NSView object. This method allows a file icon to be
dragged from a view:

- (BOOL)dragFile:(NSString *)filename fromRect:(NSRect)rect
 slideBack:(BOOL)slideFlag event:(NSEvent *)event

The filename argument should be the full path to the file being dragged. The rect argument is used to position
the file icon under the mouse and should be expressed in the coordinates of the view being sent this message. The
slideFlag and event arguments should be the same as with the other -dragImage: method. The return value
indicates success in starting the drag, but says nothing about whether the drag succeeded.

NSDraggingSource Informal Protocol

Drag source objects must implement the NSDraggingSource informal protocol. It is an informal protocol
because not every message in the protocol has to be implemented. Because some methods in the protocol are
optional, it is not defined as a formal Objective-C protocol.

Implementing this informal protocol usually requires only a few lines of code. The one method that must be
implemented by the dragging source is this:

- (NSDragOperation)draggingSourceOperationMaskForLocal:(BOOL)flag

This method is expected to return a bit-mask listing which drag operations are allowed. The flag passed in tells
whether the drag destination is local, meaning that it is in the same application, or in another application. Because the
local or nonlocal status might change, this method could be invoked more than once for a given drag session.

To create the return value, all the applicable masks from Table 19.3 should be combined using the C bitwise OR
operator. For example, if copy and move operations are allowed, the expression (NSDragOperationCopy |
NSDragOperationMove) should be returned.

Table 19.3. Drag Operation Mask Constants

Constant Meaning

NSDragOperationNone No drag operation allowed

NSDragOperationCopy The destination gets a copy of the source

NSDragOperationLink The source and destination share the same data

NSDragOperationGeneric A generic operation, usually a copy

NSDragOperationPrivate The operation is application-defined

NSDragOperationMove The source is moved to the destination

NSDragOperationDelete The source is deleted

NSDragOperationEvery All drag operations allowed

The NSDragOperationNone mask is special. If no drag operation is allowed, it should be returned without being
combined with any other mask. The mask that is returned is compared with what operations the destination can
perform to see if a drag is possible between source and destination. The drag operation will also determine the mouse
cursor that is shown as the drag proceeds. For example, a copy cursor has a little plus sign next to the cursor arrow. If
more than one operation is allowed, the cursor changes automatically as needed when the user presses different
modifier keys.

There are four other dragging source methods, all optional. Three are basically notifications. The -
draggedImage:beganAt: method is called when a dragging session begins. Every time the mouse moves
during the session, the -draggedImage:movedTo: method is called. When a session ends, the -
draggedImage:endedAt:operation: method is called. The operation argument tells how the drag ended,
offering one of the masks from Table 19.3. Unsuccessful drags end with NSDragOperationNone.

The other optional method allows the drag source to control whether the modifier key changes can be used mid-drag
to change the drag operation. To change this, implement the -ignoreModifierKeysWhileDragging method
to return YES or NO. The default if this method is not implemented is to respond to modifier key changes as if NO had
been returned.

Making PieWidget a Dragging Source

The PieWidget2 example can only implement a drag copy operation. Because changing modifier keys won't change
that, it also specifies that modifier keys should be ignored. Here is the implementation of the NSDraggingSource
informal protocol used in the PieWidget class:

- (NSDragOperation)draggingSourceOperationMaskForLocal:(BOOL)flag
{
 return NSDragOperationCopy;
}

- (BOOL)ignoreModifierKeysWhileDragging
{
 return YES;
}

Try Option-dragging from a pie widget into a TextEdit document. A snapshot of the pie widget should be inserted
into the document. Figure 19.1 shows a drag entering a TextEdit document.

Figure 19.1. Option-dragging from a PieWidget to a TextEdit document.

NSDraggingInfo Protocol

On the destination side of a drag, an object that conforms to the NSDraggingInfo protocol is provided. This
object is really just a container that holds information about the drag operation in progress. The destination queries
this object to get any information it needs.

The dragging info object responds to -draggingSourceOperationMask to provide the drag operations
allowed by the source. -draggingLocation and -draggedImageLocation return the location of the mouse
and the image under the mouse, respectively. Both return points in the base coordinate system of the destination's
window. The destination's window is returned by -draggingDestinationWindow.

The image being dragged, displayed under the mouse cursor, is returned by -draggedImage. The pasteboard
containing the drag data is returned by -draggingPasteboard. Because the pasteboard is explicitly provided to
the drag destination, any pasteboard can be used for a drag operation. The NSDragPboard pasteboard is usually
used, but doesn't have to be. The source object is returned by -draggingSource, but only if the source is in the
same application. If the source is in another application, nil is returned instead.

Setting Up a Drag Destination

To become a drag destination, a view or window must be registered. Registration requires a list of pasteboard types
in an NSArray. The array should be used as the argument to the -registerForDraggedTypes: method sent
to either a view or a window. If a drag containing data in any of the registered types moves over the view or window,
it becomes a potential destination. Usually, the -registerForDraggedTypes: method is sent in a view's -
initWithFrame: or -awakeFromNib methods. The -unregisterDraggedTypes method can be sent if
the view or window is no longer accepting drags. It is rarely used.

NOTE

The most common mistake when implementing a drag destination is forgetting to register to receive
drags. A view or window can be the destination only for drag types it has registered to receive. When
debugging, the first thing to check is that the registration really happened.

NSDraggingDestination Informal Protocol

The NSDraggingDestination informal protocol is implemented by the dragging destination. If the destination
is a window, the window's delegate can implement the methods instead of the window. This way windows that act as
destinations don't have to be subclassed. None of the methods in this informal protocol are specifically required, but a
drop won't do much without implementing some subset of these methods. All methods in this informal protocol take
a single argument. The argument is always an object that implements the NSDraggingInfo protocol.

When a drag enters a target, be it view or window, the -draggingEntered: message is sent. An
NSDragOperation should be returned (see Table 19.3 for the constants to use). Normally, this method examines the
operations the source allows and returns one of them. The returned operation should specify what operation will
happen if a drop actually happens over this destination in the current session. If none of the source's operations work
with this destination, NSDragOperationNone is returned, signaling that a drop over the destination would fail.

As the mouse is moved within the target's area, the -draggingUpdated: message is sent. It should also return a
drag operation. If this method isn't implemented, the drag operation from -draggingEntered: is used by the
dragging machinery. If dragging leaves the destination's area without a drop occurring, -draggingExited: is
sent. It doesn't have to return anything.

If the drag reenters the destination, the whole thing starts all over with -draggingEntered:. When an enter
message is sent, it is possible to tell if it is the same drag session. Each session is given a unique number, known as
the sequence number. If the sequence number is the same as before, it is still the same session. To obtain the
sequence number, use the -draggingSequenceNumber method of the dragging info object.

If a drop actually happens on the destination, the -prepareForDragOperation: message is sent. This method
is supposed to set things up so that the drop can proceed, but does not actually read the data off the pasteboard yet. It
should return YES for the drop to proceed. If for some reason the drop needs to be aborted, a NO should be returned.

If the dragging image is going to land in a specific location within the drop target, the -slideDraggedImageTo:
message should be sent to the dragging info object. An NSPoint should be used as the argument. This makes the
drag image appear to snap into place. This method can only be sent to a dragging info object from within a -
prepareForDragOperation: implementation.

The next method sent to the destination is -performDragOperation:, which is where the drop happens. The
implementation should read the data from the pasteboard and do whatever else is needed to perform a drop operation.
If the operation succeeded, a YES is returned. If something went wrong, NO is returned. Although an implementation
of this method isn't strictly required, a drop won't do very much if this method isn't implemented.

One last method is sent to the destination. The -concludeDragOperation: method is expected to do any
remaining clean up after a drop has finished.

Making PieWidget a Dragging Destination

In the PieWidget2 example, the PieWidget control displays a red border around itself when a valid drag enters the
view. To provide this feedback, the BOOL instance variable dragSessionInProgress is added to the class.
When true, the -drawRect: method adds the rectangle. The overridden -drawRect: is as follows:

- (void)drawRect:(NSRect)theRect
{
 [super drawRect:theRect];
 if (dragSessionInProgress) {
 [[NSColor redColor] set];
 NSFrameRect([self bounds]);
 }
}

The view's initialization is also overridden, so that the PieWidget can be registered to receive string-based
pasteboards. Here's the code:

- (id)initWithFrame:(NSRect)myFrame
{
 NSArray *typeArray;
 self = [super initWithFrame:myFrame];
 if (!self) return nil;
 typeArray = [NSArray arrayWithObjects:NSStringPboardType, nil];
 [self registerForDraggedTypes:typeArray];
 dragSessionInProgress = NO;
 return self;
}

The next methods implement the NSDraggingDestination informal protocol. When a drag enters the view, the
-draggingEntered: method tests the drag operation to see if the source allows a copy. If so, the copy operation
is returned after setting dragSessionInProgress to YES. By redisplaying the view, the view provides the red

rectangle as feedback for the drag operation. Here is the code for the -draggingEntered: method:

- (NSDragOperation)draggingEntered:(id <NSDraggingInfo>)sender
{
 NSPasteboard *pboard = [sender draggingPasteboard];
 unsigned int mask = [sender draggingSourceOperationMask];
 unsigned int ret = (NSDragOperationCopy & mask);

 if ([[pboard types] indexOfObject:NSStringPboardType] == NSNotFound) {
 ret = NSDragOperationNone;
 }
 if (ret != NSDragOperationNone) {
 dragSessionInProgress = YES;
 [self setNeedsDisplay:YES];
 }
 return ret;
}

If dragging exits the view without a drop occurring, the PieWidget needs to get rid of the red rectangle. The -
draggingExited: implementation takes care of that:

- (void)draggingExited:(id <NSDraggingInfo>)sender
{
 dragSessionInProgress = NO;
 [self setNeedsDisplay:YES];
}

When a drop occurs on the PieWidget, the widget is sent the -prepareForDragOperation: method. The
method doesn't need to do anything as far as PieWidget is concerned, but to finish the drag operation a YES must
be returned, as follows:

- (BOOL)prepareForDragOperation:(id <NSDraggingInfo>)sender
{
 return YES;
}

The -performDragOperation: method is where the drop actually happens. It retrieves the pasteboard and calls
the -_takeValueFromPasteboard:operationName: private method. The private method was created so
that it could be used to implement both drop and paste support. Because both require data to be taken from a
pasteboard, it is common to implement both functions with one method. The code for -
performDragOperation: is

- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender
{
 NSPasteboard *pb = [sender draggingPasteboard];
 return [self _takeValueFromPasteboard:pb operationName:@"drop"];
}

The last method to implement is the -concludeDragOperation: method. It performs any necessary cleanup.
In this case, the cleanup is to turn off the red border now that the dragging session has concluded in a successful
drop. The code in this method is the same as for the -draggingExited: method, though that is not always the
case:

- (void)concludeDragOperation:(id <NSDraggingInfo>)sender

{
 dragSessionInProgress = NO;
 [self setNeedsDisplay:YES];
}

Drag and Drop for Table and Outline Views

The NSTableView and NSOutlineView objects already implement methods from both the
NSDraggingSource and NSDraggingDestination informal protocols. To complete the implementation of
drag and drop for these two classes, a special set of data source methods must be implemented. If the data source
doesn't implement the necessary drag-and-drop support methods, drag-and-drop support is disabled for the table or
outline view.

Although table and outline views are already set up to implement the NSDraggingSource and
NSDraggingDestination informal protocols, they must still be registered as destinations. Implementing the
data-source methods does not register these views to be drag destinations. It is very easy to implement the data-
source methods and forget to call -registerForDraggedTypes:. Remember that it needs to be called from
somewhere. The call is usually from an -awakeFromNib method in the data source so that the outlet to the table or
outline view is already connected.

Drag and Drop for NSTableView

Implementing drag and drop for table view objects is much easier than for any generic view or window subclass. The
table view object already implements the necessary drag-and-drop protocols. To implement drag and drop, three
methods must be implemented by the data source. The first method is for enabling dragging. The method prototype is
as follows:

- (BOOL)tableView:(NSTableView *)tv writeRows:(NSArray*)rows
 toPasteboard:(NSPasteboard*)pboard

The -tableView:writeRows:toPasteboard: method expects the data source to write the data for the
specified rows to a pasteboard. The rows that should be written are provided in the rows array. The objects in the
array all respond to -intValue. It is common to use a custom pasteboard type for the pasteboard. This allows all
the attributes of the row's model object to be copied intact. For better interoperation with other applications, it is nice
(but not required) to also write the data in a tabular data format and a plain-string format. This method is expected to
return a YES if the data was successfully placed on the pasteboard and NO otherwise.

Implementing the -tableView:writeRows:toPasteboard: method enables dragging from the table view.
The ScoreTable2 example on www.cocoaprogramming.net is an extension of the ScoreTable example in Chapter 18.
ScoreTable2 adds drag-and-drop support to the table view. Here's the implementation of the -tableView:
writeRows:toPasteboard: method from the MyDocument class:

- (BOOL)tableView:(NSTableView *)tv writeRows:(NSArray*)rows
 toPasteboard:(NSPasteboard*)pb
{
 NSMutableArray *rowArray = [[NSMutableArray alloc] init];
 NSEnumerator *enumerator = [rows objectEnumerator];
 id object;
 NSData *rowData;
 while (object = [enumerator nextObject]) {
 int theRow = [object intValue];
 NSMutableDictionary *rowRecord = [[self model] recordForRow:theRow];
 [rowArray addObject:rowRecord];
 }

http://www.cocoaprogramming.net/

 rowData = [self encodeDataRepresentationForObjects:rowArray];
 [pb declareTypes:[NSArray arrayWithObjects:MY_DRAG_TYPE, nil] owner:self];
 return [pb setData:rowData forType:MY_DRAG_TYPE];
}

To enable drop support, two methods must be implemented. The first validates the drop, and the second performs the
drop operation. The method prototype for validation is as follows:

- (NSDragOperation)tableView:(NSTableView*)tv
 validateDrop:(id <NSDraggingInfo>)info proposedRow:(int)row
 proposedDropOperation:(NSTableViewDropOperation)op

The -tableView:validateDrop:proposedRow:proposedDropOperation: method is expected to
return something to indicate whether the drop is legal. The dragging info should be examined to determine if it is
possible to accept the data on the dragging pasteboard. The operations allowed by the source and the proposed
operation should be examined along with the data to determine which drop operation is the correct one. That
operation should then be returned. The NSDragOperationNone operation should be returned if no kind of drop
can be performed.

The validation method can also retarget a drop. The drop defaults to being at or on a table view item depending on
the mouse location. In a sorted table such as the ScoreTable example, however, a drop can actually be assimilated at
only one location. Calling the table view method -setDropRow:dropOperation: causes the drop's location to
be set to a specific location. The drop row should be the row where the dropped item will really end up.

The drop operation argument should be either the constant NSTableViewDropOn or
NSTableViewDropAbove. Dropping on a row causes the row to be highlighted with a box around it. Dropping
above a row causes a line to be drawn between rows. To indicate that the item will be added after the last row, use
the NSTableViewDropAbove operation with a row value equal to the row count. Remember that the rows start at
zero, so a row number equal to the count actually refers to a row beyond the end of the table.

The ScoreTable2 example implements the -tableView:validateDrop:proposedRow:
proposedDropOperation: method in MyDocument like this:

- (NSDragOperation)tableView:(NSTableView*)tv
 validateDrop:(id <NSDraggingInfo>)info proposedRow:(int)row
 proposedDropOperation:(NSTableViewDropOperation)op
{
 NSPasteboard *pboard = [info draggingPasteboard];
 NSData *rowsData = [pboard dataForType:MY_DRAG_TYPE];
 NSArray *rows = [self decodeDataRepresentation:rowsData];
 NSDictionary *record = [rows objectAtIndex:0];
 int rownum = [[self model] dropRowForRecord:record];
 [tableView setDropRow:rownum dropOperation:NSTableViewDropAbove];
 return NSDragOperationCopy;
}

The document model class adds a method to find the drop's target row. It uses the sorting compare function to find
where an insertion would take place. Here's the code:

- (int)dropRowForRecord:(NSDictionary *)record
{
 int i, count = [_records count];
 for (i=0; i<count; i++) {
 if (NSOrderedDescending == MYOrderScoreElements(

 [_records objectAtIndex:i], record, NULL)) return i;
 }
 return count;
}

The final method to implement drop support is the method that actually accepts the drop and adds the data to the data
source's model. The method prototype is

- (BOOL)tableView:(NSTableView*)tv acceptDrop:(id <NSDraggingInfo>)info
 row:(int)row dropOperation:(NSTableViewDropOperation)op

This method should take the data from the dragging info's pasteboard and incorporate it into the data source's model.
The type of operation that should be performed is also specified. Return a YES or NO to indicate success or failure.
Here's how the method is implemented in ScoreTable2's MyDocument class:

- (BOOL)tableView:(NSTableView*)tv acceptDrop:(id <NSDraggingInfo>)info
 row:(int)row dropOperation:(NSTableViewDropOperation)op
{
 NSPasteboard *pboard = [info draggingPasteboard];
 NSData *rowsData = [pboard dataForType:MY_DRAG_TYPE];
 NSArray *rows = [self decodeDataRepresentation:rowsData];
 NSEnumerator *enumerator = [rows objectEnumerator];
 id record;
 if (record = [enumerator nextObject]) {
 [[self model] addRecordWithID:-1
 name:[record objectForKey:NAME_KEY]
 score:[[record objectForKey:SCORE_KEY] intValue]
 level:[[record objectForKey:LEVEL_KEY] intValue]
 time:[record objectForKey:TIME_KEY]
 cheated:[[record objectForKey:CHEAT_KEY] intValue]];
 }
 return YES;
}

For drop operations to even be tested, it is important to remember to register the table view to receive drops. To do
this, the following code is added to the MyDocument class -windowControllerDidLoadNib: method:

[outlineView registerForDraggedTypes:
 [NSArray arrayWithObjects:MY_DRAG_TYPE, nil]];

Drag and Drop for NSOutlineView

Because outline views are subclasses of table views, it comes as no surprise that adding drag and drop to an outline
view is much like adding it to a table view. As with the table view, enabling drag and drop is done by implementing
three methods. The names are slightly different to accommodate the hierarchical layout of the data, but their purpose
remains the same. The method prototypes are

- (BOOL)outlineView:(NSOutlineView *)olv writeItems:(NSArray*)items
 toPasteboard:(NSPasteboard*)pboard
- (NSDragOperation)outlineView:(NSOutlineView*)olv
 validateDrop:(id <NSDraggingInfo>)info proposedItem:(id)item
 proposedChildIndex:(int)index
- (BOOL)outlineView:(NSOutlineView*)olv acceptDrop:(id <NSDraggingInfo>)info
 item:(id)item childIndex:(int)index

As with the table view, a drop can be retargeted from within the validation method. To retarget a drop on an outline
view, call the -setDropItem:dropChildIndex: method.

The implementations of these three methods work much like the table view methods. To see an example, look at the
TaskOutliner example from Chapter 18, available on www.cocoaprogramming.net. It already supports drag and drop
on the outline view, even though this support wasn't discussed in Chapter 18. Here is the code from the TaskOutliner
MyDocument class that implements the drag-and-drop data source methods:

- (BOOL)outlineView:(NSOutlineView *)ov writeItems:(NSArray*)items
 toPasteboard:(NSPasteboard*)pboard
{
 NSData *data;
 data = [self encodeDataRepresentationForObjects:items];
 [ov registerForDraggedTypes:[NSArray arrayWithObjects:CAT_DRAG_TYPE,
nil]];
 [pboard declareTypes:
 [NSArray arrayWithObjects:CAT_DRAG_TYPE, nil] owner:self];
 [pboard setData:data forType:CAT_DRAG_TYPE];
 return YES;
}

- (unsigned int)outlineView:(NSOutlineView*)ov
 validateDrop:(id <NSDraggingInfo>)info proposedItem:(id)item
 proposedChildIndex:(int)index
{
 return NSDragOperationCopy;
}

- (BOOL)outlineView:(NSOutlineView*)ov acceptDrop:(id <NSDraggingInfo>)info
 item:(id)item childIndex:(int)index
{
 NSPasteboard *pboard = [info draggingPasteboard];
 NSData *data = [pboard dataForType:CAT_DRAG_TYPE];
 NSMutableArray *items = [self decodeDataRepresentation:data];
 NSMutableArray *children = [item objectForKey:CHILD_KEY];
 int realIndex;
 if (!item) { // root level drop
 children = dataStore;
 }
 if (index == NSOutlineViewDropOnItemIndex) {
 realIndex = 0;
 } else {
 realIndex = index;
 }
 if (children == nil) {
 [item setObject:items forKey:CHILD_KEY];
 } else {
 int i;
 for (i=([items count]-1); i>=0; i-) {
 [children insertObject:[items objectAtIndex:i] atIndex:realIndex];
 }
 }
 [ov reloadData];
 return YES;
}

http://www.cocoaprogramming.net/

NOTE

In the example, only copy operations are supported. The model doesn't offer any way to delete an item.
Implementing moves would require a little bit of extra model manipulation code to be added.

Book: Cocoa® Programming
Section: Chapter 19. Using Pasteboards

Implementing Services

Cocoa offers several facilities to help developers take advantage of services. The Services menu is automatically
populated by the application object. Existing responder subclasses, such as the NSApplication, NSWindow, and
many controls are already set up to make use of services. Custom controls need to implement a few special methods
to take advantage of services. Also, a function call is available for invoking services programmatically. To publish a
service, a service provider object is created and changes are made in the application's Info.plist.

Using Services

Several steps are required to take advantage of services in custom NSResponder subclasses. First, each object that
can respond to a service must register the pasteboard types that it can accept. Next, the object implements a services
validation method that works like menu item validation. Finally, methods to send data to a service and accept data
back from a service are implemented.

Registering Pasteboard Types

The first step is to register for pasteboard send and return types. The services menu is automatically populated. If a
service uses a data type that hasn't been registered, it won't even appear in the menu. Application Kit objects already
register for many types, but not all types. If a services item isn't appearing in the menu, it could be because it uses an
unregistered type.

To register pasteboard send and return types for the services menu, send the -
registerServicesMenuSendTypes:returnTypes: method to NSApp. Both arguments are NSArray
objects that contain pasteboard types (NSString objects). This method is usually sent from within an object's
+initialize method. Any object that wants to use services should register the types it handles. All objects in the
responder chain except for the main window get an opportunity to have services invoked on them. This includes
custom control, application, window, and document objects as well as window and application delegate objects.

NOTE

An object can respond to types that it didn't register as long as some other object in the application
registered the type. Registration is used by the application only to collect a list of types that might ever
be used. It doesn't track which object registered for what type.

The PieWidget class in the PieWidget2 example implements methods to take advantage of services. Because it
uses only one pasteboard type, NSStringPboardType, and that type is already registered by the Application Kit,
it has no need to implement special code to register for the type. If it did register, the code would look like this:

+ (void)initialize
{
 NSArray *sendTypes, *returnTypes;
 static BOOL initialized = NO;
 if (initialized == YES) return;
 initialized = YES;
 sendTypes = [NSArray arrayWithObjects:NSStringPboardType, nil];
 returnTypes = [NSArray arrayWithObjects:NSStringPboardType, nil];
 [NSApp registerServicesMenuSendTypes:sendTypes
 returnTypes:returnTypes];

}

Validating Services Menu Items

When the services menu is displayed, all its items are validated. Validation for these items is not done in the normal
way for menu items. Validation still traverses the responder chain, but a different validation method is sent:

- (id)validRequestorForSendType:(NSString *)sendType
 returnType:(NSString *)returnType

This method is expected to examine the send and return types and determine if that pairing can be supported. If so,
the object that can support the services call must also be determined. The return value is not a boolean. It is the
object, if any, that could make use of a services request that has the specified types. If no object is known, nil
should be returned. This object is known as the requestor because the service is performed on its behalf. Normally,
the object receiving the validation message is the requestor, so it is common to return self from this method. It is
possible that a delegate or model object would be better suited to deal directly with services. In that case, the
appropriate object should be returned.

In the PieWidget2 example, the PieWidget object implements this method as follows:

- (id)validRequestorForSendType:(NSString *)sendType
 returnType:(NSString *)returnType
{
 BOOL ret = NO, sendOK = NO, retOK = NO;
 if ([sendType compare:NSStringPboardType] == NSOrderedSame) sendOK = YES;
 if ([returnType compare:NSStringPboardType] == NSOrderedSame) retOK = YES;
 if (sendType && (!returnType) && sendOK) ret = YES;
 if (sendType && returnType && sendOK && retOK) ret = YES;
 if ((!sendType) && returnType && retOK) ret = YES;
 return (ret ? self : nil);
}

Sending Data to Services

When a service that takes input data is invoked, the validated object is sent the -
writeSelectionToPasteboard:types: method. A pasteboard and array of types are passed as arguments
to this method. The receiver's current selection, the selection that services is to operate on, must be placed on the
pasteboard. The pasteboard has not had its types declared yet, so that has to be done before data can be placed on the
pasteboard. Implementations of this method should return YES or NO to indicate success or failure.

The implementation of this method is often used as a core for implementing -cut:, -copy:, and the drag initiation
so that a single method is written to place information on the pasteboard. In the PieWidget2 example, that is not
done. Instead, each implementation does things a little differently. This is to show a variety of ways to interact with
pasteboards. Unfortunately, it is at the expense of good object design. The PieWidget class implements -
writeSelectionToPasteboard:types: to check the types and to make sure they match what it wants to do.
If everything is in order, the types are declared on the pasteboard and the data is set immediately. The code looks like
this:

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pb types:(NSArray *)types
{
 NSArray *declareTypes = [NSArray arrayWithObjects:NSStringPboardType,
nil];
 if ([types count] != 1) return NO;
 if ([NSStringPboardType compare:[types objectAtIndex:0]] != NSOrderedSame)

 return NO;
 [pb declareTypes:declareTypes owner:self];
 return [pb setString:[self stringValue] forType:NSStringPboardType];
}

This method could have used lazy evaluation instead of putting the data on the pasteboard immediately. Because
there's only one type and it is guaranteed to be used, lazy evaluation doesn't make much sense for PieWidget. If
lazy evaluation is used, it should be implemented exactly as described previously in the "Providing Data Lazily"
section of this chapter.

Receiving Data from Services

When data comes back from a service, the -readSelectionFromPasteboard: method is called. Data should
be read from the pasteboard argument and used to replace the current selection. If the selection is an insertion point
as opposed to a range, an insertion might be performed. A YES or NO is returned to indicate success or failure.

The PieWidget class already has a method for reading a pasteboard, so its implementation of -
readSelectionFromPasteboard: simply forwards the message:

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pb
{
 return [self _takeValueFromPasteboard:pb operationName:@"services"];
}

Invoking Services Programmatically

It is easy to invoke services programmatically. The NSPerformService() function can be used to call any
service. It requires two parameters. The first argument is the name of the service. The name is an NSString
containing the nonlocalized name of the service as defined by the service providing application. (It can be found in
the Contents/Info.plist file inside the .app wrapper.) For example, the name of Grab's screenshot service,
Grab, Screen, is @"Grab/Screen".

The second argument to NSPerformService() is an NSPasteboard instance. The pasteboard should be a
custom, privately named pasteboard. If the service takes input, the input should be put on the pasteboard before the
NSPerformService() call is made.

The NSPerformService() function returns YES if the service call succeeded. Any return data coming back from
the service will be on the pasteboard that was passed to the function originally. If the call fails, NO is returned.

The ScreenShotTool example program on www.cocoaprogramming.net shows how a simple Foundation Kit-based
tool can invoke a service. It will invoke Grab to take a screenshot, and then store the tiff in the specified file. Besides
the NSPerformService() call, there are two other important things. First, to have access to the
NSPerformService() function, the tool must be linked against Cocoa.framework, not Foundation.
framework. Second, a connection to the pasteboard server is needed to make the services work. Simply asking
NSApplication for the +sharedApplication object is enough to get the needed connections set up
automatically. Here's the full source code for ScreenShotTool's main.m:

#import <Cocoa/Cocoa.h>

NSData *getScreenshot()
{
 NSString *type; BOOL success;
 NSArray *typeArray = [NSArray arrayWithObjects:NSTIFFPboardType, nil];
 NSPasteboard *pb = [NSPasteboard pasteboardWithName:@"Screenshot Board"];

http://www.cocoaprogramming.net/

 success = NSPerformService(@"Grab/Screen", pb);
 if (!success) return nil;
 type = [pb availableTypeFromArray:typeArray];
 if (!type) return nil;
 return [pb dataForType:type];
}

int main (int argc, const char * argv[]) {
 NSString *filename; NSData *screenshot;
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 if (argc != 2) {
 fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
 fprintf(stderr, " Stores a screenshot in <filename>\n");
 exit(1);
 }
 [NSApplication sharedApplication];
 screenshot = getScreenshot();
 if (!screenshot) {
 NSLog(@"Error: unable to obtain screen shot.");
 exit(1);
 }
 filename = [NSString stringWithCString:argv[1]];
 [screenshot writeToFile:filename atomically:NO];
 [pool release];
 return 0;
}

NOTE

Grab requires a mouse click somewhere on the screen to actually have a screen shot taken. The service
invocation waits for the mouse click. If the click doesn't happen within 30 seconds, the service will time
out and fail. Keep this in mind when running the example.

Implementing Service Providers

Implementing a service provider is a simple process. The first step is to define an object to act as an application's
service provider. An application can only have one service provider. All services invocations call one of the methods
defined by the service provider. The next step is to install an instance of the service-providing object as the service
provider. The last step is to add an NSServices entry to the application's Info.plist.

The MathService example on www.cocoaprogramming.net demonstrates how to implement a service provider. It is
discussed throughout the sections on providing services. The example implements several services. The Insert Date
service inserts the current date at the selection or insertion point of a text view. The Set Date Format service sends
the current selection to the service provider for use as the date format for subsequent insert date invocations. The
Halve and Double services take the current selection, interpret it as a floating-point number, and return a halved or
doubled version of the number.

Defining a Service Provider Object

A service provider object can be an object of any class. The primary responsibility of the service provider object is to
respond to messages that invoke the services its application offers. The messages have a very specific method
signature, where only the <name> portion can be changed:

http://www.cocoaprogramming.net/

- (void)<name>:(NSPasteboard *)pb userData:(NSString *)userData
 error:(NSString **)error

For example, the MathService example defines these three services methods in the MYServiceProvider class:

- (void)dateService:(NSPasteboard *)pb userData:(NSString *)userData
 error:(NSString **)error
- (void)setDateFormatService:(NSPasteboard *)pb userData:(NSString *)userData
 error:(NSString **)error
- (void)multiplicationService:(NSPasteboard *)pb userData:(NSString *)userData
 error:(NSString **)error

The pasteboard argument is the pasteboard containing the service's input data. When the service finishes, any output
data it provides should be on the pasteboard. Services that don't take input can skip taking data off the pasteboard.
Likewise, those that do not return data don't need to put anything on the pasteboard.

The user data argument is an arbitrary string. The developer sets the value when writing the Info.plist
NSServices entry. The main purpose is to allow a single method implement multiple services. The Halve and
Double services from MathService both use the -multiplicationService: method. The userData
parameter tells the object which service was invoked so that it can do the right thing.

The last argument, the error string, should be set if something goes wrong while attempting to perform the service. If
everything goes fine, it should be left alone. The error string is returned by reference.

MathService's MYServiceProvider Class

The MathService example implements only one class, MYServiceProvider. The application has a small user
interface, shown in Figure 19.2, that allows a date format to be set. The MYServiceProvider class has two
outlets, dateFormatField and dateExampleField, that connect to the user interface. It also implements the
-dateFormatChanged: action method. The dateFormatField field sends the -dateFormatChanged:
action to the MYServiceProvider object. The MYServiceProvider also acts as the application's delegate.

Figure 19.2. MathService user interface.

The user interface glue is implemented with this code:

- (NSString *)formattedDate
{
 return [[NSCalendarDate calendarDate] descriptionWithCalendarFormat:
 [dateFormatField stringValue]];

}

- (IBAction)dateFormatChanged:(id)sender
{
 [dateExampleField setStringValue:[self formattedDate]];
}

To make pasteboard manipulation simpler for the service methods, the following two convenience methods are
implemented:

- (NSString *)getStringFromPasteboard:(NSPasteboard *)pb
{
 NSArray *types = [pb types];
 if (![types containsObject:NSStringPboardType]) {
 return nil;
 }
 return [pb stringForType:NSStringPboardType];
}

- (void)putString:(NSString *)outputString onPasteboard:(NSPasteboard *)pb
{
 NSArray *types = [NSArray arrayWithObject:NSStringPboardType];
 [pb declareTypes:types owner:nil];
 [pb setString:outputString forType:NSStringPboardType];
}

The three services methods mentioned in the "Defining a Service Provider Object" section earlier in this chapter are
implemented in terms of the code already presented. They use the constants NO_READ_STRING and
NO_WRITE_STRING, which are NSStrings defined with @"". In a professional application, these strings would
be localized. Here is the code for all three methods:

- (void)dateService:(NSPasteboard *)pb userData:(NSString *)userData
 error:(NSString **)error
{
 NSString *outputString = [self formattedDate];
 if (!outputString) {
 *error = NO_WRITE_STRING;
 return;
 }
 [self putString:outputString onPasteboard:pb];
}

- (void)setDateFormatService:(NSPasteboard *)pb userData:(NSString *)userData
 error:(NSString **)error
{
 NSString *inputString = [self getStringFromPasteboard:pb];
 if (!inputString) {
 *error = NO_READ_STRING;
 return;
 }
 [dateFormatField setStringValue:inputString];
 [self dateFormatChanged:nil];
 [[dateFormatField window] makeKeyAndOrderFront:nil];
 [NSApp activateIgnoringOtherApps:YES];
}

- (void)multiplicationService:(NSPasteboard *)pb userData:(NSString *)userData
 error:(NSString **)error
{
 double output;
 NSString *outputString;
 NSString *inputString = [self getStringFromPasteboard:pb];
 if (!inputString) {
 *error = NO_READ_STRING;
 return;
 }
 output = [inputString doubleValue] * [userData doubleValue];
 outputString = [NSString stringWithFormat:@"%f", output];
 if (!outputString) {
 *error = NO_WRITE_STRING;
 return;
 }
 [self putString:outputString onPasteboard:pb];
}

The -setDateFormatService: method implements a service that receives data but returns nothing. This kind
of service usually causes the service provider application to become active, because it generally implies that the user
will follow through with further actions in the service provider application. Two good examples of this are the Mail
Text and Mail To services implemented by the Mail application. That is why the -setDateFormatService:
method brings a window forward and activates the application with the -activateIgnoringOtherApps:
method. Those steps might be omitted for other applications where such behavior doesn't make sense.

The -multiplicationService: method makes use of the user data. It uses the user data as a multiplicand.
This means that the Double user service needs to define the user data as 2.0 and the Halve service would define a
user data of 0.5. User data could be anything, it is up to the developer to decide what its meaning is. Many simple
services don't use it at all. The -dateService: and -setDateFormatService: methods completely ignore
it.

Declaring a Service Provider Object

After a class that can act as a service provider has been written, it needs to be registered as the application's service
provider. This is done in one of two ways. If the service providing application is a full Cocoa application, with an
NSApplication object, the -setServicesProvider: method is sent to the application object. The -
servicesProvider method returns the current services provider. In a Foundation Kit-based program, which has
its own run loop, the NSRegisterServicesProvider() function call is used instead of -
setServicesProvider:.

In the case of the MathService example, the application's delegate, a MYServiceProvider instance, does the
registration by calling the NSApplication method -setServicesProvider: from the -
applicationDidFinishLaunching: method. Here's the code for the entire method:

- (void)applicationDidFinishLaunching:(NSNotification *)notification
{
 [self dateFormatChanged:self];
 [NSApp setServicesProvider:self];
}

For an example of a Foundation-based program, refer to the SimpleService example in /Developer/Examples/
AppKit. The main() for the program looks like this:

int main (int argc, const char *argv[]) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 ServiceTest *serviceProvider = [[ServiceTest alloc] init];
 NSRegisterServicesProvider(serviceProvider, @"SimpleService");
 NS_DURING
 [[NSRunLoop currentRunLoop] configureAsServer];
 [[NSRunLoop currentRunLoop] run];
 NS_HANDLER
 NSLog(@"%@", localException);
 NS_ENDHANDLER
 [serviceProvider release];
 [pool release];
 return 0;
}

A service provider object is allocated and initialized, and then declared as the services provider. The first argument to
NSRegisterServicesProvider() is the object that can provide services. The second argument is the
program's services port. Normally, it should be the name of the program. Foundation-based programs, such as
SimpleServices, don't have a user interface. Therefore, the application's icon should never appear in the dock. To
keep the application out of the dock, set the key NSBGOnly to 1 in the Expert Applications Settings of the
application's target in Project Builder.

NOTE

An object could start receiving services invocations the moment it is declared as a service provider.
Don't declare an object as the services provider until it is completely ready to respond to services
requests.

Configuring an Application's Info.plist for Providing Services

The final step in providing services is to properly configure the application's Info.plist. The key NSServices
should refer to an NSArray that lists all the services an application can provide. Each item in the array is an
NSDictionary that defines one service. Any number of services can be defined. Table 19.4 shows the keys that
can be used in the dictionary that defines a service.

Table 19.4. Keys Found in Service Dictionaries

Service Dictionary Key Contents

NSMessage The service provider object method to invoke.

NSUserData The string to use as the userData argument.

NSPortName The services port name.

NSTimeout The timeout in milliseconds, default is 30000 (30 seconds).

NSMenuItem An NSDictionary containing the name of the services menu item.

NSKeyEquivalent An NSDictionary containing the menu item's key equivalent.

NSSendTypes An NSArray containing the service's input pasteboard types.

NSReturnTypes An NSArray containing the service's output pasteboard types

The NSMessage key should point to an NSString that contains the partial name of the service provider message
that should be invoked to perform the service. It should be the <name> portion of the method name, as shown in the
"Defining a Service Provider Object" section. For example, the method -myService:userData:error: would
use myService as the NSMessage name. The NSMessage key is required.

The NSUserData key is where the service's user data is set. It should be an NSString. The string can contain
anything. It is passed verbatim as the userData argument when the service is invoked. The service method can
then interpret it in any way it wants. This key is optional.

The NSPortName is the application's services port, a named Mach port. For an NSApplication-based program,
it is the name of the application. For a Foundation Kit-based program, this should match the port name declared when
calling the NSRegisterServicesProvider() function. This key is required.

NSTimeout controls the timeout length. This tells the operating system the maximum amount of time to wait for the
service to finish before generating an error. The default is 30 seconds, which should be enough time for an
application to launch and provide its service. If an application is likely to take longer, add this key to the services
definition to extend the timeout period. The value is an NSString giving a time in milliseconds. This key is
optional. The default value when the key is omitted is 30000.

The NSMenuItem and NSKeyEquivalent keys are used to define how the service appears in the services menu.
Both are NSDictionary objects. Each has a single key/value pair. The key is default and the value is an
appropriate NSString. The NSMenuItem key is required, but the NSKeyEquivalent key is optional.

The menu item specifies both the menu item's name as well as where it belongs in the services menu's hierarchy. The
notation used separates menu levels with a / character, much like specifying a Unix file path. For example, the string
Make Sticky creates a menu item in the top-level services menu. The string TextEdit/Open File specifies
the item Open File in the TextEdit submenu. An application that offers only one service should not use a submenu.
Applications vending multiple services should use a submenu. The services menus are always alphabetized. There is
no way to specify a separator item or the order of the items in the menu.

The key equivalent's value should be a single character such as d or D. There is currently no way to specify key
equivalents that take the option or control key.

The NSSendTypes and NSReturnTypes keys are both NSArray objects that contain a list of pasteboard types
such as NSStringPboardType. Custom types can be specified, just use the string that is used when declaring the
type on a pasteboard. The send types are the types that can be sent to the service as input. The return types are the
types that come back from the service. One or both of these keys can be provided. It is necessary to at least declare
one or the other.

MathService's Info.plist

The MathService example shows how to use Info.plist for services that send data, receive data, or both. To edit
the Info.plist of an application, select the application's target in Project Builder, select the Application Settings
tab, and click the Expert button. A property list editor will appear.

The Insert Date service uses the -dateService:userData:error: method. This means that the message
name should be dateService. There is no send type, and only the NSStringPboardType return type. The
menu item is Insert Date in the DateService submenu, so the menu item is specified as DateService/Insert
Date. Figure 19.3 shows the NSServices entry for this service.

Figure 19.3. The NSServices entry for the Insert Date service.

The Set Date Format service is much like Insert Date. The message name changes to setDateFormatService
and there is a send type instead of a return type. The NSServices entry is shown in Figure 19.4.

Figure 19.4. The NSServices entry for the Set Date Format service.

The Halve service uses the multiplicationService message. This method requires a proper userData
setting. Because multiplying numbers by 0.5 halves them, the NSUserData key is set to 0.5. A timeout entry of 20
seconds has also been set. It isn't necessary to change the timeout length, but this shows how it is done. Figure 19.5
shows the Halve service's NSServices entry.

Figure 19.5. The NSServices entry for the Halve service.

The last service is the Double service. It is set up like the Halve service. It even calls the same method, so the
NSMessage key is the same. The major difference is that the NSUserData key changes to 2.0. This
NSServices entry is shown in Figure 19.6.

Figure 19.6. The NSServices entry for the Double service.

Both the Double and Halve services place their menu items in the MathService submenu, whereas the Insert Date and
Set Date Format services insert their menu items in the DateService submenu. This is perfectly legal; items can be
placed in any services menu that makes sense. By convention, the application's name is used as a submenu and all
services items offered by that application are offered in that submenu. This helps to prevent conflicts between
applications.

Key equivalents can also conflict between menu items. The items in an application's main menu override any key
equivalents used by services items. Furthermore, services items take precedence over each other by where they fall in
the menu. They are defined in alphabetical order, and the first item to request a key equivalent gets it. This means
that even if a key equivalent is defined, there's a good chance it won't be available in every single application. For
example, the key equivalent for Insert Date of d is lost within TextEdit. TextEdit already uses the D key for
something else.

Installing Applications That Offer Services

For Mac OS X to make services available to other applications, it must first know about the service. It won't find a
service unless the application that offers the service is installed in the standard application path. Installing the
application in ~/Applications, /Applications, or one of the other standard paths is necessary.

Applications can also be installed in the Services folder of one of the standard library paths. The ~/Library/
Services and /Library/Services folders are common locations. This works well for applications that offer

services but don't have user interfaces. Because there's little point in launching them directly, they can be put in a
services folder to keep the regular applications folders uncluttered. Putting the application in the right place isn't
enough, though. After it has been installed, the services database needs to be rebuilt. This is done whenever the user
logs in. So, logging out and logging back in can discover new services.

Unfortunately, there is no command-line tool to rebuild the database programmatically, even though there used to be
one called make_services. Cocoa applications can call the NSUpdateDynamicServices() function,
however. It takes no arguments and returns nothing. Although it does indeed update the services database, only
applications launched after the NSUpdateDynamicServices() call display the new services. Running
applications are not updated and must be quit and restarted to reflect any changes in the services menu. Programs that
dynamically extend their NSServices entry on the fly should call this function after making modifications.

After the MathService example is correctly installed, all four of its services are available. Figure 19.7 shows the two
date-related services in action.

Figure 19.7. The date-related services offered by the MathService example.

The services for halving and doubling numbers are demonstrated in Figure 19.8. A TextEdit window shows some
values that have already been run through the services. The MathService submenu of the Services menu is also
shown.

Figure 19.8. The math-related services offered by the MathService example.

Filter Services

It is also possible to create filter services to convert data from one type to another. Filter services are useful for
adding a system-wide capability to open non-native image and sound formats. For example, the IFF image file type is
not built into Mac OS X. By building and installing the SimpleImageFilter example in /Developer/Examples/
AppKit, a rudimentary capability to import IFF images is available to all Cocoa applications.

To create a filter service, create a new Cocoa application project. Delete the main .nib file and set the NSBGOnly
key to 1 in expert application settings. Finally, rewrite the application's main. Main should take the filename of the
data to be converted from argv[1]. The converted data should be sent to stdout. The program should set its exit
status to 0 for success or 1 for failure. In most cases, run loops are unnecessary. The filter program is run once for
every filtering job. An autorelease pool will probably be required, though.

The NSServices array's dictionaries have two new keys in them. The key NSFilter must appear in the service
dictionary to flag the filter as a service. The value should be left empty. The key NSInputMechanism should also
appear in the service dictionary, with the value NSUnixStdio. The return types should be a standard image or
sound format. The send (input) types are usually set to a filename type with the extension added. For example, the
IFF filter declares NSTypedFilenamesPboardType:iff and NSTypedFilenamesPboardType:IFF as
send types.

Filter services should always be installed in a Services folder in one of the standard library paths. Refer to the
SimpleImageFilter example in /Developer/Examples/AppKit for complete example of a filter service.

Book: Cocoa® Programming
Section: Chapter 19. Using Pasteboards

Summary

This chapter shows how to use the NSPasteboard class and all the major system
features that revolve around pasteboard objects. A simple implementation of cut, copy, and
paste is demonstrated. Drag and drop is also demonstrated in several formats. Working
with services as both a client and provider is also described.

Because all these features are so closely related, it is easy to implement them all if one has
been implemented. It is to an application's advantage to fully implement these features.
Users appreciate applications that are willing to talk to each other, and pasteboards make it
possible for developers to enhance the abilities of applications to communicate with each
other.

The next chapter shows how to add online help to an application. Comprehensive help, in
the form of Apple Help Books, and ToolTips are described. To improve the user's
experience on Mac OS X, all Cocoa applications should implement help.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 20. Adding Online Help

IN THIS CHAPTER

● Apple Help
● ToolTips
● Context-Sensitive Help (NSHelpManager)

Mac OS X and Cocoa offer two primary means of providing application help to users:
comprehensive help and ToolTips.

Comprehensive help corresponds to the application's complete manual. It is stored in a
folder inside the application as a collection of HTML pages. It is displayed by the Apple
Help Viewer application that is a part of Mac OS X. The first section of this chapter
describes how to use Apple Help from within a Cocoa application.

ToolTips are short messages that appear when the mouse pointer rests for a moment above
a user interface element. They disappear when the mouse is moved again. ToolTips usually
contain a short phrase that identifies the purpose of a control, but do not provide any in-
depth information. The second part of this chapter discusses ToolTips.

Book: Cocoa® Programming
Section: Chapter 20. Adding Online Help

Apple Help

Apple Help uses specially formatted HTML-based documents called help books to provide comprehensive help for an
application. In its simplest form, a help book is a self-contained folder with HTML files and graphics. In more complex
cases, some or all the help content is actually stored on an Internet server and retrieved on demand by the Help Viewer
application. Figure 20.1 shows Help Viewer displaying the help book for the RoX application.

Figure 20.1. Apple's Help Viewer application displays comprehensive help.

The HTML documents used by Help Viewer contain standard HTML 3.2 tags, but because of limitations in the Help
Viewer application, the HTML files cannot contain any frames, forms, plug-ins, or Java. They can contain tables, images,
anchors, and basic text formatting tags. Several additional meta tags are defined by Apple to customize the behavior of
Apple's Help Viewer and are used by indexing applications.

NOTE

There are many features of help books that are beyond the scope of this book. Developers should read Apple's
documentation about the help book format at /Developer/Documentation/ Carbon/
HumanInterfaceToolbox/AppleHelp/ProvidingUserAssitAppleHelp/index.html. The
documentation is installed automatically when Apple's developer tools are installed. Details about specific
Apple Help meta tags are provided in the Concepts section of the help documentation.

For those who want to dig in without reading all the documentation, just a few things are needed to create a minimal help
book. The BasicHelpExample on the www.cocoaprogramming.net Web site is used as an example in this chapter.

The first task is to create a folder for the new help book. A good name would be something such as <appname > Help,
where <appname > is the name of the associated application. The BasicHelpExample on www.cocoaprogramming.net
uses Basic Help as the folder name. Help is typically a localized resource, so the help folder should be created in a
localized folder such as the project's English.lproj folder. Put all the HTML and graphics files that are needed inside
the new folder. The BasicHelpExample contains three HTML pages and a small GIF icon. The start page is named

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

index.html, and it links to license.html and release_notes.html.

The contents of the index.html file used in BasicHelpExample are shown here. The file contains two interesting
meta tags-"AppleTitle" and "AppleIcon".

File index.html:

<HTML>
<HEAD>
<TITLE>Basic Help Book Example</TITLE>
<META NAME="AppleTitle" CONTENT="Basic Help Book Example">
<META NAME="AppleIcon" CONTENT="Basic%20Help/icon.gif">
</HEAD>
<BODY>
<CENTER><H1>
Basic Help Book
</H1></CENTER>
<P>
This is a very simple example of an Apple Help Book which can be
viewed in the Help Viewer application.
<P>
There's a
License
page in this book as well as a
Release Notes
page. Check them out!
<P>
</BODY>
</HTML>

The "AppleTitle" tag specifies the title of the help book. Clicking the ? button at the lower-left corner of the Help
Viewer's window opens a listing of all the available help books, one per line. The title provided in the "AppleTitle"
tag is shown in that listing.

To the left of each help book's title in the list of titles is a small icon. The "AppleIcon" meta tag specifies the filename
of the icon. The icon should be a 16x16 GIF image according to Apple. Help Viewer displays a small translucent diamond
if no icon is specified with the "AppleIcon" meta tag. Some experimentation by the authors has determined that
animated GIF images and larger GIF images also work, but Help Viewer automatically scales them down to 16x16.

After the HTML files are added to the folder for the new help book, they need to be indexed. Indexing enables the Apple
Help Viewer's search functionality. The Apple Help Indexing Tool application can be found in /Developer/
Applications.

The Apple Help Indexing Tool depends on HFS file settings to tell it which files to index. This means that some command-
line witchery is required before the indexer will work on OS X. Open a Terminal window and change to the help book's
directory. When there, run the following command:

/Developer/Tools/SetFile -c 'hbwr' -t 'TEXT' *.html

The command sets the HFS creator code to hbwr and the HFS type code to TEXT for all files ending in the five
characters, .html.

After the creator and type codes are set, the index can be created. The indexing application doesn't have an Open command
in the File menu. The only way to get a help book indexed is to drag and drop the help book folder on the indexing tool's
icon. If the indexing tool isn't already running, it will be invoked. If all goes well, a file called <foldername > idx will
be created where <foldername > is the name of the folder dropped on the Apple Help Indexing Tool application icon.
In the BasicHelpExample example, the help book's folder is Basic Help, so the index file is called Basic Help

idx. The BasicHelpExample project already has an index in it, but feel free to delete the index and recreate it yourself.

A help book can be displayed by Help Viewer even if it does not have an index, but searches will not work without an
index. Therefore, despite the inconvenience of creating an index, it is worth doing. A future version of Project Builder
might have a feature to automatically create help indexes when building an application. Until then, the cumbersome manual
process is required.

The process outlined so far produces valid indexed Apple Help books. The Basic Help book created in the
BasicHelpExample example only takes advantage of the most basic features of Apple Help. To use more complex
features, consult Apple's help documentation found at /Developer/Documentation/Carbon/
HumanInterfaceToolbox/AppleHelp/applehelp.html.

Integrating a Help Book into Your Application

After a help book is available, Cocoa simplifies integration of it into an application. All the necessary steps can be
performed in Project Builder.

The help book must first be added to the Project Builder project for the associated application. Copy the folder containing
Help Viewer documents into the proper localized directory, such as English.lproj for English-language
documentation. Next select Add Files from Project Builder's Project menu (Cmd-Option-A). In the sheet that appears,
select the help folder and click Open. A new sheet appears. Select the Create Folder References for any added folders
option, and then click the Add button.

After the folder containing Help Viewer documents has been added to Project Builder, the next step is to set up the proper
bundle info keys so that Cocoa can find the help book when the application is run. Select the Targets tab in Project Builder,
and then select the application's target. For most simple projects, that will be the only target shown. Choose the Application
Settings tab from the target editor, and click the Expert button that appears at the upper right of the target editor area. Two
new key/value pairs need to be added. Use the New Sibling button to add them. The keys and values to add follow in Table
20.1:

Table 20.1. Apple's Help Viewer Meta Tags

Key Value

CFBundleHelpBookFolder <folder name>

CFBundleHelpBookName <help book name>

The first key, CFBundleHelpBookFolder, specifies the help book folder's name. Its value must exactly match the
name of the folder containing the help book. In the case of the BasicHelpExample, the folder is named Basic Help,
which is the value used in the example for the CFBundleHelpBookFolder key.

The second key, CFBundleHelpBookName, specifies the name of the help book. The value must be the same as the title
specified with the "AppleTitle" meta tag in the index page of the help book. In our example, the value of this key is
Basic Help Book Example. If the value of this key doesn't exactly match the "AppleTitle" meta tag, the Help Viewer
application will still open, but it will not show the correct help book. Instead, it will show the list of all available help
books on the system.

The main .nib file template used for Cocoa applications already contains a Help menu connected to the correct action, so
at this point the application is ready to be tested. Build and run the application. Choosing the help item from the running
application's Help menu (Cmd-?) opens the new help book as expected. If some aspect of help isn't working, be sure that
each of the steps in this section were followed exactly. Also be sure that there are valid values for all the Basic Information

target settings in the target editor in Project Builder (Application Settings tab with the Simple button selected).

To use another object such as a menu item, button, or control to open a help book, simply connect the object to the First
Responder object and have it send the -showHelp: message. This action method is defined by the NSApplication
class and will open an application's help book as long as it has been properly specified by the key/value pairs given in
Table 20.1.

There has been no need to write code to implement Apple help, so far. It is possible to use Apple Help in a Cocoa
application without writing a single line of code. As shown previously, all that is needed is to create a help book, and then
set two bundle info keys in Project Builder. Everything else has already been set up automatically by Cocoa.

Extending Help Functionality Using Carbon

It is possible to implement more sophisticated behavior than just opening a help book to its title page when the Help menu
item is selected. An application might need to open to a specific page in a help book or provide more than one help book.
These features can be added, but some code is required. Unfortunately, Cocoa provides no direct API for this functionality.
It is only available from Carbon. To make it easier for Cocoa developers to access this functionality, the
MiscHelpManager class has been created. MiscHelpManager is adapted from Apple sample code provided with the
Apple Help documentation.

NOTE

MiscHelpManager is part of the MiscKit. The MiscKit is a third-party resource and is available for free at
www.misckit.com. The MiscHelpManager class is also available from the www.cocoaprogramming.net
Web site.

The source code for the MiscHelpManager class is shown here primarily as a simple example of wrapping procedural
Carbon APIs in objects.

File MiscHelpManager.h:

#import <Foundation/Foundation.h>

@interface MiscHelpManager : NSObject
{
}

- (void)goToUserHelpCenter;
- (void)goToDeveloperHelpCenter;
- (void)registerBook;
- (void)goToTableOfContents;
- (void)goToPage:(NSString *)pagePath;
- (void)goToAnchorNamed:(NSString *)anchorName;
- (void)goToAnchorNamed:(NSString *)anchorName onPage:(NSString *)pagePath;

@end

File MiscHelpManager.m:#import "MiscHelpManager.h"
#import <Carbon/Carbon.h>
@interface MiscHelpManager (_private)

- (OSStatus)_gotoHelpToc:(AHTOCType)theTOC;
- (OSStatus)_registerMyHelpBook;
- (OSStatus)_goToAnchorNamed:(CFStringRef)anchorName onPage:(CFStringRef)pagePath;

http://www.misckit.com/
http://www.cocoaprogramming.net/

- (OSStatus)_goToAnchorNamed:(CFStringRef)anchorName;
- (void)_reportError:(OSStatus)err forMethodNamed:(NSString *)methodName
 withData:(NSString *)data;

@end

@implementation MiscHelpManager

- (void)goToUserHelpCenter
{
 OSStatus err = [self _gotoHelpToc:kAHTOCTypeUser];
 if (err != noErr) {
 [self _reportError:err forMethodNamed:@"goToUserHelpCenter" withData:@""];
 }
}

- (void)goToDeveloperHelpCenter
{
 OSStatus err = [self _gotoHelpToc:kAHTOCTypeDeveloper];
 if (err != noErr) {
 [self _reportError:err forMethodNamed:@"goToDeveloperHelpCenter"
 withData:@""];
 }
}

- (void)registerBook
{
 OSStatus err = [self _registerMyHelpBook];
 if (err != noErr) {
 [self _reportError:err forMethodNamed:@"registerBook" withData:@""];
 }
}

- (void)goToTableOfContents
{
 OSStatus err = [self _goToAnchorNamed:NULL onPage:NULL];
 if (err != noErr) {
 [self _reportError:err forMethodNamed:@"goToTableOfContents" withData:
@""];
 }
}

- (void)goToPage:(NSString *)pagePath
{
 OSStatus err = [self _goToAnchorNamed:NULL onPage:(CFStringRef)pagePath];
 if (err != noErr) {
 [self _reportError:err forMethodNamed:@"goToPage:" withData:pagePath];
 }
}

- (void)goToAnchorNamed:(NSString *)anchorName
{
 OSStatus err = [self _goToAnchorNamed:(CFStringRef)anchorName];
 if (err != noErr) {
 [self _reportError:err forMethodNamed:@"goToAnchorNamed:"
 withData:anchorName];
 }
}

- (void)goToAnchorNamed:(NSString *)anchorName onPage:(NSString *)pagePath
{
 OSStatus err = [self _goToAnchorNamed:(CFStringRef)anchorName
 onPage:(CFStringRef)pagePath];
 if (err != noErr) {
 [self _reportError:err forMethodNamed:@"goToAnchorNamed:onPage:" withData:
 [NSString stringWithFormat:@"%@:%@", pagePath, anchorName]];
 }
}

- (void)_reportError:(OSStatus)err forMethodNamed:(NSString *)methodName
 withData:(NSString *)data
{
 if (err == noErr) return;
 if (err == fnfErr) {
 NSLog(@"IXHelpManager %@: File not found. (\"%@\")", methodName, data);
 } else if (err == paramErr) {
 NSLog(@"IXHelpManager %@: Invalid parameter. (\"%@\")",
 methodName, data);
 } else {
 NSLog(@"IXHelpManager %@: Unknown error %d. (\"%@\")",
 methodName, err, data);
 }
}

- (OSStatus)_gotoHelpToc:(AHTOCType)theTOC
{
 return AHGotoMainTOC(theTOC);
}

- (OSStatus)_registerMyHelpBook
{
 // The code for this method comes from Apple's Carbon docs.
 // I touched it up so it would compile. - DAY
 CFBundleRef myAppsBundle;
 CFURLRef myBundleURL;
 FSRef myBundleRef;
 OSStatus err;

 // set up a known state
 myAppsBundle = NULL;
 myBundleURL = NULL;

 // Get our application's main bundle from Core Foundation
 myAppsBundle = CFBundleGetMainBundle();
 if (myAppsBundle == NULL) {
 err = fnfErr;
 goto bail;
 }

 // retrieve the URL to our bundle
 myBundleURL = CFBundleCopyBundleURL(myAppsBundle);
 if (myBundleURL == nil) {
 err = fnfErr;
 goto bail;
 }

 // convert the URL to a FSRef
 if (!CFURLGetFSRef(myBundleURL, &myBundleRef)) {

 err = fnfErr;
 goto bail;
 }

 // register our application's help book
 err = AHRegisterHelpBook(&myBundleRef);
 if (err != noErr) goto bail;

 // done
 CFRelease(myBundleURL);
 return noErr;

bail:
 if (myBundleURL != NULL) {
 CFRelease(myBundleURL);
 }

 return err;
}

- (OSStatus)_goToAnchorNamed:(CFStringRef)anchorName onPage:(CFStringRef)pagePath
{
 // The code for this method comes from Apple's Carbon docs.
 // I touched it up so it would compile. - DAY
 // If pagePath is NULL, goes to main TOC
 // If anchorName is NULL, goes to top of page
 CFBundleRef myAppsBundle;
 CFTypeRef myBookName;
 OSStatus err;

 // set up a known state
 myAppsBundle = NULL;
 myBookName = NULL;

 // Get our application's main bundle from Core Foundation
 myAppsBundle = CFBundleGetMainBundle();
 if (myAppsBundle == NULL) {
 err = fnfErr;
 goto bail;
 }

 // get the help book's name
 myBookName = CFBundleGetValueForInfoDictionaryKey(myAppsBundle,
 CFSTR("CFBundleHelpBookName"));
 if (myBookName == NULL) {
 err = fnfErr;
 goto bail;
 }

 // verify the data type returned
 if (CFGetTypeID(myBookName) != CFStringGetTypeID()) {
 err = paramErr;
 goto bail;
 }

 // go to the page
 err = AHGotoPage(myBookName, pagePath, anchorName);
 if (err != noErr) goto bail;

 // done
 return noErr;

bail:
 return err;
}

- (OSStatus)_goToAnchorNamed:(CFStringRef)anchorName
{
 // The code for this method comes from Apple's Carbon docs.
 // I touched it up so it would compile. - DAY
 CFBundleRef myAppsBundle;
 CFTypeRef myBookName;
 OSStatus err;

 // set up a known state
 myAppsBundle = NULL;
 myBookName = NULL;

 // Get our application's main bundle from Core Foundation
 myAppsBundle = CFBundleGetMainBundle();
 if (myAppsBundle == NULL) {
 err = fnfErr;
 goto bail;
 }

 // get the help book's name
 myBookName = CFBundleGetValueForInfoDictionaryKey(myAppsBundle,
 CFSTR("CFBundleHelpBookName"));
 if (myAppsBundle == NULL) {
 err = fnfErr;
 goto bail;
 }

 // verify the data type returned
 if (CFGetTypeID(myBookName) != CFStringGetTypeID()) {
 err = paramErr;
 goto bail;
 }

 // go to the page
 err = AHLookupAnchor(myBookName, anchorName);
 if (err != noErr) goto bail;

 // done
 return noErr;

bail:
 return err;
}

@end

The MiscHelpManager class can't be used by itself; it is meant to be called by a controller within an application. It
doesn't provide any action methods that could be used directly within Interface Builder. To see this object in action, refer to
the MiscHelpManagerExample code on www.cocoaprogramming.net. The Basic Help book used in the
BasicHelpExample example is also used in the MiscHelpManagerExample. The Basic Help book has three
pages: an index page, a license, and release notes. The MiscHelpManagerExample application uses the
CFBundleHelpBookFolder and CFBundleHelpBookName keys in Project Builder's target editor just like

http://www.cocoaprogramming.net/

BasicHelpExample.

The MiscHelpManagerExample application contains a controller object called AppDelegate that provides five
action methods for Interface Builder to call. Each method makes a corresponding call to an instance of
MiscHelpManager, as shown in the following source code:

File AppDelegate.h:

#import <Cocoa/Cocoa.h>

@class MiscHelpManager;

@interface AppDelegate : NSObject
{
 MiscHelpManager *helpManager;
}

- (IBAction)openHelp:(id)sender;
- (IBAction)openHelpCenter:(id)sender;
- (IBAction)openDeveloperHelpCenter:(id)sender;
- (IBAction)openReleaseNotes:(id)sender;
- (IBAction)openLicense:(id)sender;

@end

File AppDelegate.m:

#import "AppDelegate.h"
#import "MiscHelpManager.h"

@implementation AppDelegate

- (id)init
{
 self = [super init];
 if (!self) return nil;
 helpManager = [[MiscHelpManager alloc] init];
 [helpManager registerBook];
 return self;
}

- (void)dealloc
{
 [helpManager release];
 [super dealloc];
}

- (IBAction)openHelp:(id)sender
{
 [helpManager goToTableOfContents];
}

- (IBAction)openHelpCenter:(id)sender
{
 [helpManager goToUserHelpCenter];
}
- (IBAction)openDeveloperHelpCenter:(id)sender
{

 [helpManager goToDeveloperHelpCenter];
}

- (IBAction)openReleaseNotes:(id)sender
{
 [helpManager goToPage:@"release_notes.html"];
}

- (IBAction)openLicense:(id)sender
{
 [helpManager goToPage:@"license.html"];
}

@end

A MiscHelpManager instance is created in AppDelegate's -init method, and it is asked to register the bundle's
help book(s). If there is only one help book, Cocoa will automatically register it. However, it is possible to have a bundle
specify multiple help books. In such cases, it is necessary to explicitly register all the help books.

The first three action methods are straightforward. The -openHelp: method does the same thing as NSApplication's
-showHelp: method. It opens the associated help book to its index page. The only difference is that the
MiscHelpManager object is being used to do the opening. Two other methods, -openHelpCenter: and -
openDeveloperHelpCenter:, access the standard user and developer help centers shipped with OS X. Each help
center provides a list of help books available on the system. The user help center lists books oriented toward typical users'
concerns. The developer help center has more technical content.

The last two action methods, -openReleaseNotes: and - openLicense:, are more interesting and show how a
developer most commonly would use a MiscHelpManager instance. They open the current help book to a specific page,
in this case either the license or release notes page. These methods use the MiscHelpManager -goToPage: method
to open to a particular page in a help book. An NSString is used to specify a page. Pass in the filename of the page to be
displayed. This filename should be a relative path, treating the help book folder as the current directory.

With MiscHelpManager, it is possible to ask the Help Viewer to jump to a specific anchor within the HTML files (as
specified with an HTML <a name="<anchor_name> "> tag). To do this, use one of the MiscHelpManager
methods -goToAnchorNamed: or -goToAnchorNamed:onPage:. Because information about all the anchors is
stored in the help book's index, the first method, which doesn't require the page name, will search the index to find the right
page for the requested anchor. This is usually the best way to look up an anchor because it prevents introducing
dependencies on the help book's layout into the application's code. The second method can be used to specify a particular
page just like the -goToPage: method.

Book: Cocoa® Programming
Section: Chapter 20. Adding Online Help

ToolTips

ToolTips are short messages that appear when the mouse pointer rests for a moment above a user interface element,
shown in Figure 20.2. They disappear when the mouse is moved again. A ToolTip is usually a short phrase that helps
identify a control and does not provide any in-depth information. Interface Builder offers direct support for ToolTips,
and that support is often sufficient. Cocoa also provides some APIs to handle more complex situations.

Figure 20.2. ToolTips display short identifying phrases.

Using Interface Builder to Set ToolTips

As with comprehensive help, Cocoa makes it possible to use ToolTips without writing any code at all. In Interface
Builder there is a Help inspector for every view object that can have an associated ToolTip. Select an object in
Interface Builder, and then use Apple-4 to open the help inspector. Type a short phrase into the text field labeled "Tool
Tip" to set the ToolTip for that interface object. See Figure 20.3 to see a ToolTip set for the Open Help Book button in
the BasicHelpExample application. The tip states, "Open example Apple Help Book." When the application is
running and the user's mouse hovers over the button, the tip will automatically appear. ToolTips don't appear in
Interface Builder unless it is in Test Interface mode.

Figure 20.3. Set ToolTips using Interface Builder.

Cocoa APIs for ToolTips

Although Interface Builder presents an easy way to set ToolTips, it is rather limited. Only one ToolTip can be set per
interface object. A complex interface object such as a NSTableView, a NSMatrix, or a custom view might need to
display different ToolTips depending on which part of the view is underneath the mouse. Some code is required to do
this.

The NSView class defines five methods for working with ToolTips. The functionality provided by the Help inspector
in Interface Builder is accessed programmatically by passing an NSString to the -setToolTip: method. Passing
nil to this method will remove the ToolTip. The -toolTip method returns any previously set ToolTip string.

For more advanced ToolTip functionality, there are three other methods. The first is for setting the ToolTip and looks
like this:

- (NSToolTipTag)addToolTipRect:(NSRect)aRect owner:(id)anObject
 userData:(void *)data;

This method specifies a rectangular area of the view for the ToolTip. If the mouse comes to rest inside this rectangle,
this ToolTip will be activated. Note, however, that the text of the ToolTip is not specified by this method call. Instead,
when the ToolTip is needed, the owner object will be sent a message requesting a string to use for the ToolTip. The
user data argument will be sent to the owner as part of that message. It should therefore either contain data useful to
the owner or be set to NULL. When this method is used, an NSToolTipTag is returned. The tag can be used later by
the owner to identify which ToolTip was activated. It can also be used to later remove the ToolTip.

The owner object itself can provide ToolTips for multiple different views. The owner could be one of the application's
controller objects or could even be the view itself. For any of this to work, though, the owner object must implement
this method from the NSToolTipOwner informal protocol:

- (NSString *)view:(NSView *)view stringForToolTip:(NSToolTipTag)tag
 point:(NSPoint)point userData:(void *)data;

When a ToolTip defined by -addToolTipRect:owner:userData: is activated, the -view:
stringForToolTip:point:userData: message will be sent to the ToolTip's owner object. This message
provides the owner with a wealth of information that can be used to determine which ToolTip text should be returned.
It identifies which view object needs a ToolTip, what the ToolTip's tag is, the point within the view where the mouse

is located, and the user data that was provided when the ToolTip was set up. Any or all these pieces of information can
be used to determine the ToolTip text. When the text is known, it should be returned from this method as an
NSString. This method is called before the ToolTip is displayed, so it is possible to dynamically return different
strings based on the application's current state.

Finally, there are two methods defined by NSView objects that remove a ToolTip that has been attached to a
rectangle. One, -removeToolTip:, removes a single ToolTip, as identified by the tag returned when the ToolTip
was originally set. The other method, the aptly named -removeAllToolTips, removes all ToolTips for the view.

The ToolTipExample program on www.cocoaprogramming.net demonstrates how to use these methods. The
example contains a custom NSView subclass that draws two colored rectangles. Each of the rectangles is a ToolTip
area. For simplicity, the ToolTip owner object is the view itself. To add a little interest to the example, if the mouse is
near the center of the red (right) rectangle a different ToolTip string will be returned.

The view also resets the ToolTip rectangles whenever it is resized. To do this, the view sets itself up to observe itself
and watch for the NSViewFrameDidChangeNotification notification. Whenever this notification is received,
the view declares the rectangles "dirty" and recalculates them the next time it is drawn. The dirty instance variable is
used to keep track of this status. The tags for the ToolTips and the rectangles themselves are also stored in instance
variables.

In the implementation, the end of the -_resetRects method in the ToolTipExampleView class is where the
ToolTips are set up. Because there might already be some ToolTip rectangles set, all rectangles are removed with the -
removeAllToolTips method. Then -addToolTipRect:owner:userData: is used to actually set the
ToolTip rectangles. The ToolTip that is shown is determined in the view's implementation of the -view:
stringForToolTip:point:userData: method. The implementation uses the ToolTip tag to determine which
rectangle contains the mouse pointer. In the case of the right rectangle, the point parameter is used to decide if the
mouse is near the center of the rectangle.

The rest of the view's code is typical initialization and drawing code. The complete code for the
ToolTipExampleView object is shown here.

File ToolTipExampleView.h:

#import <AppKit/AppKit.h>

@interface ToolTipExampleView : NSView
{
 BOOL dirty;
 NSRect leftRect, rightRect;
 NSToolTipTag leftTag, rightTag;
}

- (NSString *)view:(NSView *)view stringForToolTip:(NSToolTipTag)tag
 point:(NSPoint)point userData:(void *)data;

@end

File ToolTipExampleView.m:

#import "ToolTipExampleView.h"

@interface ToolTipExampleView(PrivateMethods)
- (void)_frameChanged:(NSNotification *)theNotification;
- (void)_resetRects;
@end

http://www.cocoaprogramming.net/

@implementation ToolTipExampleView

- (id)initWithFrame:(NSRect)frame
{
 self = [super initWithFrame:frame];
 if (!self) return nil;
 dirty = YES;
 [self setPostsFrameChangedNotifications:YES];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(_frameChanged:)
 name:NSViewFrameDidChangeNotification object:self];
 return self;
}

- (void)_frameChanged:(NSNotification *)theNotification
{
 dirty = YES;
}

- (void)_resetRects
{
 // determine the left and right rectangles
 NSRect bds = [self bounds];
 double midX = (bds.size.width / 2);
 NSRect leftSide = NSMakeRect(0.0, 0.0, midX, bds.size.height);
 NSRect rightSide = NSMakeRect(midX, 0.0, midX, bds.size.height);
 double xInset = (bds.size.width / 20.0);
 double yInset = (bds.size.height / 20.0);
 leftRect = NSInsetRect(leftSide, xInset, yInset);
 rightRect = NSInsetRect(rightSide, xInset, yInset);
 // add tooltips for the rectangles
 [self removeAllToolTips];
 leftTag = [self addToolTipRect:leftRect owner:self userData:NULL];
 rightTag = [self addToolTipRect:rightRect owner:self userData:NULL];
 dirty = NO;
}

- (NSString *)view:(NSView *)view stringForToolTip:(NSToolTipTag)tag
 point:(NSPoint)point userData:(void *)data
{
 // use the tags to determine which rectangle is under the mouse
 if (tag == leftTag) {
 return NSLocalizedString(@"The Blue rectangle", @"");
 }
 if (tag == rightTag) {
 // for the red rectangle, we'll look at the point and return a
 // different string if the mouse is near the center of that rectangle
 NSRect centerRect = NSInsetRect(rightRect, (rightRect.size.width *
0.4),
 (rightRect.size.height * 0.4));
 if (NSPointInRect(point, centerRect)) {
 return NSLocalizedString(@"Center of the Red rectangle", @"");
 }
 return NSLocalizedString(@"The Red rectangle", @"");
 }
 // we should never get to here!

 return NSLocalizedString(@"Unknown tooltip area", @"");
}

- (void)drawRect:(NSRect)rect
{
 NSRect bds = [self bounds];
 if (dirty) {
 [self _resetRects];
 }
 [[NSColor blackColor] set];
 NSRectFill(bds);
 [[NSColor blueColor] set];
 NSRectFill(leftRect);
 [[NSColor redColor] set];
 NSRectFill(rightRect);
}

@end

When the ToolTipExample project is built and run, you can see one minor flaw with the ToolTips. The example
runs mostly as expected, but when a ToolTip has been shown for the right rectangle, it doesn't change until the mouse
moves out of the rectangle and back in again. Thus, to see the different ToolTip message for the center of the
rectangle, the mouse needs to keep moving until it is near the center of the rectangle. Whichever ToolTip is set first is
the one that will be displayed until the mouse has exited and re-entered the rectangle.

ToolTip rectangles work just like tracking rectangles. Because of this limitation, it is best to set up another ToolTip
rectangle for the center of the rectangle instead of using just the single ToolTip rectangle. This is a flaw left in the
example to demonstrate that the ToolTips can be changed dynamically, but with the limitation that ToolTips only
change when the mouse crosses a ToolTip rectangle's boundary.

Book: Cocoa® Programming
Section: Chapter 20. Adding Online Help

Context-Sensitive Help (NSHelpManager)

A quick perusal of the Cocoa reference material, or the API header files, uncovers a final
Help related API, the NSHelpManager class. From the class's interface, it might seem
that the class manages contextual help.

Historically, under Openstep, the user could hold down the Help key (or the F1 key or the
Ctrl-Alt keys) to change the cursor into a question mark. The user could then click a user
interface object to open a small help window briefly describing the purpose of that control.
The window would disappear when the user subsequently clicked anywhere in the
application.

Although the API remains, this functionality has been removed in Mac OS X. In the
current implementation of Cocoa, the NSHelpManager object does not work and should
simply be ignored. We mention this object only because a casual observer might stumble
across its interface, try to use it, and become quite frustrated. Hopefully, by explaining this
situation, any confusion can be avoided until Apple decides to either remove this interface
or restore the functionality.

Book: Cocoa® Programming
Section: Chapter 20. Adding Online Help

Summary

This chapter explains the basic integration of help books into Cocoa applications. Help
books are viewed with Apple's Help Viewer application. The MiscHelpManager class
wraps Carbon procedural APIs to access sophisticated features of Help Viewer from Cocoa
applications. Simple ToolTips set within Interface Builder and more complex, context
position-dependent ToolTips are shown in the ToolTipExample example application.

The next chapter describes the integration of Apple's multimedia technologies with Cocoa
applications. Just like with Apple's application help features, basic multimedia support can
be added to Cocoa applications with little or no code. Sophisticated use of multimedia
requires the use of procedural APIs. Chapter 21, "Multimedia," describes the Cocoa
support for rich media.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 21. Multimedia

IN THIS CHAPTER

● Sound
● QuickTime
● 3D Graphics

This chapter explores the options available from Cocoa for working with multimedia.
Cocoa provides classes for sound playback, QuickTime movie playback, and OpenGL
drawing. Additional technologies such as advanced QuickTime manipulation, speech
recognition, and speech synthesis are also available as part of Mac OS X and can be
accessed from Cocoa.

Book: Cocoa® Programming
Section: Chapter 21. Multimedia

Sound

The Cocoa Application Kit includes the NSSound class that provides limited direct
support for sound playback, but not recording. More powerful and flexible sound playback
is supported through QuickTime. QuickTime can read a wide variety of sound file formats
including the popular MP3 and CD audio formats. The Core Audio API underlies both
QuickTime and NSSound. Even though there is no support for sound recording via
Cocoa's NSSound class, the Core Audio APIs can be used by Cocoa applications to record
sounds that are later played by NSSound.

NSSound Class

The Application Kit provides the NSSound class as a simple method of playing sound. It
natively supports playback of .aiff, .wav, and .snd files, and can be extended through
the use of filter services to play additional sound formats. The "Creating an NSImage"
section of Chapter 14, "Custom Views and Graphics Part III," describes filter services for
converting image types. Filter services for converting sound and other types are created in
substantially the same way. Apple provides a filter service example called
SimpleImageFilter in the /Developer/Examples/AppKit directory installed
when Apple's developer tools are installed.

A number of methods exist for creating a new NSSound instance that can play the sound
from a disk file. The simplest to use is the class method +soundNamed:. The argument,
an NSString, identifies the sound that will be played. NSSound first searches for any
sounds that have been previously loaded and assigned the provided name using -
setName:. If no sound is located that fills that criteria, the search is expanded to include
the named System sounds located in the /System/Library/Sounds folder. If there is
still no matching sound found, the application's wrapper is checked next. Finally, the
Sound directories in the standard library path locations are searched. If the named sound is
still not located, nil is returned. If an NSSound object that is created with this method is
archived using the NSCoding protocols, only the name is stored, not the sound data itself.

If the sound file resides outside of the directories searched by +soundNamed:, use the
method -initWithContentsOfFile:byReference:. The first argument is the
path to the file. The second argument allows explicit specification when archiving the
object. A value of YES causes only the path to be saved, whereas NO causes the sound data
to be archived as well.

As an alternative to using the +soundNamed: search method, NSBundle provides a
method for finding a sound file with a specified filename by calling -
pathForSoundResource:, passing the filename without the suffix as the argument.

Only natively understood file types are supported.

Similar to the -initWithContentsOfFile:byReference: method, -
initWithContentsOfURL:byReference: creates an NSSound based on the
contents located at the provided NSURL. This can be a local file or a remotely stored Web
resource. Again, the byReference parameter controls whether the sound data is
archived, or just the URL.

If the raw sound data is available in an NSData format, a new instance of NSSound can
be created using the method -initWithData: passing the data as the argument. The
data must have the appropriate magic number and sound header intact. Only formats that
Cocoa natively understands are supported for this method.

After an NSSound object has been created, the sound name can be set using setName:
method. If the name is already registered to another existing NSSound instance, it
reregistered with the new sound. The name of an NSSound can be retrieved using the
method -name. If the sound was not initially created using +soundNamed: and has not
been explicitly named since creation, the return value will be nil.

Sound objects can also be created from an application's pasteboard contents. An application
can test a pasteboard to see if there are any suitable sound types available using the class
method +canInitWithPasteboard: passing an NSPasteboard instance as the
argument. This method tests the provided pasteboard for any contents that match one of the
types returned by +soundUnfilteredPasteboardTypes. If a matching pasteboard
type is found, +canInitWithPasteboard: returns YES. After an appropriate
pasteboard type is found, an NSSound can be instantiated using the method -
initWithPasteboard:.

An existing NSSound instance can be written to the pasteboard by calling -
writeToPasteboard: with an NSPasteboard as the argument.

Similar to the method used to determine what types of sounds can be created from the
contents of an NSPasteboard, +soundUnfilteredFileTypes can be used to get
an array of all the file types that can be read from disk. The NSArray returned by this
method is suitable to pass directly to an NSOpenPanel for restricting opening files to
supported types.

Having created an NSSound instance, applications need the capability to control playback.
Play a sound by calling an NSSound instance's -play method. If the sound can be
played, a YES is returned, otherwise NO. To see if an instance of NSSound is currently
playing, pass it an -isPlaying message. This will return YES if it is playing, NO if not.
To pause a playing sound, call -pause. This method returns a boolean indicating
success or not. Having paused a sound, playback can be resumed using the -resume
method.

Detection of the completion of sound playback is accomplished by setting a delegate for
the NSSound instance with -setDelegate: and having the delegate implement -
sound:didFinishPlaying:. This method is called when playback has been
completed.

Cocoa's sound playing support is documented at http://developer.apple.com/techpubs/
macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Sound/index.html.

Core Audio and Core MIDI Frameworks

The Core Audio Framework provides sophisticated and flexible multichannel sound to Mac
OS X. Core Audio is made up of a number of distinct APIs, which range from providing
low-level driver access, an audio device to Musical Instrument Digital Interface (MIDI)
sequencing, and playback. The Core Audio Frameworks are implemented in C and C++
and provide a procedural C-based API.

Core Audio attempts to provide a standard API onto hardware via the Audio Hardware
Abstraction Layer. This enables multiple clients to simultaneously access the audio devices
regardless of the interface to the device (PIC, USB, Firewire, and so on).

The Core MIDI Framework supports multiport MIDI playback, including MIDI stream and
configuration management. The component Audio Toolbox provides sequencing
capabilities, which can be built into a custom MIDI editing/playback application. Core
Audio is documented at http://developer.apple.com/audio/coreaudio.html.

Two open source Objective-C frameworks provide object-oriented access to these APIs.
The SndKit and MusicKit are based on sound and music frameworks originally shipped by
NeXT. Together they can be used in music, sound, signal processing, and MIDI
applications. Both are available from www.musickit.org.

Speech Synthesis and Recognition

The Speech Synthesis Manager provides a standardized API for applications to synthesis
human speech. The speech APIs allow an application to choose a voice, set it's pitch, and
specify a callback routine that will be run when the speech has completed playback.

Along with synthesis, Mac OS X provides for Speech Recognition. To make an application
capable of recognizing speech requires the building of a speech model, and a method of
being notified when a phrase has been spoken. This notification is provided through
callbacks or AppleScript.

Raphael Sebbe has written SpeechUtilities.framework, which provides both synthesis and
recognition capabilities for Cocoa applications. It provides a thin Objective-C wrapper for

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Sound/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Sound/index.html
http://developer.apple.com/audio/coreaudio.html
http://www.musickit.org/

the Apple C-based APIs and is available here at http://softrak.stepwise.com/display?
pkg=1631.

Apple's documentation for the Speech Synthesis Manager is available at http://developer.
apple.com/techpubs/macosx/Carbon/multimedia/SpeechSynthesisManager/
Speech_Synthesis_Manager/index.html. The Speech Recognition Manager is documented
at http://developer.apple.com/techpubs/macosx/Carbon/multimedia/
SpeechRecognitionManager/Speech_Recognition_Manager/index.html.

NOTE

Mac OS X 10.2 includes additional Cocoa support for speech synthesis and
speech recognition.

http://softrak.stepwise.com/display?pkg=1631
http://softrak.stepwise.com/display?pkg=1631
http://developer.apple.com/techpubs/macosx/Carbon/multimedia/SpeechSynthesisManager/Speech_Synthesis_Manager/index.html
http://developer.apple.com/techpubs/macosx/Carbon/multimedia/SpeechSynthesisManager/Speech_Synthesis_Manager/index.html
http://developer.apple.com/techpubs/macosx/Carbon/multimedia/SpeechSynthesisManager/Speech_Synthesis_Manager/index.html
http://developer.apple.com/techpubs/macosx/Carbon/multimedia/SpeechRecognitionManager/Speech_Recognition_Manager/index.html
http://developer.apple.com/techpubs/macosx/Carbon/multimedia/SpeechRecognitionManager/Speech_Recognition_Manager/index.html

Book: Cocoa® Programming
Section: Chapter 21. Multimedia

QuickTime

QuickTime is Apple's solution for cross-platform multimedia APIs. It provides the capability
to manipulate video data, still images, animations, vector graphics, multichannel sound,
MIDI music, 360-degree panoramic objects, and more. It supports more than 70 different
types of file formats encompassing the most common multimedia and compression standards
including MP3, Flash 4, MPEG-1, JavaScript, JPEG, PhotoShop, and more.

The QuickTime Movie data structure is used to represent any time-based data. The
Application Kit provides two classes for working with QuickTime: NSMovie, an Objective-
C wrapper object for the Movie structure; and NSMovieView, a user-interface element to
support playback and basic editing of an NSMovie.

Complete procedural QuickTime API references and samples are available at http://developer.
apple.com/quicktime/.

NSMovie Class

NSMovie provides a simple Objective-C wrapper for a QuickTime Movie structure. It is
very similar in implementation to NSSound, but it does not provide any playback
capabilities directly. The NSMovieView class provides all onscreen playback control.

An NSMovie instance can be created from a movie source using the method -
initWithURL:byReference:. The URL provided in the first argument can be a local
file, or a remotely stored file on a Web server or QuickTime Streaming Server. The second
argument is a boolean, which indicates whether the data should be stored directly when the
NSMovie instance is archived, or if a simple reference to the URL is sufficient.

Both http: and rtsp: protocols are supported for remote movie resources. When dealing
with remote streaming sources, download progress is monitored using the QuickTime
function GetMovieLoadState on the QuickTime Movie structure returned by -
QTMovie.

Passing an existing QuickTime Movie type pointer to the method -initWithMovie: can
also create an NSMovie. The instantiated NSMovie will be the owner of the Movie data
passed as the argument, releasing it when it is deallocated.

NSMovie instances can also be created from an application's pasteboard contents. An
application can test a pasteboard to see if there are any QuickTime-supported data types
available using the class method +canInitWithPasteboard: passing an

http://developer.apple.com/quicktime/
http://developer.apple.com/quicktime/

NSPasteboard instance as the argument. This method tests the provided pasteboard for
any contents that match one of the types returned by
+movieUnfilteredPasteboardTypes. If a matching pasteboard type is found,
+canInitWithPasteboard: returns YES. After an appropriate pasteboard type is
found, an NSMovie object can be created using the method -initWithPasteboard:.

The class method +movieUnfilteredFileTypes returns an array of filename
extensions that are supported for reading from disk. The results can be used directly in an
NSOpenPanel to filter available file types.

The Objective-C Cocoa wrapper for NSMovie only scratches the surface of QuickTime's
capabilities. Much more functionality is available by retrieving a pointer to the QuickTime
Movie structure, and then directly using the procedural QuickTime APIs. A pointer to the
Movie structure is returned by -QTMovie.

Apple has provided an excellent NSMovie exampled called bMovie, which is available from
Apple's sample code site at http://developer.apple.com/samplecode/Sample_Code/Cocoa/
bMoviePalette.htm. It implements a basic QuickTime movie editor in an Interface Builder
palette. The MyMovie object is a subclass of NSMovie and allows for splitting a single
movie into multiple movies, appending one movie on to another, inserting an NSImage into
a movie, determining movie length, and more.

NSMovieView

The NSMovieView is an NSView subclass used to display an NSMovie in an application.
It can optionally display a standard QuickTime movie controller as an inherent part of the
view as shown in Figure 21.1.

Figure 21.1. Example NSMovieView with movie controller.

An NSMovieView is an NSView subclass, and can be created programmatically in the
same manner. There is no specialized initialization method available for the class, -

http://developer.apple.com/samplecode/Sample_Code/Cocoa/bMoviePalette.htm
http://developer.apple.com/samplecode/Sample_Code/Cocoa/bMoviePalette.htm

initWithFrame: is the designated initializer.

Often an NSMovieView is added to an application by dragging it from the Cocoa-
GraphicViews Palette as seen in Figure 21.2.

Figure 21.2. Cocoa-GraphicViews palette in Interface Builder.

An NSMovieView instance created in Interface Builder can set certain attributes through
the NSMovieView Inspector (See Figure 21.3).

Figure 21.3. NSMovieView Inspector in Interface Builder.

If Show Controller is checked, the standard QuickTime control area is shown as part of the
view. Programmatically this is controlled by the method called -showController:
adjustingSize:, passing a boolean value for the first argument specifying whether it
should be shown or not. The second argument, also a boolean, indicates whether the
NSMovieView should change its onscreen size when the movie controller visibility is
changed. If set to YES, and the controller is being removed, the NSMovieView itself will
become smaller, but the area that the movie is displayed in would remain the same. If the
controller was being removed and the adjusting size argument was NO, the area in which the
movie is displayed would increase to include the area where the controller had been. The
visible state of the movie controller can be ascertained through the use of -
isControllerVisible, which returns a boolean value. It is also possible to obtain
the QuickTime data structure, MovieController, for the controller using -
movieController. This will return the MovieController if there is an NSMovie set
for the NSMovieView, otherwise it will return NULL. After obtained, a
MovieController can then be used in subsequent calls to QuickTime APIs.

The NSMovieView Interface Builder inspector also allows the setting of the playback-
looping mode via a pop-up menu. Movies can be set to play once, play continuously, or play
forward, and then backwards. In an application this can be done programmatically using the -
setLoopMode: method, passing one of the following NSQTMovieLoopMode constants

as the argument.

NSQTMovieNormalPlayback
NSQTMovieLoopingPlayback
NSQTMovieLoopingBackAndForthPlayback

The current looping mode can be determined by calling -loopMode, which will return one
of the NSQTMovieLoopMode constants.

Whether the entire movie is played back each time or not is controlled by the checkbox Plays
Selection Only in the NSMovieView inspector. If this is enabled, only the selected portion
of the movie, indicated in the movie controller, is played. Manipulation of this selection is
possible by the user during the program use, however, it is necessary to resort to the
QuickTime APIs directly to accomplish this programmatically. Playback can be restricted to
the current selection using the method -setPlaysSelectionOnly: passing the
appropriate boolean value. The state of this can be determined using the method -
playsSelectionOnly, which returns a boolean value.

The Play Every Frame setting ensures that each frame of the movie is played, even if that
means playing the movie at a rate slower than what is specified by the movie's settings.
Normally, this would be disabled. NSMovieView provides for setting this attribute via the
method -setPlaysEveryFrame: with a boolean value for the argument. The current
state of this setting can be retrieved using -playsEveryFrame, which returns YES or NO.

The final option in the NSMovieView inspector enables control of editing the movie in the
NSMovieView. When enabled, a user can cut, copy, paste, and remove content for the
NSMovie, as well as drag a new QuickTime movie onto the NSMovieView. This setting
can be changed using the method called -setEditable: passing a boolean. The current
status of editing can be accessed with the method -isEditable.

The editing functionality is accessible using the methods: -cut:, -copy:, -clear:, -
paste:, -undo:, and -selectAll:. These methods all expect the sender as the
argument, allowing them to be easily used as targets for Interface Builder actions.

A QuickTime movie is associated with an NSMovieView using the method -setMovie:
passing an NSMovie as the argument. The current movie is available by calling -movie,
which returns an NSMovie instance if there is a movie for the NSMovieView.

NSMovieView provides a number of target actions for playback functionality. All expect an
argument consisting of the sender object. As with the editing functions, these allow for easy
connections in Interface Builder.

Movie playback can be started using the method -start:, and stopped using the method -
stop:. The location for playback can be changed by using -gotoBeginning:, -

gotoEnd:, -stepBack:, and -stepForward:. It is also possible to go directly to the
poster frame using -gotoPosterFrame:. This is a frame in the movie that can be shown
statically, often before the movie is started.

An application can determine if an NSMovieView is currently playing a movie using the
method -isPlaying, which returns YES or NO.

QuickTime movies have a playback rate associated with them. This rate is the optimum
playback speed and is maintained by dropping frames if necessary; it is dependent on the -
playsEveryFrame setting. The speed of playback relative to the movie's optimum rate is
set using the method -setRate: passing a float value. The value of 1.0 causes the
movie to play at normal speed, smaller values to play slower, larger values faster. Negative
values cause reverse playback at the specified relative rate. This value is only taken into
account when called by the -start: method, playback initiated by the movie controller is
always at normal speed. The current relative rate can be determined by calling -rate, which
will return a float.

The sound level the movie is played at is set between 0.0 and 1.0 and is relative to the
volume set for the System. The volume is set by calling -setVolume: and passing a float
as the volume. The current relative volume for playback is retrieved using -volume.
Volume can also be muted using the method -setMuted: passing a boolean value. The
current mute status is available from -muted.

The method -sizeForMagnification: will return an NSSize with the appropriate
width and height for the specified magnification. This method assumes that the controller is
always visible. An NSSize that is dependent on the visibility of the movie controller can be
returned by the following method as a category on NSMovieView:

#import <Cocoa/Cocoa.h>

@implementation NSMovieView (MYMaginifcationSupport)

- (NSSize)exactSizeForMagnification:(float)magnification {
 NSSize tempSize;
 tempSize=[self sizeForMagnification:magnification];
 if (![self isControllerVisible]) {
 // the standard movie controller is 16 pixels high
 // it would be better to get the moviecontroller
object
 // and determine the size at runtime.
 tempSize.height=tempSize.height-16.0;
 }
 return tempSize;
}

@end

Calling the method -resizeWithMagnification: resizes the NSMovieView to
allow the display of the current NSMovie with the magnification specified by the argument.
A value of 1.0 shows the movie at the full size.

The view is resized with the assumption that the movie controller is visible, regardless of the
current state. If it is not visible, the view is stretched vertically to fill that additional space. It
might be useful to set the movie view controller to show the controller without resizing, then
call -resizeWithMagnification: and, finally, set the controller state explicitly as in
the following code fragment:

wasControllerVisible=[self isControllerVisible];
[movieView showController:YES adjustingSize:NO];
[movieView resizeWithMagnification:1.0];
[movieView showController: wasControllerVisible
 adjustingSize:YES];

Book: Cocoa® Programming
Section: Chapter 21. Multimedia

3D Graphics

Cocoa provides a direct interface for 3D drawing by supporting OpenGL. OpenGL is a
multiplatform graphics standard that provides a portable set of 2D and 3D APIs for graphic
applications. Apple provides several Cocoa-based sample applications at http://developer.apple.
com/samplecode/Sample_Code/Graphics_3D.htm. Several examples that use OpenGL with
Cocoa are provided including Cocoa_InitGL, NSGL_Teapot, OpenGLFastTexDemo, and
Simple_AppKit.

OpenGL is a large and complex subject that is beyond the scope of this book, but support for
OpenGL is an important aspect of Mac OS X and Cocoa. The definitive printed reference for
OpenGL is OpenGL Reference Manual Third Edition by the OpenGL Architecture Review
Board, edited by Dave Shreiner, published by Addison Wesley, ISBN 0-201-65765-1.

Application Kit Frameworks

The Application Kit provides three basic OpenGL building blocks. The NSOpenGLView is
the onscreen view for an application to draw OpenGL. An NSOpenGLView consists of an
NSOpenGLContext as well as an NSOpenGLPixelFormat. The context is used for all
the OpenGL drawing, whereas the pixel format specifies the type of buffers used. Using the
default NSOpenGLContext and NSOpenGLPixelFormat created by an
NSOpenGLView will be sufficient for many applications. The additional classes come into
effect in more complex cases, such as running in full-screen mode.

NSOpenGLView Class

An NSOpenGLView can be created programmatically, or by dragging an NSOpenGLView
from the Cocoa-Graphics Views palette in Interface Builder (see Figure 21.2). When created in
Interface Builder it is possible to set the type of renderer used, as well as the buffer's color/
alpha format, depth, stencil depth, and accumulation buffer format, as seen in Figure 21.4.

Figure 21.4. NSOpenGLView Inspector in Interface Builder.

http://developer.apple.com/samplecode/Sample_Code/Graphics_3D.htm
http://developer.apple.com/samplecode/Sample_Code/Graphics_3D.htm

Programmatic creation of an NSOpenGLView is accomplished by calling -
initWithFrame:pixelFormat: passing the frame, and an NSOpenGLPixelFormat
object as the arguments. It is necessary to subclass an NSOpenGLView to do any drawing, so
this is often done as part of the -initWithFrame: in the subclass. The following
implementation will create a 32-bit-deep pixel format, and then call the -initWithFrame:
pixelFormat: with the NSOpenGLPixelFormat object.

- (id) initWithFrame: (NSRect) frameRect
{
 NSOpenGLPixelFormatAttribute attrs[] =
 {
 NSOpenGLPFADepthSize, 21,
 NSOpenGLPFAAccelerated,
 0
 };

 NSOpenGLPixelFormat* pixFmt = [[[NSOpenGLPixelFormat alloc]
 initWithAttributes:attrs] autorelease];
 self = [super initWithFrame:frameRect pixelFormat:pixFmt];
 return self;
}

As with other NSView subclasses, drawing in an NSOpenGLView is implemented by
overriding the -drawRect: method. Neither Cocoa drawing classes nor methods should be
used in an NSOpenGLView subclass; standard OpenGL primitives are used instead. It is often
necessary to initially setup the textures and other OpenGL details during the first execution of
the -drawRect: method.

The following example code will set up the instance, initialize the OpenGL environment, and
draw a rectangle. It assumes that the MyOpenGLView class is set up in Interface Builder.

#import <AppKit/AppKit.h>
#import <OpenGL/OpenGL.h>
#import <OpenGL/gl.h>
#import <OpenGL/glu.h>

@interface MyOpenGLView : NSOpenGLView {
 bool _initializedOpenGL;
}

@end

#import "MyOpenGLView.h"

@implementation MyOpenGLView

- (void)awakeFromNib {
 _initializedOpenGL=NO;
}

- (void)drawRect:(NSRect)rect {
 if (!_initializedOpenGL) {
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_SMOOTH);
 _initializedOpenGL=YES;
 }

 // erase the screen
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 //set up transformation matrix and projection
 glLoadIdentity();

 //construct the rectangle
 glBegin(GL_QUADS);
 glColor3f(1.0f,0.0f,0.0f);

 glVertex3f(0.5f, 0.5f, 0.5f);
 glVertex3f(-0.5f, 0.5f, 0.5f);
 glVertex3f(-0.5f,-0.5f, 0.5f);
 glVertex3f(0.5f,-0.5f, 0.5f);
 glEnd();
 glFlush();
}
@end

A default NSOpenGLPixelFormat for the NSOpenGLView can be created using the class
method +defaultPixelFormat. The current pixel format can be queried using -
pixelFormat, whereas a new NSOpenGLPixelFormat can be set using -
setPixelFormat: passing the new pixel format object as the argument.

Dealing with the NSOpenGLContext for the NSOpenGLView is accomplished using the
methods -clearGLContext, -openGLContext, and -setOpenGLContext:. The -
clearGLContext method disassociates the NSOpenGLContext from the view. A context
can be set for the NSOpenGLView using the method -setOpenGLContext: passing the
NSOpenGLContext as the argument. The NSOpenGLContext that is passed must also
have its relationship established to the NSOpenGLView instance by calling the
NSOpenGLContext method -setView: passing the view as the argument. Calling the
method -openGLContext returns the view's OpenGL context. This method creates a new
NSOpenGLContext instance if no instance is set for the view.

Subclasses of NSOpenGLView might want to override the -update and -reshape
methods. The -reshape method is called when the window changes size or the visible
bounds change, allowing an application to react. The default implementation does nothing. The
-update method is called when the window moves, or if the view moves or resizes. The
default of -update simply calls the -update method for the NSOpenGLContext.

NSOpenGLContext Class

All OpenGL rendering in a Cocoa application takes place in an NSOpenGLContext. A
context can be offscreen, full-screen, or drawn into an NSView.

To initialize a newly allocated NSOpenGLContext call -initWithFormat:
shareContext: passing an NSOpenGLPixelFormat as the first argument. The second
argument specifies another NSOpenGLContext to share texture and display lists with. If
sharing is not required, pass nil for the share context argument.

It is possible to get the current NSOpenGLContext that is being used for drawing by calling
+currentContext. An instance of NSOpenGLContext can be made the current context
by calling the method -makeCurrentContext, causing OpenGL calls to be rendered in
this context. The current context can be detached from the NSOpenGLView by calling
+clearCurrentContext. Contexts are accessed on a per-thread basis. Only drawing

within the current thread will be affected by changing the context.

An NSOpenGLContext can also take over the entire screen to draw by using the call -
setFullScreen. This requires that the NSOpenGLContext has been created using the
attribute NSOpenGLPFAFullScreen. The attributes of an NSOpenGlContext and the pixel
formats supported by a context are described in the "NSOpenGLPixelFormat Class" section of
this chapter. An application should capture the screen using the Core Graphics Direct Display
API before calling -setFullScreen. This prevents other applications from attempting to
draw onto screen areas, which should be reserved for the application.

The view that an NSOpenGLContext is associated with can be set using the method -
setView:. The context's view port is set to the size of the passed NSView argument. The
current view, if any, that a context is associated to can be queried using -view. The context
can be disassociated from all views by calling -clearDrawable. This also exists in full-
screen or offscreen mode. The -update method should be called whenever the size or
location of a context's drawable area changes.

Offscreen rendering can be specified by using the method -setOffScreen:width:
height:rowbytes: passing a memory pointer as the first argument, and the width, height,
and number of row bytes as the remaining arguments. The memory pointer must be
sufficiently large to hold the data. The NSOpenGLPFAOffScreen must have been specified
for the NSOpenGLPixelFormat for an offscreen context.

Attributes from an existing NSOpenGLContext can be copied to the receiving context using
the method -copyAttributesFromContext:withMask:. The first argument is the
source NSOpenGLContext, and the second is the result of a logical OR operation of the
OpenGL attributes to copy. The attributes' values are specified using values suitable for the
OpenGL call glPushAttrib, which is declared in Apple's agl.framework. Many good
online reference documents for OpenGL that describe glPushAttrib are available
including http://www.3dlabs.com/support/developer/GLmanpages/glpushattrib.htm.

NSOpenGLPixelFormat Class

Before rendering OpenGL calls into an NSOpenGLContext you must specify the pixel
format, which details the buffer type, format, and depth amongst other settings.

A newly allocated NSOpenGLPixelFormat is initialized with a call to the method -
initWithAttributes: passing a standard C array (not an NSArray) consisting of one
or more of the NSOpenGLPixelFormatAttribute constants. There are two types of
attributes, boolean attribute constants, which are presented here:

NSOpenGLPFAAllRenderers
NSOpenGLPFADoubleBuffer
NSOpenGLPFAStereo

http://www.3dlabs.com/support/developer/GLmanpages/glpushattrib.htm

NSOpenGLPFAMinimumPolicy
NSOpenGLPFAMaximumPolicy
NSOpenGLPFAOffScreen
NSOpenGLPFAFullScreen
NSOpenGLPFASingleRenderer
NSOpenGLPFANoRecovery
NSOpenGLPFAAccelerated
NSOpenGLPFAClosestPolicy
NSOpenGLPFARobust
NSOpenGLPFABackingStore
NSOpenGLPFAWindow
NSOpenGLPFAMultiScreen
NSOpenGLPFACompliant

and attributes that require an additional constant value:

NSOpenGLPFAAuxBuffers
NSOpenGLPFAColorSize
NSOpenGLPFAAlphaSize
NSOpenGLPFADepthSize
NSOpenGLPFAStencilSize
NSOpenGLPFAAccumSize
NSOpenGLPFARendererID
NSOpenGLPFAScreenMask

For example, to create a new NSOpenGLPixelFormat with a 32-bit pixel depth that can
use accelerated hardware, but also runs on devices that don't support acceleration, the
following code would suffice:

NSOpenGLPixelFormatAttribute attrs[] = {
 NSOpenGLPFADepthSize, 32,
 NSOpenGLPFAAccelerated,
 0};
NSOpenGLPixelFormat *pixFmt;
pixFmt = [[NSOpenGLPixelFormat alloc] initWithAttributes:
attrs];

If a render that fulfills the attributes requirement is not available, -
initWithAttributes: returns nil.

The number of available virtual screens can be retrieved with the call -
numberOfVirtualScreens. This correlates to the number of video cards installed on the
computer. Specific OpenGL attributes can be queried using the -getValues:
forAttribute:forVirtualScreen: for a virtual screen. An array of values will be
returned in the first argument, and the NSOpenGLPixelFormatAttribute passed as the

second for the specified virtual screen.

In addition to the NSOpenGLView, NSOpenGLPixelFormat, and NSOpenGLContext
classes, there are function calls available to query details about the overall NSOpenGL
implementation. NSOpenGLGetVersion() returns the major and minor version numbers
by reference. This should not be confused with the OpenGL version. The global NSOpenGL
options can be queried and set using NSOpenGLGetOption() and NSOpenGLSetOption
() functions, respectively, with one of the NSOpenGLGlobalOption constants as the first
argument. In the case of the NSOpenGLGetOption() the second argument is a pointer to a
variable with the C long type that will return the value by reference. The second argument to
NSOpenGLSetOption() is the value to set the global to.

Procedural OpenGL

In addition to the Cocoa OpenGL classes, Apple provides an implementation of the GL Utility
Toolkit (GLUT). GLUT is a platform-independent set of interfaces to window management,
menus, and input devices. Apple's implementation gives an Aqua-style interface to a GLUT
application. GLUT provides easy compatibility with existing OpenGL code and allows
applications to maintain platform independence if required at the expense of flexibility. Apple
includes a GLUT example projects in /Developer/Examples/GLUTExamples.

Apple also provides the AGL APIs that extends the OpenGL procedural APIs. These are
detailed in Apple's Carbon OpenGL documentation.

Extensive OpenGL documentation is available at www.opengl.org.

http://www.opengl.org/

Book: Cocoa® Programming
Section: Chapter 21. Multimedia

Summary

Cocoa exposes basic functionality for video and sound playback. Complex applications can
leverage the basic classes by using QuickTime directly. Cocoa's OpenGL support provides
simple integration of a 3D drawing with the Aqua user interface.

The next chapter explores the integration of Cocoa applications with other applications and
the operating system.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 22. Integrating with the Operating System

IN THIS CHAPTER

● Getting System Information
● Authentication and Security
● Communicating with the Workspace

The Cocoa frameworks abstract most operating system details so that Cocoa applications
are written at a very high level. It is usually unnecessary to have detailed knowledge of the
underlying operating system and its features when using Cocoa. Cocoa's frameworks
contain classes that enable an application to interact with the underlying operating system
without dropping to low-level system-specific APIs. This chapter introduces Cocoa
features that provide information about the host operating system, and the operating
environment in which an application is running. This chapter also explains how to access
standard directories, work with operating system security features, and manipulate the
user's workspace.

Book: Cocoa® Programming
Section: Chapter 22. Integrating with the Operating System

Getting System Information

It is seldom necessary for Cocoa applications to use system information directly. Cocoa provides enough
abstraction of system features that the need to know details about the system is rare. Nevertheless, Cocoa's
Foundation framework provides classes that identify the operating system, provide information about the host
computer, and provide access to the system environment in which an application is running. Information about
the current user of an application and standard file systems locations is also available.

NSProcessInfo Class

Every application that runs on Max OS X is a separate operating system process. Cocoa applications access
information about the operating system and processes using the NSProcessInfo class. With the
NSProcessInfo class, a Cocoa application can obtain information about its own process, the operating
system that is running the process, and the computer that is running the operating system. A single shared
instance of the NSProcessInfo class is obtained by calling [NSProcessInfo processInfo]. The first
time the method is called, an instance is created. All subsequent calls return the same instance.

NSProcessInfo's -operatingSystem method returns an enumerated constant that identifies the
operating system that is running the Cocoa application. On Mac OS X, -operatingSystem always returns
NSMACHOperatingSystem. Information about the other operating system constants is provided in Apple's
online documentation for the NSProcessInfo class. NSProcessInfo also has the -
operatingSystemName method that returns the name of the host operating system. On Max OS X, the name
returned is always NSMACHOperatingSystem.

The -arguments method returns an array of the strings that were specified as command-line arguments to the
current process. The first string in the array is always the path to the executable for the process. Most
applications that are launched from the Mac OS X desktop do not have any other command-line arguments.
Project Builder provides a way to specify command-line arguments when an application is run from Project
Builder. Command-line arguments can be specified when an application is run from a Unix shell or an NSTask.
The NSTask class is described in Chapter 24, "Subprocesses and Threads."

The -environment method returns a dictionary of the system environment variables that are defined for the
current process. Each key in the dictionary is the name of an environment variable, and the corresponding value
is the value of the environment variable. Project Builder provides a way to specify environment variables to use
when an application is run from Project Builder. Normally, the environment variables for a process are specified
by the parent process that started it. For example, applications started from a Unix shell have the environment
variables defined for that shell. Processes started from the Dock have the environment variables defined by the
Dock process, and applications started from Finder have the environment variables defined by Finder. In
practice, because the Dock and Finder are child processes started by a process called loginwindow, they have
the environment variables defined for loginwindow. The loginwindow process reads its environment
variables from a file at ~/.MacOSX/environment.plist in the current user's home directory. A partial list
of environment variables that control the behavior of Cocoa applications is provided in Appendix B, "Optimizing
and Finding Memory Leaks." Apple provides a technical note explaining the ~/.MacOSX/environment.
plist file at http://developer.apple.com/qa/qa2001/qa1067.html.

The -processIdentifier method returns the operating system's internal identifier for the current process.
This identifier can be used in low-level system calls that require it. The -processName method returns the
name of the current process. The name of each running process is shown by Apple's ProcessViewer application
located in the /Applications/Utilities folder. The process name is used to access the defaults database

http://developer.apple.com/qa/qa2001/qa1067.html

and is output by the NSLog() function to identify the process that generated log information. The defaults
database is described in Chapter 7, "Foundation Framework Overview." The NSLog() function is introduced in
Chapter 3, "Using Apple's Developer Tools." Mac OS X allows multiple processes to have the same name. The
name returned by -processName is, therefore, not sufficient to uniquely identify a process.

The -hostName method returns the host name of the computer running the current process. Computers can
have multiple host names and can exist simultaneously on multiple networks, or a host might not be networked
at all. Because of the common variation in host names for a single computer, the string returned from
NSProcessInfo's -hostName method is not very useful in practice. The NSHost class provides the -
names method that returns an array of host names and is a better way to get host name information. The
NSHost class is described in the next section.

One of the handiest NSProcessInfo methods is -globallyUniqueString. This method returns a string
composed of the host name, the process identifier, a time stamp, and a counter. Each time the method is called, it
returns a different string. No two processes running on computers on the same network will ever return the same
string from - globallyUniqueString. This method should be used whenever a unique name or identifier
is needed.

NSHost Class

Each instance of the NSHost class encapsulates information about a computer on an accessible network.
Instances can be created with the +currentHost, +hostWithAddress:, and +hostWithName:
methods. The +currentHost method returns a shared instance for the host that is executing the application.
The +hostWithAddres: method returns an instance that encapsulates the host identified by a string
argument containing an Internet address such as 192.42.172.1. The +hostWithName: method uses any
available network naming services, such as Domain Name Service (DNS), to return an instance that encapsulates
the named host.

NOTE

The NSHost class maintains a cache of previously created NSHost instances to avoid time-
consuming network name searches when the same host is accessed multiple times via
+currentHost, +hostWithAddress:, and +hostWithName:. The cache is enabled or
disabled with the +setHostCacheEnabled:method. The cache is emptied with the
+flushHostCache method.

After an instance of NSHost has been created, it can be used to obtain information about the host it represents.
The -addresses method returns all the Internet addresses for the host as an array of strings. The -names
method returns all the names for a host as an array of strings. Two NSHost instances can be compared with the
-isEqualToHost: method that returns YES only if the receiver and the NSHost instance passed as an
argument both identify the same host.

Users

Modern operating systems such as Mac OS X support multiple simultaneous users of one computer. A Cocoa
application can get the logon username of the current user by calling the NSUserName() function in the
Foundation framework. The NSFullUserName() function returns the full username that was entered when
the account for the current user was created.

It is not safe to assume that the name returned by NSUserName() identifies the user logged into the Mac OS X
console. The user that started an application could be remotely logged in or logged in via a Unix shell. Cocoa
does not currently provide any way to identify the user logged into the console. Apple provides several technical
notes on the subject. A Carbon function and example code to identify the current console user is available at
http://developer.apple.com/qa/qa2001/qa1133.html. Like all Carbon functions, it can be called from Cocoa
applications.

Standard Locations

Mac OS X uses several standard file system locations to store applications and files. The standard locations are
based on the owners of the files, the purpose of the files, and whether the files are stored on a local hard disk or
accessed via a network. The standard locations are called domains.

Mac OS X currently defines four domains: User, Local, Network, and System. The User domain specifies the
location of files controlled by the current user. The User domain is the user's home directory, and it can be on a
local hard disk or accessed via a network. The Local domain specifies the location of files shared by all users of
a particular computer. Files stored in the Local domain are stored on a local hard disk, but are not needed for the
computer to run. The Network domain specifies the location of files shared by all users of a network. The
Network domain usually specifies a location on a file server that is accessed via a network. Finally, the System
domain specifies the location on a local hard disk of system files provided by Apple. Many files in the System
domain are needed for the computer to run. Files in the System domain cannot be modified by users.

Each domain normally contains both an Applications folder and a Library folder. For example, the Applications
folder in the Network domain contains applications that are available to all users on the network. The
Applications folder in the Local domain contains applications available only to users logged into a particular
computer. The Applications folder in the User domain stores applications that are only available to the current
user. The Library folder in each domain stores files that are not part of applications.

Cocoa provides the NSSearchPathForDirectoriesInDomains() function to search for files and
applications within the domains. This function should be used instead of hard coding paths to files for two
important reasons: The location specified for each domain can change, and searching provides flexibility for
users.

The domains can be searched in any order, but a common order is User, Local, Network, and then System. That
order provides maximum configuration options to users. For example, shared resources such as fonts are
available in the System domain. In a particular work environment, an administrator might install a version of a
font in the Network domain that differs from the system font with the same name. Because of the domain search
order, each application will find the font in the Network domain before it finds the version in the System
domain. Applications, therefore, prefer to use the Network domain version instead of the system version.
Similarly, a user can install a replacement font in his own User domain, which supercedes any version in other
domains.

The NSPathUtilities.h file in the Foundation framework defines the NSSearchPathDomainMask
enumerated type for domains as follows:

// Domains
typedef enum {
 NSUserDomainMask = 1
 NSLocalDomainMask = 2,
 NSNetworkDomainMask = 4,
 NSSystemDomainMask = 8,
 NSAllDomainsMask = 0x0ffff

http://developer.apple.com/qa/qa2001/qa1133.html

} NSSearchPathDomainMask;

The standard locations within domains are defined by the NSSearchPathDirectory enumerated type. Not
all directories are available in all domains.

typedef enum {
 NSApplicationDirectory = 1,
 NSDemoApplicationDirectory,
 NSDeveloperApplicationDirectory,
 NSAdminApplicationDirectory,
 NSLibraryDirectory,
 NSDeveloperDirectory,
 NSUserDirectory,
 NSDocumentationDirectory,
 NSDocumentDirectory,
 NSCoreServiceDirectory,
 NSAllApplicationsDirectory = 100,
 NSAllLibrariesDirectory = 101
} NSSearchPathDirectory;

The NSSearchPathForDirectoriesInDomains() function accepts three arguments. The first is one of
the directory values enumerated by NSSearchPathDirectory. The second argument specifies the domains
to use in the search. Any of the domains enumerated by the NSSearchPathDomainMask type can be
combined with C's logical OR operator. To search in only the User and Network domains, specify
(NSUserDomainMask | NSNetworkDomainMask) as the second argument. The
NSAllDomainsMask value specifies all domains. The third argument is a Boolean that specifies whether the
"~"(tilde) character, which specifies paths relative to the user's home directory, should be expanded with the
complete path to the user's home directory.

The following program outputs the path to the file that defines the Arial font in the Fonts directory within a
Library directory using the standard domain search:

#import <Foundation/Foundation.h>

NSString *MYFindPathToFileInLibraryWithStandardSearch(NSString *fileName)
/*" Retuns the path to the first occurrence of fileName in a Library
directory within the standard domains using the standard domain search
order. "*/
{
 NSString *result = nil; // the returned path
 NSString *candidate; // candidate paths
 NSArray *pathArray; // array of standard locations
 NSEnumerator *pathEnumerator;// used to enumerate pathArray

 // search in the library directories of all domains
 pathArray = NSSearchPathForDirectoriesInDomains(NSLibraryDirectory,
 NSAllDomainsMask, YES);
 pathEnumerator = [pathArray objectEnumerator];

 while(nil == result && (nil != (candidate = [pathEnumerator
nextObject])))
 {
 result = [candidate stringByAppendingPathComponent:fileName];

 if(![[NSFileManager defaultManager] fileExistsAtPath:result])
 {
 result = nil;
 }
 }

 return result;
}

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 // Logs the path to the first occurrence of "Fonts/Arial" in a Library
 // directory within the standard domains using the standard domain search
 // order.
 NSLog(@"path = %@", MYFindPathToFileInLibraryWithStandardSearch(
 @"Fonts/Arial"));

 [pool release];
 return 0;
}

Experiment with the program by copying the Arial font from the /Library/Fonts directory into the ~/
Library/Fonts directory. The program will find the file in ~/Library/Fonts instead of the one in /
Library/Fonts.

NOTE

The Foundation framework provides the NSHomeDirectory() function that returns the path to
the current user's home directory. Use domain searching even when the User domain is the only
one searched. Appending a hard-coded path such Library/Fonts to the path returned from
NSHomeDirectory() is not a reliable way to identify files because users might change the
names of directories within their home directory. Domain searching has the potential to find files
even if directories are renamed.

Book: Cocoa® Programming
Section: Chapter 22. Integrating with the Operating System

Authentication and Security

To provide security and prevent accidental or malicious damage to the operating system,
Mac OS X restricts the use of certain system files and applications. Individual users can
restrict the uses of their own files; however, some applications might need to modify
restricted files or run restricted applications. Examples of such applications include
software installation programs, network administration programs, and many standard Unix
command-line programs. An installer that needs to write files in the /Applications
folder must overcome the restriction that prevents the /Applications folder from
being modified.

The capability to overcome a security restriction is called a privilege. Applications
normally have the same privileges as the user who launched the application. Each user's
privileges are set when the user's account is created by an administrator. On Mac OS X,
even the administrator does not normally have sufficient privileges to do everything;
however, a select few applications have privileges beyond the privileges of their user. Such
applications are called set uid applications. The term uid is a reference to the capability
of an application to run with a user identity other than the user who launched the
application. The implications of set uid Cocoa applications are described in the Set uid
Cocoa Applications section of this chapter.

NOTE

Administrators can explicitly log into the computer using a special account
called root or use a special command-line utility called sudo to
temporarily gain root privileges. The root users privileges are sufficient to
overcome all operating system restrictions.

Apple does not provide a direct way to overcome security restrictions with Cocoa, but
Cocoa applications can use the Carbon Authorization Services API. The Authorization
Services API provides C functions that enable programs to call other programs and run
them with administrator or root privileges. However, the users of applications that use the
Authorization Services API must be able to authenticate that they are who they say they
are. Authentication usually requires the user to type the Administrator's password or
provide some other form of identification.

Apple provides a document that explains authentication and authorization at http://
developer.apple.com/techpubs/macosx/CoreTechnologies/securityservices/
authorizationconcepts.pdf. Authentication is handled by a special Mac OS X process called

http://developer.apple.com/techpubs/macosx/CoreTechnologies/securityservices/authorizationconcepts.pdf
http://developer.apple.com/techpubs/macosx/CoreTechnologies/securityservices/authorizationconcepts.pdf
http://developer.apple.com/techpubs/macosx/CoreTechnologies/securityservices/authorizationconcepts.pdf

the Security Server. The Security Server is able to display a panel requiring the user to
provide a password or other identification. Reference information about authentication and
security is available at http://developer.apple.com/techpubs/macosx/CoreTechnologies/
securityservices/authservref.pdf. Finally, Apple provides an example that uses the Carbon
Authorization Services API at http://developer.apple.com/samplecode/Sample_Code/
Security/AuthSample.htm.

Set uid Cocoa Applications

Cocoa applications should never be set uid applications. Cocoa applications provide too
many ways in which they can be hijacked and used to circumvent the operating system's
security features. The problems can be subtle. Apple has shipped Cocoa applications that
inadvertently enabled any user to perform privileged operations without authenticating
themselves.

By their very nature, set uid applications have privileges that their users do not have. Such
applications need to be very carefully written to restrict the actions of users. For example, a
set uid application for configuring the computer's network interface should not allow
users to delete unrelated system files. To minimize opportunities for malicious use of set
uid applications, the applications are typically very small and very straight forward.

Even the simplest and smallest set uid Cocoa applications contain vulnerabilities that
might defeat the operating system's security features. For example, services run from the
Services menu of a set uid Cocoa application are executed with the privileges of the set
uid application. It is trivial to write a Service provider that deletes files. If such a service
is ever run from a set uid Cocoa application, the application is able to delete system files
that are not related to whatever other functions the application might have. Several of
Apple's applications have this flaw.

Any Cocoa application that dynamically loads code can fall victim to Objective-C runtime
hacks. The Objective-C runtime can be used to modify the behavior of a Cocoa application
without the need to recompile the application. Using the Objective-C runtime, a method
intended to copy files into a restricted folder could be replaced with a method that deletes
all the files in the restricted folder.

Generally speaking, every Cocoa application dynamically loads code. Even if the
application does not have explicit plug-in support, every Cocoa application that contains at
least one text field can fall victim to a custom InputManager bundle. InputManager
bundles are loaded automatically to handle text input. A user might install a custom
InputManager bundle that deletes system files. The next time a set uid Cocoa
application is run, the custom InputManager could destroy the file system.

The bottom line is that it is nearly impossible to make a set uid Cocoa application that
does not create serious security vulnerabilities. The best solution is to write small set uid

http://developer.apple.com/techpubs/macosx/CoreTechnologies/securityservices/authservref.pdf
http://developer.apple.com/techpubs/macosx/CoreTechnologies/securityservices/authservref.pdf
http://developer.apple.com/samplecode/Sample_Code/Security/AuthSample.htm
http://developer.apple.com/samplecode/Sample_Code/Security/AuthSample.htm

tools without Cocoa, and execute those tools from a larger Cocoa application that provides
a graphical user interface. The Carbon Authorization Services API is used to authenticate
the user and execute the small set uid tool.

Book: Cocoa® Programming
Section: Chapter 22. Integrating with the Operating System

Communicating with the Workspace

Cocoa applications benefit from bidirectional communication with the Mac OS X applications that provide the
user's workspace. The term workspace refers to the combination of the Desktop, Dock, Finder, and operating
system services that collectively implement the user's view of the computer. Cocoa applications are notified when
changes to the workspace are made. For example, Cocoa applications are informed when the computer is about to
be powered off, when applications are launched, and when network volumes are mounted. Cocoa applications can
ask the workspace to perform operations such as copying files, launching applications, and selecting files in Finder.

NSWorkspace Class

A single shared instance of the NSWorkspace class encapsulates a Cocoa application's interface with the
workspace. The NSWorkspace class is used by applications that need features provided by Apple's Finder. The
shared instance is obtained by sending the +sharedWorkspace message to the NSWorkspace class as follows:
[NSWorkspace sharedWorkspace].

Many of NSWorkspace's methods do not work at all in Mac OS X version 10.1.3. Apple's online documentation
for NSWorkspace identifies the methods that do not currently work and describes how they used to work. This
section focuses on the methods that are used to integrate Cocoa applications with the workspace. Only the key
features of NSWorkspace are presented here. Apple's online documentation is comprehensive.

NSWorkspace's methods fall into two general groups: methods for receiving information from the workspace, and
methods for asking the workspace to do work on behalf of an application.

Getting Information from the Workspace

One way to receive information from the workspace is to observe notifications that are posted to NSWorkspace's
notification center. Most notifications are sent to an application's default notification center, but workspace related
notifications are sent to a separate notification center controlled by the NSWorkspace class. After an application's
shared NSWorkspace instance is obtained via NSWorkspace's +sharedWorkspace method, the -
notificationCenter message can be sent to obtain the notification center for workspace notifications.

The following notifications are sent to NSWorkspace's notification center:

NSWorkspaceDidLaunchApplicationNotification,
NSWorkspaceDidMountNotification,
NSWorkspaceDidPerformFileOperationNotification,
NSWorkspaceDidTerminateApplicationNotification,
NSWorkspaceDidUnmountNotification,
NSWorkspaceWillLaunchApplicationNotification,
NSWorkspaceWillPowerOffNotification, and
NSWorkspaceWillUnmountNotification.

NOTE

Contrary to Apple's online documentation, in Mac OS X version 10.1.3 most of the workspace
notifications are not sent unless the operations that prompted the notifications are initiated by the
NSWorkspace class. For example, the
NSWorkspaceDidLaunchApplicationNotification is not always sent when applications
are started from Finder. Apple is aware of this bug and might restore the documented behavior in a

future release.

Each notification that is sent provides a userInfo dictionary that contains additional information about the
notification, such as the name of an application that is launching or the path of a mounted network volume. The
following MYWorkspaceNotificationObserver class observes all the workspace notifications and logs
messages when they are received:

File MYWorkspaceNotificationObserver.h:

#import <Cocoa/Cocoa.h>

@interface MYWorkspaceNotificationObserver : NSObject
{
}

/*" Designated initializer "*/
- (id)init;

@end

File MYWorkspaceNotificationObserver.m:

#import "MYWorkspaceNotificationObserver.h"

@implementation MYWorkspaceNotificationObserver
/*" An instance of this class observes all workspace notifications and
outputs
information when notifications are received. "*/

- (void)_myWorkspaceDidSendNotification:(NSNotification *)aNotification
/*" Called when any notifications are sent to shared workspace's notification
center. "*/
{
 NSLog(@"%@ userInfo:%@", [aNotification name], [aNotification userInfo]);
}

- (id)init
/*" Designated initializer "*/
{
 self = [super init];

 if(nil != self)
 {
 // Observe workspace notifications
 NSNotificationCenter *workspaceNotificationCenter;

 workspaceNotificationCenter = [[NSWorkspace sharedWorkspace]
 notificationCenter];

 // add self as observer of all notifications
 [workspaceNotificationCenter addObserver:self
 selector:@selector(_myWorkspaceDidSendNotification:) name:nil
 object:nil];

 }

 return self;
}

- (void)dealloc
/*" Clean-up "*/
{
 // Stop observing workspace notifications
 [[[NSWorkspace sharedWorkspace] notificationCenter] removeObserver:self];

 [super dealloc];
}

@end

The MYWorkspaceNotificationObserver class is enhanced in the "Requesting Workspace Operations"
section of this chapter to show information about selected files. MYWorkspaceNotificationObserver can
be tested in its current form by adding it to a Cocoa application project and creating an instance of it in the
application's main nib file.

In addition to workspace notifications, the NSWorkspace class provides several methods to obtain information
from the workspace. The -fileSystemChanged method returns YES if the file system has changed since the
last time the method was called. The -userDefaultsChanged method returns YES if current user's default
settings have changed since the last time the method was called.

NOTE

The -fileSystemChanged and -userDefaultsChanged methods always return NO in Mac
OS X version 10.1.3. Apple might correct this behavior in a future release.

NSWorkspace provides a group of methods for getting the icons that Finder displays for files and determining the
applications used to open files. The -iconForFile: method returns an NSImage with the icon for a file
specified by its path. The -iconForFileType: method returns an NSImage with the icon for a type specified
as either a filename extension or an HFS file type. The -iconForFiles: method accepts an array of file paths
and returns a single icon that represents all the files. The -getInfoForFile:application:type: method
gets information about a file including the type of the file and the name of the application that would be used to
open the file if it was double-clicked in Finder. The type provided by -getInfoForFile: application:
type: can be used with -iconForFileType:.

The -fullPathForApplication: method returns the full path to a named application by searching the
standard paths as described in the "Standard Locations" section of this chapter.

Methods for obtaining information about mounted file systems are provided. The -
mountedLocalVolumePaths and -mountedRemovableMedia methods return arrays containing the paths
to mounted file system volumes. The - getFileSystemInfoForPath:isRemovable:isWritable:
isUnmountable: description:type: method is used to get information about a mounted file system
volume at a specified path.

Requesting Workspace Operations

The NSWorkspace class includes methods used to ask the workspace to do work such as launching applications,
opening files in applications, copying files, deleting files, and mounting file systems.

Applications can be launched using the -launchApplication: and -launchApplication:showIcon:
autolaunch: methods. NSWorkspace's -hideOtherApplications method hides all other running
applications. Call -openFile: to open a file at a specified path using the Finder's default application for that file.
The -openFile:fromImage:at:inView: is similar to -openFile:, but it displays an animation that
provides feedback to users that a file is opening. The -openFile:withApplication: method is used to open
a file with a specified application. Finally, the -openURL: method works like -openFile: and takes an NSURL
argument instead of a path to the file to open.

The -findApplications method searches for applications in the standard locations described in the "Standard
Locations" section of this chapter. Each Cocoa application's Services menu contains items for services provided by
applications found with -findApplications. Call -findApplications to update the contents of the
Services menu with items for applications added since the last time -findApplications was called. It is
usually not necessary to call the -findApplications method directly because it is called automatically when
Cocoa applications are launched.

One of the most powerful and handy methods provided by NSWorkspace is -performFileOperation:
source:destination:files:tag:. This method is used to move, copy, link, or delete a group of files
within a single directory. The operations that can be specified are NSWorkspaceMoveOperation,
NSWorkspaceCopyOperation, NSWorkspaceLinkOperation,
NSWorkspaceCompressOperation, NSWorkspaceDecompressOperation,
NSWorkspaceEncryptOperation, NSWorkspaceDecryptOperation,
NSWorkspaceDestroyOperation, NSWorkspaceRecycleOperation, and
NSWorkspaceDuplicateOperation. The NSWorkspaceDestroyOperation deletes a group of files
permanently. NSWorkspaceRecycleOperation just moves the files to the workspace's recycler.
NSWorkspaceDuplicateOperation makes copies of the specified files and leaves them in the same
directory with the originals. The copies all have slightly altered names.

NOTE

NSWorkspaceCompressOperation, NSWorkspaceDecompressOperation,
NSWorkspaceEncryptOperation, and NSWorkspaceDecryptOperation do not work in
Mac OS X version 10.1.3.

The -selectFile:inFileViewerRootedAtPath: method selects a specified file in Finder. If no root path
is provided, the file is selected in an existing open Finder window. Otherwise, a new Finder window is opened to
show the selected file.

Finally, NSWorkspace provides methods to mount and unmount file systems. The -
checkForRemovableMedia method attempts to mount any available removable media such as Zip disks,
floppy disks, and CD-ROMs. The -checkForRemovableMedia method returns immediately and tries to
mount the file systems asynchronously in the background. The -mountNewRemovableMedia method is similar
to -checkForRemovableMedia, but it does not return until the file systems have been mounted. The -
mountNewRemovableMedia method returns an array of paths to all file systems mounted as a result of the call.

In the following code, the MYWorkspaceNotificationObserver class is enhanced to allow the selection of
files, show information about the selected files, and open the files in appropriate applications using the
NSWorkspace class:

File MYWorkspaceNotificationObserver:

#import <Cocoa/Cocoa.h>

@interface MYWorkspaceNotificationObserver : NSObject
{
 IBOutlet NSImageView *_myIconView; /*" displays icon for files "*/
 IBOutlet NSTextField *_myNameField; /*" displays selected name "*/
 IBOutlet NSTextField *_myTypeField; /*" displays selected type "*/
 IBOutlet NSTextField *_myAppField; /*" displays app for type "*/
 IBOutlet NSButton *_myOpenButton; /*" used to enable button "*/
 NSArray *_mySelectedFiles; /*" paths of selected files "*/
}

/*" Designated initializer "*/
- (id)init;

/*" Actions "*/
- (IBAction)selectFiles:(id)sender;
- (IBAction)openFiles:(id)sender;

@end

File MYWorkspaceNotificationObserver.m:

#import "MYWorkspaceNotificationObserver.h"

@implementation MYWorkspaceNotificationObserver
/*" An instance of this class observes all workspace notifications and
outputs
information when notifications are received. "*/

- (void)_myWorkspaceDidSendNotification:(NSNotification *)aNotification
/*" Called when any notifications are sent to shared workspace's
notification center. "*/
{
 NSLog(@"%@ userInfo:%@", [aNotification name], [aNotification userInfo]);
}

- (id)init
/*" Designated initializer "*/
{
 self = [super init];

 if(nil != self)
 {
 // Observe workspace notifications
 NSNotificationCenter *workspaceNotificationCenter;

 workspaceNotificationCenter = [[NSWorkspace sharedWorkspace]
 notificationCenter];

 // add self as observer of all notifications

 [workspaceNotificationCenter addObserver:self
 selector:@selector(_myWorkspaceDidSendNotification:) name:nil
 object:nil];
 }

 return self;
}

- (void)_mySetSelectedFiles:(NSArray *)anArray
/*" Safely set _mySelectedFiles "*/
{
 [anArray retain];
 [_mySelectedFiles release];
 _mySelectedFiles = anArray;
}

- (IBAction)selectFiles:(id)sender
/*" Presents an Open Panel and gets one or more selected files from user.
Then updates various controls to show the path(s) to the selected file(s),
the icon for the selected file(s), the type(s) of the selected file(s), and
the application(s) used to open the selected file(s). "*/
{
 NSOpenPanel *openPanel = [NSOpenPanel openPanel];
 int selection;
 [openPanel setAllowsMultipleSelection:YES];
 [openPanel setCanChooseDirectories:NO];
 [openPanel setCanChooseFiles:YES];
 [openPanel setResolvesAliases:YES];
 selection = [openPanel runModalForTypes:nil];

 if(NSOKButton == selection)
 {
 // user selected one or more files
 [self _mySetSelectedFiles:[openPanel filenames]];
 }

 if(0 < [_mySelectedFiles count])
 {
 // at least one file is selected
 [_myIconView setImage:[[NSWorkspace sharedWorkspace]
 iconForFiles:_mySelectedFiles]];

 if(1 < [_mySelectedFiles count])
 {
 // more than one file is selected
 [_myNameField setStringValue:@"Multiple Selected Files"];
 [_myTypeField setStringValue:@""];
 [_myAppField setStringValue:@""];
 }
 else
 {
 // exactly one file is selected
 NSString *applicationName;
 NSString *fileType;

 [_myNameField setStringValue:[_mySelectedFiles objectAtIndex:0]];
 [[NSWorkspace sharedWorkspace] getInfoForFile:
 [_mySelectedFiles objectAtIndex:0]
 application:&applicationName type:&fileType];
 [_myTypeField setStringValue:fileType];
 [_myAppField setStringValue:applicationName];
 }
 [_myOpenButton setEnabled:YES];
 }
 else
 {
 // no file is selecetd
 [_myIconView setImage:nil];
 [_myNameField setStringValue:@""];
 [_myTypeField setStringValue:@""];
 [_myOpenButton setEnabled:NO];
 }
}

- (IBAction)openFiles:(id)sender;
/*" Opens the selected files in the default application for the respective
files "*/
{
 NSEnumerator *enumerator = [_mySelectedFiles objectEnumerator];
 NSString *currentPath;

 while(nil != (currentPath = [enumerator nextObject]))
 {
 [[NSWorkspace sharedWorkspace] openFile:currentPath];
 }
}

- (void)dealloc
/*" Clean-up "*/
{
 // Stop observing workspace notifications
 [[[NSWorkspace sharedWorkspace] notificationCenter] removeObserver:self];

 [super dealloc];
}

@end

A sample application that uses MYWorkspaceNotificationObserver is available at www.
cocoaprogramming.net. The class can be tested by connecting its outlets to appropriate objects in Interface Builder.
Connect buttons or menu items to MYWorkspaceNotificationObserver's actions.

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Chapter 22. Integrating with the Operating System

Summary

This chapter describes how to obtain information about files, processes, and the operating
system. Cocoa applications can be integrated with the operating system's workspace and
use applications such as Finder to manage files. This chapter also provides general
information about operating-system security, and the security vulnerabilities of Cocoa
applications.

The next chapter explains how to use operating system networking features from Cocoa
including ways to communicate with other applications such as Finder. Networking and
interapplication communication features enable tight integration of Cocoa applications with
the operating system and other applications.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 23. Networking

IN THIS CHAPTER

● NSURL and NSURLHandle
● Email Messages
● Directory Services
● Interapplication Programming

This chapter explores the networking facilities available to Cocoa applications from basic
URL data types and downloading to complex interapplication communication using
distributed objects. A general overview of network programming using Cocoa and several
small examples are provided.

Book: Cocoa® Programming
Section: Chapter 23. Networking

NSURL and NSURLHandle

URLs, Uniform Resource Locators, are the World Wide Web equivalent of a file system path. They specify where
and what protocol to use to find a resource.

The canonical format that defines the pattern required for all URLs follows:

<scheme_Component>://<authority_Component>/<path>; <params>?<query>#<fragment>

Each component of the URL format serves a specific purpose and helps identify the resource that is specified. For
example, <scheme Component> is often http, https, file, or ftp and defines the protocol or
communications scheme used to access a resource. The <authority_ Component> defines the computer that
can provide the resource. The <authority_Component> is often an Internet domain name or IP address. The
<path>, <params>, <query>, and <fragment> components all help to identify a resource accessible by the
<authority_Component>.

The Foundation Framework classes NSURL and NSURLHandle provide Cocoa applications with basic support for
URL management and downloading data identified by URLs from the Internet.

NSURL and NSURLHandle work together to provide basic access to common Internet-based data types. NSURL
specifies the location of a resource by providing an Objective-C wrapper around URLs. Various NSURLHandle
subclasses provide the means for downloading the data. NSURL is toll-free bridged to the CoreFoundation data type
CFURLRef. Toll-free bridging is described in the "Related Core Foundation" section of Chapter 7, "The Foundation
Framework Overview."

NSURLHandle currently supports a limited subset of the various standard Internet protocols: http, https, and
file. In Mac OS X 10.1, passing usernames and passwords via NSURL is not supported, nor are proxy servers.
Apple has indicated that future versions of Mac OS X will add support for the ftp protocol, proxy servers, usernames,
and passwords.

Creating a New NSURL

New autoreleased instances of NSURL are created using the convenience class method +URLWithString: passing
an NSString as the argument. The -initWithString: initializer is also available. URLs that represent files in
the local file system are created using the file:// URL scheme component. NSURL provides the
+fileURLWithPath: and -initFileURLWithPath: methods that accept valid file system paths and return
file:// URLs.

It is possible to initialize a new NSURL instance by specifying the scheme, host, and path components as individual
NSString instances using the method -initWithScheme:host:path:, as shown in the following example:

theURL=[[NSURL alloc] initWithScheme:@"ftp"
 host:@"www.cocoaprogramming.net"
 path:@"/pub/somefile.txt"];

Not all characters that can be stored in an NSString can be used as part of a URL. A standard called RFC 2396
specifies the characters allowed in URLs. Apple provides the
CFURLCreateStringByAddingPercentEscapes() function to make strings conform to RFC 2396.
CFURLCreateStringByAddingPercentEscapes() is documented at http://developer.apple.com/techpubs/

http://developer.apple.com/techpubs/macosx/ReleaseNotes/CoreFoundation.html

macosx/ReleaseNotes/CoreFoundation.html as part of a release note for Apple's Core Foundation framework and
Carbon. The following category implementation shows one technique for extending the NSString class to support
the creation of URLs. The two methods take advantage of the toll-free bridging between NSString and CFString.

@implementation NSString (MY_RFC2396Support)

- (NSString *)stringByAddingPercentEscapes
/*" Returns an autoreleased NSString composed of the characters in the
receiver modified (escaped) as necessary to conform with RFC 2396 for
use in URLs "*/
{
 return [(NSString *)CFURLCreateStringByAddingPercentEscapes(NULL,
 (CFStringRef)self, NULL, NULL,
 CFStringConvertNSStringEncodingToEncoding(NSASCIIStringEncoding))
 autorelease];
}

- (NSString *)stringByReplacingPercentEscapes
/*" Returns an autoreleased NSString composed of the characters in the
receiver
represented directly as Unicode characters rather than RFC 2396 escaped
characters. "*/
{
 return [(NSString *)CFURLCreateStringByReplacingPercentEscapes(
 kCFAllocatorDefault,(CFStringRef)self, CFSTR("")) autorelease];
}

@end

To create an NSURL that is relative to an existing NSURL the class method +URLWithString:
relativeToURL: is used. If a retained instance is preferred, the instance method -initWithString:
relativeToURL: is used. The following example creates an NSURL instance the represents the README.html
file in the /Developer/Documentation directory using +URLWithString:relativeToURL:.

baseURL=[NSURL fileURLWithPath:@"/Developer/Documentation"];
resultURL=[NSURL URLWithString:@"README.html" relativeToURL:baseURL];

The next example creates an NSURL instance that references the same network location (scheme, host, port, and so
on) as an existing URL, but specifies a different file:

base = [[NSURL alloc] initWithString:@"http://localhost/somefile.html"];
result = [[NSURL alloc] initWithString:@"/newfile.html" relativeToURL:base];

The result URL in this example references http://localhost/newfile.html.

Decomposing an NSURL

NSURL's -absoluteString method returns an instance of NSString that represents the resolved location of a
URL, either relative or absolute. The method -standardizedURL returns a new NSURL instance with any ".." or
"." values within the URL path resolved. Combining these two methods as follows provides a URL suitable for
feedback to the user:

theString = [[theURL standardizedURL] absoluteString];

http://developer.apple.com/techpubs/macosx/ReleaseNotes/CoreFoundation.html

NSURL instances created with -initWithString:relativeToURL: and +URLWithString:
relativeToURL: methods contain both the base URL as well as the relative path. The base URL is retrieved
using the method -baseURL. The path relative to the base is returned by -relativePath.

Sending the -absoluteURL message to an NSURL instance created with the relative methods returns a new
absolute NSURL instance. If -absoluteURL is sent to an absolute URL it returns self.

NSURL also responds to the method -relativeString. In the case of an NSURL created relative to a base URL,
-relativeString returns an NSString representing the relative portion of the URL. If the NSURL is an
absolute URL, or the base URL value of a relative URL is nil, -relativeString returns the same results as a
call to -absoluteString.

The -relativePath and -relativeString methods are similar to each other, but they handle the query and
fragment portions of a URL differently. The following test program shows the difference between -
relativePath and -relativeString.

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 {
 NSURL *url = [NSURL URLWithString:@"/tmp/foo" relativeToURL:
 [NSURL URLWithString:@"http://www.myserver.com/"]];

 NSLog(@"path: %@\nstring: %@", [url relativePath], [url relativeString]);
 }
 {
 NSURL *url = [NSURL URLWithString:@"/tmp/foo%20bar" relativeToURL:
 [NSURL URLWithString:@"http://www.myserver.com/"]];

 NSLog(@"path: %@\nstring: %@", [url relativePath], [url relativeString]);
 }
 {
 NSURL *url = [NSURL URLWithString:@"/tmp/foo#fragment" relativeToURL:
 [NSURL URLWithString:@"http://www.myserver.com/"]];

 NSLog(@"path: %@\nstring: %@", [url relativePath], [url relativeString]);
 }
 {
 NSURL *url = [NSURL URLWithString:
 @"http://www.myserver.com/tmp/foo#fragment"];

 NSLog(@"path: %@\nstring: %@", [url relativePath], [url relativeString]);
 }

 [pool release];
 return 0;
}

The following output shows that the string returned by -relativeString contains characters unmodified from
the characters in the string used to create the relative portion of the URL. The -relativePath method returns a
string representing the relative portion of the URL with query and fragment parts stripped, and URL escape
sequences replaced with ordinary characters.

2002-03-21 19:53:53.518 TestURL[357] path: /tmp/foo
string: /tmp/foo
2002-03-21 19:53:53.520 TestURL[357] path: /tmp/foo bar
string: /tmp/foo%20bar
2002-03-21 19:53:53.520 TestURL[357] path: /tmp/foo
string: /tmp/foo#fragment
2002-03-21 19:53:53.521 TestURL[357] path: /tmp/foo
string: http://www.myserver.com/tmp/foo#fragment

The final distinction in the output is the way the URL created with -URLWithString: instead of -
URLWithString:relativeToURL: is handled. The -relativePath method returns the relative portion of
the URL obtained by actually parsing the URL to find its parts. The -relativeString method returns the entire
string used to initialize the URL.

It is possible to retrieve specified components of the URL with the following instance methods. Table 23.1 shows the
values returned by each method for the example URL http://tori:pword@www.somehost:2704/path/
to/resource;parameter?key=value&key=value#fragment.

Table 23.1. NSURL Component Results

Method Result

-scheme http-resourceSpecifier //tori:pword@www.somehost:2704/path/
to/resource;parameter?key=value&key=value#fragment

-user tori

-password pword

-host www.somehost

-port 2704

-path /path/to/resource

-parameterString parameter

-query key=value&key=value

-fragment fragment

The NSURL method -isFileURL, returns the Boolean value of YES if an NSURL was created using the file
scheme and NO otherwise.

Downloading Data

There are several different ways of downloading data when working with the NSURL and NSURLHandle classes.
The simplest is to download the data in the foreground, which blocks the application until the download is complete
or has failed. Downloading data in the background (asynchronously) requires more code, but allows the application
to respond interactively with the user while the download takes place.

NSURLHandle supports the concept of a cache. When beginning a download or creating a new NSURLHandle
instance, an application can specify whether the cache is used or ignored. If the cache is used, an existing instance of
NSURLHandle can service multiple NSURLs that reference different resources at the same base URL. Using the
cache can reduce the number of network connections needed to download data, but some servers do not permit
downloading of multiple resources from one network connection.

Foreground (Synchronous) Downloading

The simplest method of downloading text specified by an NSURL is actually provided by NSString. The
NSString class method +stringWithContentsOfURL: returns a string initialized with the contents of the
resource referenced by a URL. The string is encoded using the system's default string encoding, unless a resource
referenced by a URL begins with a byte order marking U+FEFF or U+FFFE in which case the string has Unicode
encoding.

Retrieving the data pointed to by an NSURL into an NSData is accomplished by calling the NSURL method -
resourceDataUsingCache:. This returns an NSData that contains the contents of the referenced resource or
nil if the data is not available. If the argument passed to this method is YES, and the contents of the referenced URL
have already been retrieved, the cache is used instead of creating a new network connec-tion. If the use cache flag is
NO, or if it is YES but the data hasn't been cached, a new network connection is created and the data is downloaded
and returned. The application will block until the data is retrieved, an error is encountered, or the attempt times out.

NSURLHandleClient Protocol

Downloading asynchronously requires direct use of the NSURLHandle class and use of the
NSURLHandleClient protocol.

An object is assigned as the client of an NSURLHandle. This client then receives messages from the
NSURLHandleClient protocol during the download. The NSURLHandleClient protocol defines the following
messages:

- (void)URLHandleResourceDidBeginLoading:(NSURLHandle *)sender
- (void)URLHandleResourceDidCancelLoading:(NSURLHandle *)sender
- (void)URLHandleResourceDidFinishLoading:(NSURLHandle *)sender
- (void)URLHandle:(NSURLHandle *)sender resourceDataDidBecomeAvailable:
 (NSData *)newBytes
- (void)URLHandle:(NSURLHandle *)sender resourceDidFailLoadingWithReason:
 (NSString *)reason

An NSURLHandle client object receives the -URLHandleResourceDidBeginLoading: message when the
download initially begins. The NSURLHandle beginning to load is the sender argument. The client receives -
URLHandleResourceDidFinishLoading: when the download has completed successfully.

If the download encounters an error, the -URLHandle:resourceDidFailLoadingWithReason: message
is sent to the client. The sender argument is the affected NSURLHandle, and the reason is an NSString that can
be presented to the user as an error message.

As a download progresses, NSURLHandle sends newly acquired data to the client object with the -URLHandle:

resourceDataDidBecomeAvailable: message. The data received since the last time this message was sent
is provided in the second argument.

The client method -URLHandleResourceDidCancelLoading: is called if the download has been cancelled
because the NSURLHandle instance received the -cancelLoadInBackground message.

Creating and Working with NSURLHandle Instances

NSURLHandle is an abstract class with various subclasses that provide concrete implementations. To create a new
NSURLHandle, it is necessary to first determine the type of NSURLHandle class that needs to be created by
calling +URLHandleClassForURL: and passing an NSURL as the argument. This returns the class that should be
allocated and initialized for the scheme specified by the URL. The following example creates an NSURLHandle
instance capable of handling the http scheme:

NSURL *theURL = [NSURL URLWithString:@"http://www.cocoaprogramming.net/"];
Class theClass = [NSURLHandle URLHandleClassForURL: theURL];
theURLHandle = [[theClass alloc] initWithURL:theURL cached:NO];

NSURL provides the convenience method -URLHandleUsingCache: that also provides a suitable
NSURLHandle instance. The following example creates an NSURLHandle instance capable of handling the http
scheme:

theURLHandle = [[NSURL URLWithString:@"http://www.cocoaprogramming.net/"]
 URLHandleUsingCache:NO];

A newly initialized instance of NSURLHandle does not have a client object assigned to it. The client is specified by
calling the NSURLHandle method -addClient: and passing the client object as the argument. The client must
implement the NSURLHandleClient protocol. A client of an NSURLHandle instance is removed by sending the
NSURLHandle -removeClient: message passing the client object.

Having initialized an NSURLHandle and assigned a client object, it is now possible to begin a download. A
foreground download is initiated by sending -loadInForeground to the NSURLHandle instance. The -
loadInForeground method returns an NSData instance containing all the data from the download.

Sending the -loadInBackground message to an NSURLHandle instance starts an asynchronous download. As
the download takes place, the NSURLHandle client object receives the appropriate messages specified in the
NSURLHandleClient protocol.

NSURL provides a convenience method to create a new NSURLHandle, assign a client object, and begin a
background download through the use of -loadResourceDataNotifyingClient:usingCache:. The first
argument specifies a client object that implements the NSURLHandleClient protocol. The second argument is a
Boolean that specifies if the cache should be used or not.

A background download can be cancelled by sending the -cancelLoadInBackground message to the
NSURLHandle instance performing the download. Canceling the download causes the client object to receive the -
URLHandleResourceDidCancelLoading: message.

The status of a download is queried by sending the -status message to the NSURLHandle instance. This method
returns an NSURLHandleStatus constant with one of the values in Table 23.2.

Table 23.2. NSURLHandleStatus Constants

Constant Definition

NSURLHandleNotLoaded The resource data has not been loaded.

NSURLHandleLoadSucceeded The resource data was successfully loaded.

NSURLHandleLoadInProgress The resource data is in the process of loading.

NSURLHandleLoadFailed The resource data failed to load.

If the status of a download is NSURLHandleLoadFailed, a call to the NSURLHandle instance method -
failureReason returns an NSString that contains a description of the error. If there is no error, -
failureReason returns nil.

Calling -availableResourceData returns the data retrieved by an NSURLHandle. This method returns an
NSData instance containing only the contents that have been received at the time the -
availableResourceData message is sent. It returns nil if a previous attempted download failed.

Calling -resourceData returns the complete NSURLHandle resource contents blocking, if necessary, until all
data has been received.

Adding Support for Additional Download Schemes

By subclassing NSURLHandle it is possible to add support for downloading from additional URL schemes, or to
replace the existing handlers for the http, https, and file schemes.

The best example of an NSURLHandle subclass is Dan Wood's CURLHandle implementation. It is a wrapper
around the CURL library (http://curl.haxx.se/). CURLHandle extends NSURLHandle capabilities with additional
support for http, https, and ftp as well as support for Internet proxy servers. It is available as open source at
http://curlhandle.sourceforge.net.

http://curl.haxx.se/
http://curlhandle.sourceforge.net/

Book: Cocoa® Programming
Section: Chapter 23. Networking

Email Messages

There are two principal techniques of sending email messages programmatically with Cocoa. The first is to open an
email in the user's selected email application and allow them to edit or augment the message before sending. The
second is to send the message directly from a Cocoa application.

Creating a Message in the User's Email Client

A compose window can be opened in the user's email client by creating an NSURL that uses the mailto scheme,
and then calling the NSWorkspace method -openURL:.

The parameters that can be passed in a mailto URL are listed in Table 23.3.

Table 23.3. mailto URL Parameters

Query Key Definition

CC Carbon-copy address

BCC Blind carbon-copy address

SUBJECT Subject text

BODY Body text

Each of the values for the query keys as well as the destination email address need to be escaped to protect the
characters that are used in URLs for other purposes. This example uses the -
stringByAddingPercentEscapes method defined in the NSString (MY_RFC2396Support) category
shown in the "Creating a New NSURL" section of this chapter.

EncodedSubject = [NSString stringWithFormat:@"SUBJECT=%@",
 [subject stringByAddingPercentEscapes]];
encodedBody = [NSString stringWithFormat:@"BODY=%@",
 [body stringByAddingPercentEscapes]];
encodedDestinationUser = [destinationuser stringByAddingPercentEscapes];
encodedURLString = [NSString stringWithFormat:@"mailto:%@?%@&%@",
 encodedDestinationUser, encodedSubject, encodedBody];
mailtoURL = [NSURL URLWithString:encodedURLString];
[[NSWorkspace sharedWorkspace] openURL:mailtoURL];

This example opens the user's email client and creates a new compose window with the subject, body, and email
address values already filled in.

Message Framework

It is also possible to send email without going through the user's email client. This is accomplished by using the
NSMailDelivery class in Apple's Message framework located in /System/Library/Frameworks. The
only documentation that Apple provides for this framework at the time of this writing is in the header files provided
with the framework. This framework uses the settings that have been configured by the user in the System
Preferences application to send the email.

NSMailDelivery provides two class methods used to send email:

+ (BOOL)deliverMessage:(NSString *)messageBody
 subject:(NSString *)messageSubject
 to:(NSString *)destinationAddress;
+ (BOOL)deliverMessage: (NSAttributedString *)messageBody
 headers: (NSDictionary *)messageHeaders
 format: (NSString *)messageFormat
 protocol: (NSString *)deliveryProtocol;

The +deliverMessage:subject:to: method is the simplest to use. You provide NSStrings for the
message body, subject, and email address, and the mail is sent via whatever SMTP host has been configured in
System Preferences.

The +deliverMessage:headers:format:protocol: method allows control over the type of mail being
sent as well as the specification of additional email headers. The messageFormat argument is one of two values:
NSMIMEMailFormat or NSASCIIMailFormat. Specifying NSASCIIMailFormat causes any formatting and
attachments in the messageBody argument to be removed before sending.

The messageHeaders dictionary contains at minimum an NSString value for the key To. If you want to send
the message to multiple users at the same time, you can pass an NSArray for the To, Cc, or Bcc keys.

The deliveryProtocol is usually set to nil so that the default delivery configuration for the user's machine is
used. The only other supported option is NSSMTPDeliveryProtocol.

The following example sends a document to three users by using a Cc header. It encodes the file /tmp/
ExampleDocument.rtfd as a multipart MIME enclosure. The actual encoding that is done depends on the
attributed string that specified the message body. If the string is created from an RTF or RTFD document, the email
is encoded as MIME-rich text, which is not capable of reproducing all the details that an RTFD document contains. If
the string is created from an HTML file, the email contains a text/html encoding of the document.

theMessage=[[[NSMutableAttributedString alloc]
 initWithPath:@"/tmp/ExampleDocument.rtfd"
 documentAttributes:NULL] autorelease];
[headersDict setObject:@"user@some.place" forKey:@"To"];
[headersDict setObject:[NSArray arrayWithObjects:@"secondUser@some.place",
 @"thirdUser@some.place",nil] forKey:@"Cc"];

[headersDict setObject:@"My Example Document" forKey:@"Subject"];
[headersDict setObject:@"Extra Header Contents 1.0" forKey:@"X-
MyExtraHeader"];
result=[NSMailDelivery deliverMessage:theMessage
 headers:headersDict
 format:NSMIMEMailFormat
 protocol:nil];

Book: Cocoa® Programming
Section: Chapter 23. Networking

Directory Services

Directory services are repositories for information about various services, machines, and
clients on a network. They provide mappings from TCP/IP port numbers to processes and
machine names to IP addresses. Directory services also aid network file systems and
provide user identification and password verification.

Apple's Directory Services APIs provide a layer of abstraction that helps Cocoa
applications work regardless of the underlying network and directory services
implementation. To do this, the Directory Services APIs support the development of plug-
ins. Mac OS X version 10.1.3 provides a Directory Services plug-in for Apple's own
NetInfo service, and in future versions will fully support OpenLDAP and Microsoft's
Active Directory.

NOTE

NetInfo, OpenLDAP, and Active Directory all store information about
available network services. The particular system used is controlled by the
network administrator who set up the network. By supporting all three
systems, Mac OS X will work seemlessly on almost any network.

Most applications do not need to directly access the information provided by directory
services. Cocoa classes such as NSHost, NSSocketPort,
NSSocketPortNameServer provide information using available services. Apple also
provides the Security Framework briefly described in Chapter 22, "Integrating with the
Operating System," and documented at http://developer.apple.com/techpubs/macosx/
CoreTechnologies/securityservices/authorizationconcepts.pdf.

Apple's NetInfo directory service is part of the open source Darwin project and is available
at http://developer.apple.com/darwin/projects/opendirectory/. NetInfo is documented at
http://www.apple.com/macosx/server/pdf/UnderstandingUsingNetInfo.pdf.

http://developer.apple.com/techpubs/macosx/CoreTechnologies/securityservices/authorizationconcepts.pdf
http://developer.apple.com/techpubs/macosx/CoreTechnologies/securityservices/authorizationconcepts.pdf
http://developer.apple.com/darwin/projects/opendirectory/
http://www.apple.com/macosx/server/pdf/UnderstandingUsingNetInfo.pdf

Book: Cocoa® Programming
Section: Chapter 23. Networking

Interapplication Programming

Cocoa applications can communicate with each other in several ways. The lowest levels of the Mac OS X kernel
provide interapplication communication features. Deep within the implementation of the operating system,
processes communicate using Mach messages and Mach ports. Just above the kernel level, Mac OS X provides
standard BSD Unix sockets. Sockets are a cross-platform API for interprocess and network communications.
Services such as the Message framework and Directory Services described in this chapter are implemented using
Mach messages and/or sockets.

Mac OS X provides several high-level, interapplication communication APIs that are based on sockets and Mach
messages, but shield programmers from low-level implementation details. The highest-level communication API is
Apple Events. The remainder of this chapter describes the high-level communications APIs and places to look for
information about the low-level APIs.

Apple Events

Apple's AppleScript system enables direct communication with applications including Finder by sending Apple
Events. Apple Events are commands that are sent from one application to another locally or over a network.
Applications that support AppleScript receive the Apple Events, perform the commanded operations, and return
data to the application that sent the Apple Events. Most Cocoa applications automatically provide basic AppleScript
support and can receive Apple Events.

Cocoa applications benefit from AppleScript support provided by the Foundation and Application Kit frameworks.
The frameworks convert received Apple Events into script command objects that work with application objects to
perform the commanded operations. Although most Cocoa applications can automatically receive Apple Events,
Cocoa does not provide any way to send Apple events in Mac OS X version 10.1.3. Cocoa applications must use
the Carbon Apple Event Manager API to send Apple Events.

The best way to get started using Apple Events is to read Apple's overview documentation at http://developer.apple.
com/techpubs/macosx/Carbon/interapplicationcomm/AppleEventManager/appleeventmanager.html.

Cocoa's support for AppleScript and Apple Events is described at http://developer. apple.com/techpubs/macosx/
Cocoa/TasksAndConcepts/ProgrammingTopics/ AppArchitecture/index.html and http://developer.apple.com/
techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Scriptability/index.html.

Distributed Notifications

Notifications were introduced in Chapter 6, " Cocoa Design Patterns," and are used in most chapters of this book.
Cocoa provides a mechanism for posting notifications that are transmitted to all applications running on the same
computer. These distributed notifications have some limitations and are relatively inefficient compared to other
interapplication communication techniques, but they are very simple to use.

Each Cocoa application has an instance of the NSDistributedNotificationCenter class that is accessed
via NSDistributedNotificationCenter's +defaultCenter method. The default-distributed
notification center sends and receives notifications sent between applications on the same computer.

Posting Distributed Notifications

Notifications are posted to a distributed notification center with the following methods:

http://developer.apple.com/techpubs/macosx/Carbon/interapplicationcomm/AppleEventManager/appleeventmanager.html
http://developer.apple.com/techpubs/macosx/Carbon/interapplicationcomm/AppleEventManager/appleeventmanager.html
file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/AppArchitecture/index.html and http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Scriptability/index.html
file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/AppArchitecture/index.html and http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Scriptability/index.html

- (void)postNotificationName:(NSString *)notificationName
 object:(NSString *)anObject
- (void)postNotificationName:(NSString *)notificationName
 object:(NSString *)anObject userInfo:(NSDictionary *)userInfo
- (void)postNotificationName:(NSString *)notificationName
 object:(NSString *)anObject userInfo:(NSDictionary *)userInfo
 deliverImmediately:(BOOL)deliverImmediately

The -postNotificationName:object: method calls -postNotificationName:object:
userInfo:deliverImmediately: with a nil userInfo: argument and NO for the
deliverImmediately: argument. The -postNotificationName:object:userInfo: method calls -
postNotificationName:object:userInfo:deliverImmediately: with NO for the
deliverImmediately: argument. The deliverImmediately: argument controls the behavior of
distributed notifications when the receiving applications are suspended and is described in the "Observing
Distributed Notifications" section of this chapter.

Observers filter notifications so that only notifications with particular object: arguments are received. For local
notifications, the addresses of the object: arguments can be used to determine if a notification should be
dispatched to observers. Notifications posted using the NSNotificationCenter class do not have any
restriction on the class of the object: argument. With distributed notifications, the object: arguments
originate in different processes from the observers. Address comparisons between processes are meaningless.
Therefore, distributed notifications are filtered based on the string value of the object: argument instead of its
address. As a result, the object: argument to distributed notifications must be an instance of NSString.

The userInfo: argument to distributed notifications is encoded with NSArchiver and decoded with
NSUnarchiver. As a result, only objects that conform to the NSCoding protocol should be used in the
userInfo: dictionary. NSArchiver, NSUnarchiver, and NSCoding are described in the "Encoding and
Decoding" section of Chapter 5, "Cocoa Conventions."

Observing Distributed Notifications

An object can be registered to observe distributed notifications with two
NSDistributedNotificationCenter methods:

- (void)addObserver:(id)anObserver selector:(SEL)aSelector
 name:(NSString *)notificationName object:(NSString *)anObject
- (void)addObserver:(id)anObserver selector:(SEL)aSelector
 name:(NSString *)notificationName object:(NSString *)anObject
 suspensionBehavior:(NSNotificationSuspensionBehavior)suspensionBehavior

The -addObserver:selector:name:object: method calls -addObserver:selector:name:
object:suspensionBehavior: with NSNotificationSuspensionBehaviorCoalesce as the
suspensionBehavior: argument.

Notifications are not always received immediately when they are posted.
NSDistributedNotificationCenter's -setSuspended: method is used to suspend distribution of
distributed notifications to observers. If -setSuspended: is called with YES as the argument, the distributed
notification center for that application temporarily stops receiving notifications. The NSApplication object in
Application Kit-based applications automatically calls -setSuspended:YES when the application is inactive and
calls -setSuspended:NO when the application becomes active. Cocoa applications that do not use the
Application Kit framework need to explicitly manage suspension of distributed notifications by calling -
setSuspended: when appropriate.

The notifications that are posted, but not received by a suspended application, are handled in one of four ways
depending on the suspensionBehavior: argument to -addObserver:selector:name:object:
suspensionBehavior:. The available behaviors are enumerated by the
NSNotificationSuspensionBehavior type that defines the following constants:
NSNotificationSuspensionBehaviorDrop, NSNotificationSuspensionBehaviorCoalesce,
NSNotificationSuspensionBehaviorHold, and
NSNotificationSuspensionBehaviorDeliverImmediately.

If NSNotificationSuspensionBehaviorDrop is used, distributed notifications with the name: and
object: arguments to -addObserver:selector:name:object: suspensionBehavior: are not
received and are not queued. When -setSuspended:NO is called, notifications that were dropped while
reception was suspended are not sent to observers.

If NSNotificationSuspensionBehaviorCoalesce is used, only one notification with each name and
object is queued until -setSuspended:NO is called. When the application resumes receiving distributed
notifications, only one notification is sent to each observer for each name and object pair no matter how many
notifications were posted.

If NSNotificationSuspensionBehaviorHold is used, notifications are queued until -setSuspended:
NO is called. The number of notifications that can be queued is undefined. When the application resumes receiving
distributed notifications, all queued notifications are sent to observers. This suspension behavior should not be used
for applications that may suspend notification reception for long periods of time because if the number of queued
notifications exceeds Apple's undocumented limit, notifications might be lost.

Finally, if NSNotificationSuspensionBehaviorDeliverImmediately is used, notifications are sent
to observers immediately regardless of whether the distributed notifications are suspended with -setSuspended:
YES.

When distributed notifications are posted, the deliverImmediately: argument to -
postNotificationName:object:userInfo:deliverImmediately: is used to force immediate
reception of the notification by all applications even if they have suspended reception. If the
deliverImmediately: argument is YES, the suspension status and suspension behavior of the applications
that observe the notification are ignored. The deliverImmediately:YES option should only be used for
critical notifications that cannot be delayed or ignored.

Observers can be removed for the distributed notification center with the -removeObserver:name:object:
method that NSDistributedNotificationCenter inherits from its superclass,
NSNotificationCenter. Notification centers do not retain the observer objects. When an object registered to
observe notifications is deallocated, it must remove itself from all notification centers or there is a risk that
notifications will be sent to deallocated objects and cause the application to crash.

Distributed Objects

Objective-C's features for sending messages between applications on the same or different computers were
introduced in Chapter 4, "Objective-C." Distributed Objects are objects that take advantage of distributed
messaging between applications. Distributed objects are very easy to use. In most cases, distributed objects work
exactly the same way as local objects. Objects that reside in one application are represented by special objects
called proxies in other applications. When a proxy receives an Objective-C message, it forwards the message to the
actual object in another process. The forwarding of messages is handled automatically by the runtime.

Vending Objects

The first step when using distributed objects is to vend an object for use by other applications. The following code
implements a very simple class called MYMessageServer:

#import <Foundation/Foundation.h>

@protocol MYMessageServerProtocol

- (void oneway)addMessageClient:(id)aClient;
- (BOOL)removeMessageClient:(id)aClient;
- (void oneway)broadcastMessageString:(NSString *)aString;

@end

@interface MYMessageServer : NSObject <MYMessageServerProtocol>
{
 NSMutableArray *_myListOfClients;
}

@end

@implementation MYMessageServer

- (void oneway)addMessageClient:(id)aClient
{
 if(nil == _myListOfClients)
 {
 _myListOfClients = [[NSMutableArray alloc] init];
 }
 [_myListOfClients addObject:aClient];
 NSLog(@"Added client");
}

- (BOOL)removeMessageClient:(id)aClient
{
 [_myListOfClients removeObject:aClient];
 NSLog(@"Removed client");

 return YES;
}

- (void oneway)broadcastMessageString:(NSString *)aString
{
 [_myListOfClients makeObjectsPerformSelector:@selector
(appendMessageString:)
 withObject:aString];
}

- (void)dealloc
{
 [_myListOfClients release];
 _myListOfClients = nil;

 [super dealloc];

}

@end

Instances of the MYMessageServer class maintain arrays of client objects registered with the -
addMessageClient: method. Client objects are unregistered with -removeMessageClient:. Each time
MYMessageServer's -broadcastMessageString: method is called, the string argument to -
broadcastMessageString: is sent to every registered client using the -appendMessageString method
that clients must implement.

The following main() function creates an instance of MYMessageServer and vends that instance to other
applications using a default connection. The NSConnection class is explained after this example.

int main (int argc, const char * argv[])
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 MYMessageServer *server = [[MYMessageServer alloc] init];
 NSConnection *defaultConnection;

 defaultConnection = [NSConnection defaultConnection];
 [defaultConnection setRootObject:server];
 [defaultConnection registerName:@"server"];

 [[NSRunLoop currentRunLoop] configureAsServer];
 [[NSRunLoop currentRunLoop] run];

 [server release];
 [pool release];
 return 0;
}

The MYMessageServer class and the main() function are all that is needed to implement a server that sends
and receives messages via distributed objects. To run the message server, create a Foundation Tool-style project in
Project Builder. Enter the code for MYMessageServer into the main.m file that Project Builder automatically
creates. Replace the existing implementation of the main() function in main.m with the main function that vends
the MYMessageServer object. Build the project and run it.

The message server waits for other applications to connect to the vended object. The server runs until Project
Builder or Process Viewer stops it. Before implementing a client application that communicates with the message
server, it is worthwhile to analyze exactly what the server is doing.

Every thread in a Cocoa application has a default NSConnection instance. NSConnection instances manage
network connections for distributed objects. NSConnection is only used directly when vending an object to other
applications, when accessing objects vended by other applications, and when configuring attributes of distributed
objects such as how long to wait for distributed messages before giving up. After a remote application has access to
a vended object, the object is used just like local objects.

The message server's main() function obtains the default NSConnection instance for the application's main
thread with the expression defaultConnection = [NSConnection defaultConnection]. The object
to be vended is set with [defaultConnection setRootObject:server]. Then, a name is registered
with the operating system so that client applications can find the server's connection by its name. The
[defaultConnection registerName:@"server"] expression registers the connection with the name
server.

A run loop needs to be running for an application to receive messages from clients. The expression
[[NSRunLoop currentRunLoop] configureAsServer] tells the current run loop not to terminate just
because no input is currently available. Then, [[NSRunLoop currentRunLoop] run] starts the run loop.
Ordinarily, NSRunLoop's -run method returns immediately if no input is pending, but the -
configureAsServer method prevents that. The NSRunLoop class is described in Chapter 7.

When configured as a server, [[NSRunLoop currentRunLoop] run] never returns. However,
NSRunLoop's -runUntilDate: method can be used to specify a timeout after which the run loop stops waiting
for input and returns.

Accessing Vended Objects

Figure 23.1 shows client applications running and broadcasting messages to each other via the message server that
is running in the background. Two clients are shown, but any number of clients can connect to the server and
broadcast messages.

Figure 23.1. Two client applications communicate using distributed objects and a background server process.

The client application is implemented with a single instance of the MYMasterController class and .nib file.
The interface of the MYMasterController declares outlets for two text fields. The text fields are used to
compose messages to send and display messages that are received. The only other instance variable is a reference to
the message server that is connected when the client application has finished launching:

File MYMasterController.h:

#import <Cocoa/Cocoa.h>

@interface MYMasterController : NSObject
{
 IBOutlet NSTextView *composeView;
 IBOutlet NSTextView *messageView;

 id server;
}

/*" Actions "*/
- (IBAction)sendMessage:(id)sender;

/*" Append Messages "*/
- (void oneway)appendMessageString:(NSString *)aString;

@end

The -sendMessage: action is sent by the Send button in the client's user interface. The -
appendMessageString: is called by the message server to notify clients that a message string has been
broadcast to all clients.

The implementation of MYMasterController is straightforward:

File MYMasterController.m:

#import "MYMasterController.h"

@protocol MYMessageServerProtocol

- (void oneway)addMessageClient:(id)aClient;
- (BOOL)removeMessageClient:(id)aClient;
- (void oneway)broadcastMessageString:(NSString *)aString;

@end

@implementation MYMasterController

/*" Actions "*/
- (IBAction)sendMessage:(id)sender
{
 // Braodcast the message and clear compose view
 [server broadcastMessageString:[composeView string]];
 [composeView setString:@""];
}

/*" Append Messages "*/
- (void oneway)appendMessageString:(NSString *)aString
{
 NSRange appendRange = NSMakeRange([[messageView string] length], 0);

 // Append text and scroll if neccessary
 [messageView replaceCharactersInRange:appendRange withString:aString];
 [messageView scrollRangeToVisible:appendRange];
}

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 server = [[NSConnection rootProxyForConnectionWithRegisteredName:@"server"
 host:nil] retain];

 if(nil == server)
 {
 NSLog(@"Error: Failed to connect to server.");
 }

 else
 {
 [server setProtocolForProxy:@protocol(MYMessageServerProtocol)];
 [server addMessageClient:self];
 [server broadcastMessageString:[NSString stringWithFormat:
 @"Connected: %@ %d\n",
 [[NSProcessInfo processInfo] processName],
 [[NSProcessInfo processInfo] processIdentifier]]];
 }
}

- (void)applicationWillTerminate:(NSNotification *)aNotification
{
 if(NO == [server removeMessageClient:self])
 {
 NSLog(@"Error: Failed to remove client.");
 }
 [server release];
 server = nil;
}

@end

After MYMasterController.h is imported, the protocol that server objects implement is defined. The protocol
is not strictly necessary, but it is always a good idea to tell the distributed objects system what protocols distributed
objects implement so that the distributed messages can be sent efficiently. The importance of protocols for
distributed messaging is explained in the "Protocols" section of Chapter 4.

An instance of MYMasterController in the client application's .nib is used as the application's delegate. The
application automatically sends the -applicationDidFinishLaunching: method to its delegate when the
application has finished launching. The -applicationWillTerminate: message is sent to the delegate just
before the application terminates. MYMasterController implements -
applicationDidFinishLaunching: to connect to the server application identified by the name "server,"
gets access to the object vended by the server, retains it, and registers the client to receive messages. The -
applicationWillTerminate: method is implemented to remove references to the client from the server.
The connection to the server is broken when the client application actually terminates.

In the implementation of MYMasterController's -applicationDidFinishLaunching: method, the
server instance variable is set to the object returned from [NSConnection
rootProxyForConnectionWithRegisteredName:@"server" host:nil]. The -
rootProxyForConnectionWithRegisteredName: method establishes a connection to the service,
identified by name if possible, and returns either a proxy to the root object vended by the server or nil. The
significance of proxies is described in the next section. Specifying nil for the host: argument tells
NSConnection to look for the named service on the local host. To make connections over a network, a host
name such as lists.apple.com or an IP address string such as 172.92.42.1 must be provided as the
host: argument.

If the connection to the server is established, the protocol supported by the server is set with [server
setProtocolForProxy:@protocol(MYMessageServerProtocol)]. After that, messages can be sent
to the server instance variable.

The implementation of -applicationWillTerminate: sends the -removeMessageClient: message to
the server and then releases the server object. MYMessageServerProtocol declares that -

removeMessageClient: returns a Boolean value. The return value is important in this case because it makes
the message sent to the server synchronous. The client application cannot continue processing until the server
returns a value or a timeout occurs. If the client does not wait for a reply from the server, the client application may
terminate before the server has finished removing the client from its array of clients. Waiting for a return value
assures that there is no chance that the server will be left with a reference to a terminated client.

The -sendMessage: action uses the server's -broadcastMessageString: method to broadcast any text
that has been typed into the compose text view; then the compose text view is cleared.

The -appendMessageString: method is called by the server. It is implemented to append a string to the
message text view and, if necessary, scroll the text view so that the new message text is visible.

With the server application running in Project Builder, experiment running the client application. Multiple copies of
the client application can be run by using the Terminal application to launch the application. Assuming the client
application is called DOTestClient.app and is installed in ~/Applications, the Terminal command to run
the client follows:

>~/Applications/DOTestClient.app/Contents/MacOS/DOTestClient &

The & character at the end of the command tells the Terminal application to run the application in the background.
The same command can be run any number of times to launch any number of clients.

The Role of Proxies

To establish distributed objects-based communication, the applications that need to communicate form connection
represented by the NSConnection class for that purpose. After the connection is established, an object called the
root object is shared by the connected applications. One application vends the root object. The other applications
create proxies for the root object. The root object is the rendezvous point for communication.

A proxy is a stand-in for the actual object. Each application has a proxy that exists in its own address space. Any
messages sent to the proxy are encoded and sent over the connection to the corresponding real object. Each
application treats the proxies as if they were all the same object.

Proxies are not copies of remote objects. Proxies do not have any public methods of their own and require only a
small fixed amount of storage no matter what objects they represent. Proxies forward messages that they receive to
the actual object in another application.

Cocoa implements proxies with the NSProxy root class and its subclass, NSDistantObject. NSProxy
conforms to the NSObject protocol. It is always safe to send NSObject protocol messages such as -retain to
proxies. For example, when a proxy receives a -retain message, the message is forwarded to the proxy's
represented object. The represented object is the one whose reference count is increased. The objects represented by
proxies must conform to the NSObject protocol. In almost every case, the objects represented by proxies are
subclasses of the NSObject class, and therefore inherit conformance with the NSObject protocol.

After a proxy for a vended root object is obtained, messages sent to the proxy and forwarded to the actual root
object can accept object arguments and return objects. The root object's proxy is just a starting point. Apple's
implementation of Objective-C provides keywords that define what should happen when pointers and objects are
passed over a connection as arguments or return values.

Objective-C Keywords for Distributed Messaging

The default behavior when objects are sent from one application to another as the arguments or return values of
distributed messages is to create new proxies to represent the objects in the remote application. The client example

application in this chapter passes self to the server with the server's -addMessageClient: method. The
server receives a proxy for the client object and stores the proxy in an array of clients. The array retains its
elements. When the client proxy is added to the array, the -retain message sent by the array is forwarded back to
the actual client object in the client application.

In some cases, the default behavior of creating proxies is not the best behavior. The bycopy keyword in the type
specification of a message argument or return value forces the runtime to create a copy of the object in each process
rather than using a proxy. The bycopy objects are encoded by the sender and then decoded by the receiver using a
subclass of NSCoder called NSPortCoder. Objects sent bycopy must conform to the NSCoding protocol.

Some classes in the Cocoa frameworks are implemented to use bycopy. For example, when collection classes such
as NSArray are passed over a connection, the collection itself is copied, but the objects contained in the remote
copy of the collection are proxies to the original objects. The byref keyword is used to force the creation of a
proxy instead of a copy if that is the desired behavior.

NOTE

The bycopy and byref keywords can only be used in protocol declarations, and they only apply to
object arguments and return values.

The oneway keyword is used in the return type of messages. Specifying (oneway void) as the return type for a
message indicates that sending application can continue processing immediately without waiting for the receiving
application to acknowledge receipt or return a value. The oneway keyword only makes sense when used with
void because with any other type the sender must wait for the return value. Without the oneway keyword, all
messages are synchronous. The sender must wait for acknowledgement of the message before it can continue
processing.

The oneway keyword should be used whenever possible because it reduces the communications traffic between
applications. Without oneway, a minimum of two pieces of information are sent across the connection between
applications: the message itself and the confirmation of receipt. Communications traffic can be reduced to one piece
of information per message by using the oneway keyword.

The last three keywords that support distributed messaging are in, out, and inout. These keywords are used to
specify what should happen when pointers are sent as arguments to distributed messages. Because pointers are only
valid in one process, the pointers themselves cannot be sent to other applications. Instead, the memory referenced
by the pointers is copied into the remote applications, and the remote applications are given pointers to their own
local copies of the memory.

The in keyword specifies that the memory referenced by pointers is copied from the sender's application to the
receiver's application, but changes made to the memory in the receiver are not copied back to the sender. The out
keyword specifies that the memory referenced by the sender's pointer is not copied, but the values set by the
receiver are copied back to the sender. The inout keyword specifies the default behavior. The memory referenced
by pointer arguments that have the inout type modifier is copied from the sender to the receiver and copied again
from the receiver to the sender when the method completes. The in and out keywords should be used whenever
possible to minimize the number of times memory is copied between applications.

NOTE

Only pointers to fixed-size types can be passed as arguments or return values from distributed
messages. The runtime needs to copy the memory referenced by pointers, and therefore must be able
to determine how much memory to copy. The general rule is that pointer's to any type that can be used

with C's sizeof() operator can be used with distributed objects.

Handling Errors

Most errors that occur as the result of distributed messaging are handled the same way other errors are handled. For
example, unhandled exceptions raised as the result of a distributed message are raised in the application that sent
the message, just like they would be for local messages. However, the termination of one of the applications using a
distributed objects connection is a special case. If one application terminates, the other may need to perform
cleanup operations such as removing proxies to objects in the terminated application.

When a communications connection is broken because one application has been terminated or become
unresponsive, the NSConnection instance that encapsulates the broken connection sends the
NSConnectionDidDieNotification to the default notification center in the surviving application.

Register for the NSConnectionDidDieNotification notification with code like the following:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(connectionDidDie:)
 name:NSConnectionDidDieNotification
 object:nil];

After registered with the default notification center, the -connectionDidDie: method is sent if any
NSConnection instance posts the NSConnectionDidDieNotification notification. The -
connectionDidDie: method must be implemented to perform any application specific cleanup needed.

The client application can implement -connectionDidDie: to simply report an error as follows:

- (void)connectionDidDie:(NSNotification *)aNotification
{
 NSLog(@"Error: Connection to server is broken");
}

Modify MYMasterController's -applicationDidFinishLaunching: method to observe the
NSConnectionDidDieNotification notification:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{

 server = [[NSConnection rootProxyForConnectionWithRegisteredName:@"server"
 host:nil] retain];

 if(nil == server)
 {
 NSLog(@"Error: Failed to connect to server.");
 }
 else
 {
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(connectionDidDie:)
 name:NSConnectionDidDieNotification
 object:nil];
 [server setProtocolForProxy:@protocol(MYMessageServerProtocol)];

 [server addMessageClient:self];
 [server broadcastMessageString:[NSString stringWithFormat:
 @"Connected: %@ %d\n",
 [[NSProcessInfo processInfo] processName],
 [[NSProcessInfo processInfo] processIdentifier]]];
 }
}

Finally, call NSNotificationCenter's -removeObserver: method within MYMasterController's
implementation of -applicationDidFinishLaunching:.

- (void)applicationWillTerminate:(NSNotification *)aNotification
{
 if(NO == [server removeMessageClient:self])
 {
 NSLog(@"Error: Failed to remove client.");
 }
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [server release];
 server = nil;
}

The server needs more sophisticated handling of client terminations. The server must find all invalid proxies in its
client array whenever a connection dies. Add the following method to the MYMessageServer class:

- (void)connectionDidDie:(NSNotification *)aNotification
{
 NSConnection *deadConnection = [aNotification object];
 int i;

 NSLog(@"Connection to client is broken.");

 // remove proxies with dead connections from client list
 for(i = [_myListOfClients count] - 1; i >= 0; i-)
 {
 id currentClient = [_myListOfClients objectAtIndex:i];

 NS_DURING
 if([currentClient respondsToSelector:@selector(connectionForProxy)])
 {
 if(deadConnection == [currentClient connectionForProxy])
 {
 // remove proxy with dead connection
 [_myListOfClients removeObjectAtIndex:i];
 NSLog(@"Removed client from client list.");
 }
 }
 NS_HANDLER
 [_myListOfClients removeObjectAtIndex:i];
 NSLog(@"Removed client from client list.");
 NS_ENDHANDLER
 }
}

The reverse order search through the list is necessary because items are removed from the list inside the loop. The

NS_DURING, NS_HANDLER, NS_ENDHANDLER block handles exceptions that are raised when trying to remove a
client proxy. Exception handling is described at http://developer.apple.com/techpubs/macosx/Cocoa/
TasksAndConcepts/ProgrammingTopics/Exceptions/Tasks/HandlingExceptions.html. Proxies are in an
indeterminate state when their associated connections have died. Any proxy that raises an exception within the loop
needs to be removed.

Modify the server's main() function to register its MYMessageServer instance as an observer of the
NSConnectionDidDieNotification notification:

int main (int argc, const char * argv[])
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 MYMessageServer *server = [[MYMessageServer alloc] init];
 NSConnection *defaultConnection;

 defaultConnection = [NSConnection defaultConnection];
 [[NSNotificationCenter defaultCenter] addObserver:server
 selector:@selector(connectionDidDie:)
 name:NSConnectionDidDieNotification
 object:nil];
 [defaultConnection setRootObject:server];
 if ([defaultConnection registerName:@"server"] == NO)
 {
 NSLog(@"Error registering server");
 }

 [[NSRunLoop currentRunLoop] configureAsServer];
 [[NSRunLoop currentRunLoop] run];

 [[[NSNotificationCenter defaultCenter] removeObserver:server];
 [server release];
 [pool release];
 return 0;
}

With these changes, both the client and the server handle errors gracefully. Experiment running the server and the
client in Project Builder. Use Project Builder to run and stop the applications in different orders and see what
happens.

Low-Level Interprocess Communication

Apple provides an overview of interapplication communication techniques using Mac OS X at http://developer.
apple.com/techpubs/macosx/Essentials/SystemOverview/InverEnvironissues/Interproces_mmunication.html. Low-
level network programming using BSD Unix APIs and Mach kernel APIs is beyond the scope of this book, but
more information is available at the following locations:

A document titled "BSD Sockets: A Quick And Dirty Primer" is available at http:// world.std.com/~jimf/papers/
sockets/sockets.html. More comprehensive sockets documentation is available at http://www.lowtek.com/sockets.

Apple provides detailed instructions for using the NSFileHandle class with sockets at http://developer.apple.
com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/LowLevelFileMgmt/Concepts/FileHandle.
html.

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Exceptions/Tasks/HandlingExceptions.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Exceptions/Tasks/HandlingExceptions.html
http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview/InverEnvironissues/Interproces_mmunication.html
http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview/InverEnvironissues/Interproces_mmunication.html
http:// world.std.com/~jimf/papers/sockets/sockets.html
http:// world.std.com/~jimf/papers/sockets/sockets.html
http://www.lowtek.com/sockets
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/LowLevelFileMgmt/Concepts/FileHandle.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/LowLevelFileMgmt/Concepts/FileHandle.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/LowLevelFileMgmt/Concepts/FileHandle.html

Apple also provides the Cocoa NSSocketPort class and the Core Foundation CFSocket type to assist
programmers with the integration of sockets with run loops implemented by NSRunLoop. NSSocketPort and
CFSocket do not provide access to the complete set of features supported by sockets, however, and detailed
knowledge of sockets programming is needed to effectively use them.

Information about Mach messages and Mach interprocess communication is available at http://developer.apple.com/
techpubs/macosx/Darwin/General/KernelProgramming/boundaries/Mach_Messag_cation_IPC_.html.

http://developer.apple.com/techpubs/macosx/Darwin/General/KernelProgramming/boundaries/Mach_Messag_cation_IPC_.html
http://developer.apple.com/techpubs/macosx/Darwin/General/KernelProgramming/boundaries/Mach_Messag_cation_IPC_.html

Book: Cocoa® Programming
Section: Chapter 23. Networking

Summary

Cocoa provides powerful interapplication programming and network communication
features. In most cases, detailed knowledge of network protocols and operating system
details are not required to create applications that download data or communicate with
other applications. Cocoa provides extensible access to directory services, and the Message
framework provides the NSMailDelivery class for communicating with the operating
system's built in email-delivery features.

Chapter 24, "Subprocesses and Threads," covers the Cocoa classes that encapsulate
operating system tasks and threads. Each application running on Mac OS X consists of one
task and each task has at least one thread. Applications can start other tasks, send data to
the tasks, and get data returned by the tasks. Chapter 24 also describes techniques for
communicating between tasks and threads that complement and extend the information
presented in this chapter.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 24. Subprocesses and Threads

IN THIS CHAPTER

● Choosing Between Subprocesses and Threads
● Using the NSTask Class
● Using the NSThread Class
● Locking
● Threading Issues

Each program running on Mac OS X uses an underlying Unix process (sometimes also
called a task). Mac OS X, like most operating systems, offers facilities for launching and
controlling other programs. The NSWorkspace class offers facilities to launch another
GUI application. Chapter 22, "Integrating with the Operating System," covers the
NSWorkspace class.

For launching and controlling command-line tools or faceless programs, such as daemons
(servers), Cocoa also offers the NSTask class. This class offers much more control over
the launched process than the NSWorkspace facilities.

Each running process can have one or more threads. Threads are a lightweight execution
context running within a single process. A thread shares memory and resources with other
threads in the same process. Each thread has its own execution context, which allows it to
run independently of the other threads in the process. On Mac OS X, threads are
preemptively multitasked just like processes. On computers with multiple processors,
threads can run simultaneously on different processors. The NSThread class is used to
spawn and control threads.

Book: Cocoa® Programming
Section: Chapter 24. Subprocesses and Threads

Choosing Between Subprocesses and Threads

Both threads and subprocesses can be used to perform work in the background. This allows
long running operations to proceed without locking up a user interface. Sometimes it is
difficult to choose whether to solve a problem using a subprocess or a thread.

A common use for subprocesses is to wrap Unix commands. There are many useful
programs available from the Unix community, but they generally lack a good graphical
user interface. With some, the command-line interface borders on the incomprehensible.
By launching such a command from an NSTask, it is possible to have the Unix command
do all the heavy lifting while the program that launched it presents a logical user interface.
The program that the user actually interacts with is known as a wrapper for the Unix
command because it wraps itself around the command, isolating the command from the
user. For some applications, it might make sense to create a Unix command, and then
proceed to wrap it. This would make it possible to distribute a program that comes with
both a graphical and command-line-based interface. For some markets, such an approach
might be advantageous.

The "Using the NSTask Class" section of this chapter shows how to use the NSTask
class. Two examples show how NSTask can be used to wrap a Unix command. The first is
very simple, merely capturing the output of a Unix command. The second example is far
more complex because it uses nearly all the NSTask facilities to wrap around an
interactive Unix command.

The sections after the "Using the NSTask Class" section cover threads. Each process begins
with one thread of control. The program's code is executed one statement at a time by this
thread. However, it is possible to split the program's flow into multiple threads. Each
thread will asynchronously execute its own series of instructions.

Threads are a good way to make use of computers that have multiple CPUs. For example,
each CPU could potentially be running a different thread. A very CPU-intensive
calculation could be split into as many threads as there are CPUs available. This would
help the OS achieve maximum CPU utilization.

Threads can also be used to make a user interface more responsive. Normally, a long-
running calculation would lock up a program until it is complete. No user input would be
accepted until the calculation finishes and returns control to the event loop. The calculation
can instead be performed in a thread separate from the main thread. Because the user
interface runs in the main thread, it can continue to respond to user input while the other,
background thread works towards a result. The result would then be communicated to the
main thread when the calculation is complete.

It is more expensive to create a new process than to create a thread. Processes are generally
very heavyweight. They have their own copy of the Unix environment variables, their own
private memory context, and so on. Threads are different because they live in the same
process space; they share memory contexts. This means that threads are subject to race
conditions. Synchronization with locks is one of the techniques used to prevent race
conditions. Unfortunately, synchronization can cause deadlock situations, so it must be
used carefully.

The terms race condition, synchronization, and deadlock are each rather large topics of
discussion. Later in the chapter they are briefly defined and discussed. Most of the
discussion is found in the section "Threading Issues." For more details on the specifics of
threads and processes and the theory behind them, the reader should consult a good
operating systems textbook. This chapter shows how to use threads and subprocesses from
Cocoa, but these topics are complex enough that there is no way all their theoretical aspects
can be covered. You might find it helpful to consult such a text before proceeding with this
chapter to become familiar with the principles being leveraged by NSTask and
NSThread. One book that can serve as a reference is Modern Operating Systems (Second
Edition) by Andrew S. Tanenbaum (Prentice Hall, ISBN 0130313580).

Because of all the complexities associated with threads, writing multithreaded applications
can be a very challenging task. It should only be undertaken when a developer is really sure
that threads truly are the best solution. This cannot be stressed enough. In fact, it is often
wise to initially create a single-threaded application as a proof of concept, and then later
partition it into threads. Designing up front so that such a partitioning will be natural is also
wise, even if the future use of threads is not anticipated. Many of the tenets of good object-
oriented design, if employed, will help to create such a partitionable design.

Book: Cocoa® Programming
Section: Chapter 24. Subprocesses and Threads

Using the NSTask Class

The NSTask class can be used to launch another process. In conjunction with other Cocoa classes, such as NSPipe, it
can also set up communications between your program and the launched NSTask. To understand what facilities are
available, it is instructive to first consider some of the ways you can communicate with another process.

Each process can take input from its environment variables, command-line arguments, files, and stdin (standard
input). It can send output to a file, stdout (standard output), or stderr (standard error). Each process also has an
integer return value, which is normally set to zero when a process exits successfully. Processes can also open up Unix
pipes and sockets to communicate with each other. Any process linked with the Foundation Kit can also use distributed
objects to communicate with other processes.

Of all these communication pathways, the command-line arguments, environment variables, stdin, stdout, and
stderr, are all set up when the process is launched. NSTask has facilities to allow programmers to control the
details of each of these communications channels. It is possible to later set up any of the other channels as desired, but
this chapter won't discuss how to do that.

In using the NSTask object itself, it often helps to consider the object to have a life cycle consisting of three phases:
setup, execution, and cleanup. The first, setup, is where most of the interaction with the object takes place. All the
communications with the process and other relevant details are specified.

After everything is set up as desired, the task is launched. The two ways to launch a task are synchronously and
asynchronously. In the synchronous case, the task will run to completion before control is returned to the program that
launched the task. This is useful for tasks that run and exit quickly, but most of the time an asynchronous launch will
be preferred. This will allow the task to run in the background without freezing the application that launched it. After
the NSTask starts executing, none of the setup methods are valid anymore. In this phase, if the process was launched
asynchronously, it can be suspended (paused), resumed, or aborted (terminated).

After the process exits, whether normally or by being terminated, the NSTask object moves to the cleanup phase. The
setup methods are still invalid, and now the execution methods are also invalid. The object can be queried to see what
the process' exit status was and that's about all that can be done with it. After the final data has been collected from the
NSTask instance, it can be released. An NSTask cannot be relaunched after the subprocess has exited. Instead, a new
object must be created and launched.

The next two sections show how to take NSTask through each of these phases of its lifecycle. The first example,
Calendar, shows a very simple case where synchronous operation is acceptable. The second example, Animal, uses an
asynchronous task to communicate with an interactive command.

NSTask Synchronously: Calendar Example

For this first example, a GUI wrapper around the Unix cal command is created. To learn about what this command
can do, simply type man cal in a Terminal window. Basically, given a month and year, it will produce a small
calendar, like this:

% cal 5 2002
 May 2002
 S M Tu W Th F S
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25

26 27 28 29 30 31

The complete Calendar example can be downloaded from

www.cocoaprogramming.net.

Calendar Example User Interface

As a simple GUI interface, create a window in Interface Builder like the one shown in Figure 24.1. Most of the
window is taken up by an NSTextView at the top, which is used to display the output of the cal command. Because
this output depends on a fixed-width font being used, set the object's font to some fixed-width font such as Courier
New. The text view should also be selectable, but not editable.

Figure 24.1. The user interface for the Calendar example.

To allow the user to choose the month, a pop-up list of all twelve months is provided. The items should be in order
from January to December. Each item should have an appropriate tag from 1 to 12 to correspond to the month of the
year.

An NSForm with one field is used to specify the year. The cal command has one extra feature that should be exposed
in the GUI. It can produce a calendar with Julian dates, where the day numbers are day of the year instead of day of the
month. An NSButton set up as a switch is used to select this feature.

There is one feature of cal that will not be exposed with this example. The command has the capability to display a
calendar for an entire year. This could be added easily by making a "whole year" entry at the end of the pop-up list and
making a few code changes to detect its tag and change how the command is called.

After the interface has been laid out, a new object needs to be created. This can be done in either Project Builder or
Interface Builder. Either way, create an object class called CalendarController, which is a subclass of
NSObject. It should have four outlets: calendarText, julianSwitch, monthPopUp, and yearField. One
action should be defined: -getCalendar:.

Make sure Interface Builder knows about the class and instantiate it in the .nib file. Next, hook up each of the
outlets. All the elements will be hooked up to an outlet except for the Get Calendar button. It should be obvious which
UI widget connects to which outlet. For all the GUI objects except the text view, connect them to send the -
getCalendar: action to the CalendarController instance. This way, when the user changes the month, year,
or julian setting the calendar will change automatically. In fact, this makes the Get Calendar button superfluous. It
could even have be left out of the interface, but its presence is probably comforting to most users.

The CalendarController instance should also be connected up as the application's delegate (a connection from
the File's Owner object). Finally, edit the main menu to suit-it probably makes sense to remove commands that don't

http://www.cocoaprogramming.net/

apply to this program. It might be nice to add some ToolTips, as well.

CalendarController Class

After the interface is complete, it is time to start coding. Add two more method declarations to the header file so that it
looks like this:

File CalendarController.h:

#import <Cocoa/Cocoa.h>

@interface CalendarController : NSObject
{
 IBOutlet id calendarText;
 IBOutlet id julianSwitch;
 IBOutlet id monthPopUp;
 IBOutlet id yearField;
}

- (void)applicationDidFinishLaunching:(NSNotification *)notification;
- (NSString *)runCommand:(NSString *)command withArguments:(NSArray *)args;
- (IBAction)getCalendar:(id)sender;

@end

When the program starts up, the interface will be set to show the current month of the year, based on today's date. This
is the purpose of the -applicationDidFinishLaunching: method. It will obtain the current month and year,
set the interface controls to these values, and then run the calendar for the first time, as if the Get Calendar button had
been clicked. The code to do this is as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)notification
{
 NSCalendarDate *today = [NSCalendarDate calendarDate];
 int month = [today monthOfYear];
 int year = [today yearOfCommonEra];
 [julianSwitch setState:0];
 [monthPopUp selectItemAtIndex:(month - 1)];
 [yearField setIntValue:year];
 [self getCalendar:self];
}

The -getCalendar: action method needs to be implemented next. It needs to obtain the parameters from the user
interface, run the cal command, and then put the result in the text view. This is broken into two parts, running the
command and everything else. The code to run the command will be placed in another, more general, method that can
be reused in other programs as needed. Thus, the method to run the command will take the command's path as an
argument along with an ordered NSArray containing NSStrings to be used as the command-line arguments. It will
return the command's output as an NSString. There is a call to this function in the middle of the action method. The
code for the action method looks like this:

- (IBAction)getCalendar:(id)sender
{
 NSString *calString; NSMutableArray *args = [NSMutableArray array];
 BOOL julian = [julianSwitch state];
 int month = [[monthPopUp selectedCell] tag];
 int year = [yearField intValue];

 if (julian) {
 [args addObject:@"-j"];
 }
 [args addObject:[NSString stringWithFormat:@"%d", month]];
 [args addObject:[NSString stringWithFormat:@"%d", year]];
 calString = [self runCommand:@"/usr/bin/cal" withArguments:args];
 {
 int length = [[calendarText string] length];
 [calendarText setSelectedRange:NSMakeRange(0, length)];
 [calendarText setEditable:YES];
 [calendarText insertText:calString];
 [calendarText setEditable:NO];
 }
}

An array for the arguments (args) needs to be provided. A variable to hold the string that comes back (calString)
is also needed. The variables for that are defined first.

Next, three variables, julian, month, and year, are defined. They are used to get the state of the user interface.
The arguments array is configured next. To better understand this, consider what the command would look like if
typed at the command line. To get a calendar for May, 2002, type

cal 5 2002

Type this to get it in Julian dates:

cal -j 5 2002

Therefore, the first argument is a -j if the Julian option is requested. The if statement adds this as the first object in
the arguments array if appropriate. After that, the month and year are added to the array in order after they have been
converted from integers to strings.

With the arguments array prepared, it is time to call the -runCommand:withArguments: method to run the
command and get the result. For security, it is best to provide the command's full path name. In this case, the full path
name is /usr/bin/cal. This can be determined for commands installed on a computer by typing which
<command> in a Terminal window. For example:

% which cal
/usr/bin/cal

The calString variable contains everything that cal sent to both stdout and stderr. (This can be tested for
output to stderr by forcing an error; when this example is complete, run it and choose a year greater than 9999.)

The final chunk of code selects the entire contents of the text view and inserts the command's result string. Because
everything in the text view is selected when the insert happens, any text that was there before is replaced with the new
text.

Running an NSTask Synchronously

Now, for the core work. It is necessary to create an NSTask object and have it run the command. The -
runCommand:withArguments: method sets up an NSTask, run it synchronously, and then retrieve the task's
output.

To capture the output, a pipe needs to be created. A pipe is a one-way communications channel. A process writes data
into one end and another process retrieves the data from the other end. In this case, an NSPipe object is used to
handle all the Unix details for controlling a pipe. The pipe object can be passed to the NSTask and assigned to
stdin, stdout, or stderr. To capture both stdout and stderr, it is legal to connect a single pipe to both of
them. Alternatively, to keep the streams separate, two pipes could be used.

NOTE

A single pipe can only send data in one direction between two processes. Don't ever attempt to connect a
pipe to stdin, and then connect the same pipe to stdout and/or stderr. It won't work. Create
multiple pipes instead, using at least one pipe per communication direction.

The -runCommand:withArguments: method begins by declaring all the needed variables:

- (NSString *)runCommand:(NSString *)command withArguments:(NSArray *)args
{
 NSTask *task = [[NSTask alloc] init];
 NSPipe *newPipe = [NSPipe pipe];
 NSFileHandle *readHandle = [newPipe fileHandleForReading];
 NSData *inData;
 NSString *tempString;

An NSTask and an NSPipe are allocated. Because the pipe will be used to read the output of the command, the
pipe's read handle, which is an NSFileHandle object, is obtained. The -fileHandleForReading method is
used to obtain the read handle. The NSTask connects the write handle of the pipe to the command's output. The
output of the command is handed to us as an NSData object, so the inData variable is used for that. The
tempString will be our return value and comes from the NSData object.

Next, the NSTask object is set up. Here is the code:

[task setCurrentDirectoryPath:NSHomeDirectory()];
[task setLaunchPath:command];
[task setArguments:args];
[task setStandardOutput:newPipe];
[task setStandardError:newPipe];

The first message sets the current directory in the task's runtime environment with the -
setCurrentDirectoryPath: method. The task might change the current directory as it runs; only the starting
value is being set. The chosen starting value is the user's home directory, which is a reasonable default. For a
command that is inside a bundle or app wrapper, it might make more sense to set this path to the app wrapper. The
Unix /tmp directory or a temporary scratch directory might be better for some situations, depending on the command
used.

The second message, -setLaunchPath:, sets the task's launch path. This is the full path to the command. The
command argument to our method suits nicely. (Remember, in this example /usr/bin/cal is the path that is used
when this method is called.)

The -setArguments: method is used to set the command-line arguments of the task. The argument args is directly
passed on to the NSTask object.

The last two messages, -setStandardOutput: and -setStandardError: give the NSTask the previously
created NSPipe object to be connected to stdout and stderr, respectively. With that, the task is now ready to be
run. A single line of code runs the task, invoking the -launch method:

[task launch];

The task is launched and runs to completion. When it finishes, our program will continue. The next step is to obtain all
the data written to stdout and stderr. The read handle provides it as an NSData, which is then converted into an
NSString:

inData = [readHandle readDataToEndOfFile];
tempString = [[NSString alloc] initWithData:inData
 encoding:NSASCIIStringEncoding];

There are several ways to read data from a file handle. The -readDataToEndOfFile method obtains all the data
in one shot. The example in the next section shows how data can be read from a file handle a chunk at a time.

The conversion to an NSString uses the NSASCIIStringEncoding encoding. Because Unix commands' output
is typically ASCII, this is a sensible choice. If a custom command-line program is being used for the task, and it is
known that it uses a different encoding, that would be specified here instead of ASCII.

The final step to finish off the method is to clean everything up. Because two objects are allocated in this method, the
method must finish by releasing them. Because one of the objects (tempString) is to be the return value, it will be
autoreleased. The other object, the NSTask, is no longer needed, so a simple -release is best. The method ends
with this code:

 [task release];
 [tempString autorelease];
 return tempString;
}

That completes all the code needed to build this example. It should be possible to get output that looks similar to the
screenshot in Figure 24.1.

Although this example works well, it is not perfect. For example, as mentioned previously, the cal command can
provide a calendar for the whole year. The application could be updated to offer that feature.

Another improvement would be to do error checking and validation on the input to prevent error messages from the
cal command. At the very least, presenting a localized alert sheet instead of exposing the raw error text from the Unix
command would be clearly preferable. Separating the output and error streams and catching the command's errors to
present a sheet would be preferred for any errors that can't be prevented with input validation. As a rule, when a Unix
command is wrapped by a Cocoa application, the command should be hidden as far as possible from the user's view.

NSTask Asynchronously: Animal Example

The next NSTask-based takes the previous example much further. The full project and all files referenced in this
section can be found on www.cocoaprogramming.net in the Animal example.

The example starts with a new implementation of the classic Animal program. This program is an interactive program.
It asks the user to think of an animal, and then asks yes/no questions in an attempt to figure out the animal. If it can't
guess the animal, it asks the user to provide another question that can be used to determine the new animal.

To wrap around this program, it is important to know what the program expects to see for input. Knowing what output
to expect from the program is equally important. An example session from the command line might look something
like this:

http://www.cocoaprogramming.net/

% ./animal_tool -f test.plist
Does your animal live in water?
y
Is this animal a mammal?
y
Is this animal usually very big?
y
Is your animal a whale?
y
Excellent! I got it!
Would you like to play again?
y
Does your animal live in water?
n
Is it commonly found as a house pet?
y
Does the animal use a leash?
n
Can it be taught to talk?
n
Does this animal like to run inside a wire wheel?
n
*** Is your animal a cat?
n
Darn! I don't know what animal it could be!
What is the name of your animal?
parakeet
What is a yes/no question I can use to distinguish between a parakeet and a
cat?
Can it fly?
If someone answers "yes" to that question, is the animal a parakeet?
y
Would you like to play again?
n

The command-line program itself is written using the Foundation Kit and is an interesting example of how to use
Foundation in a non-GUI program. However, because it doesn't use NSTask itself, the code isn't displayed here. It can
be found in the animal_main.m file of the Animal example (it is 272 lines long, remarkably short considering the
functionality and stability of the code).

Likewise, the controller object at the core of the example, AnimalController, will not be shown here in full. The
header and implementation files for this class total nearly 600 lines of code! The important parts of the code, dealing
with NSTask, will all be shown. For the support sections of the code, and the code for the command-line program,
please refer to the example code at www.cocoaprogramming.net in the Animal example. The general design of the
program is discussed here so that the code portions not explained in the text can be followed more easily.

Animal Example User Interface

The approach taken for a user interface in the Animal example is somewhat like a wizard. The interface is in a single
window. As play progresses, the interface inside the window changes. A total of six different panels can appear. The
currentPage variable is used to keep track of the interface's state. Figure 24.2 shows screenshots of each of the six
panels.

Figure 24.2. The user interface for the Animal example.

http://www.cocoaprogramming.net/

To implement this interface, start with an NSTabView. Configure it to have six tabs, and then set it to be tabless and
borderless. Resize it to fill the window's entire content view area. Double-clicking the tab view allows UI elements to
be dragged into the currently visible tab. The Interface Builder attributes inspector also switches to the
NSTabViewItem inspector. By using the inspector it is possible to switch between the tabs so that the whole
interface can be constructed. It is also important to give each NSTabViewItem a unique identifier. The pages have
been given numbers from 1 to 6; these identifiers are used by the program code to switch from tab to tab. This
inspector is visible in Figure 24.3.

Figure 24.3. The preferences window and debug console for the Animal example.

To round out the interface, there is a preferences panel that allows the user to change the data file used by the
underlying command-line program. Also, a debug console echoes the communications between our GUI and the
command-line program. Figure 24.3 shows both the preferences window and the debug console in addition to the
NSTabViewItem inspector.

When the application is running, the debug console is sort of like a noneditable Terminal.app window, in that it
shows both the input to the Unix command as well as the output of the command. However, to help the user follow

along, it uses different fonts for each type of information it displays. It puts the command's output in a normal font,
whereas input to the command is in a bold font. Anything sent to stderr appears in italics. Also a few comments are
in bold italics to give details about the Unix process being started and stopped. The text in bold italics is not part of the
actual input to or output from the command-line program.

Animal Example Application Delegate Methods

The first part of the code to consider is two NSApplication delegate methods. The AnimalController object
is connected up as the application's delegate. It responds to both -applicationDidFinishLaunching: and -
applicationShouldTerminate:. The first method does some basic initialization and launches the
animal_tool command-line program by calling the -_startAnimalProcess. The code is as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 NSWindow *mainWindow = [tabView window];
 [mainWindow center];
 [mainWindow makeKeyAndOrderFront:self];
 [self _setUpDataFile];
 [self _startAnimalProcess];
 currentPage = 1;
 [self _gotoPage:currentPage];
 gotLastQuestion = NO;
}

The other delegate method cleans things up when the application quits. The important part here is to call the -
_killTask method to stop the animal_tool program. The tool should not be left running when the application
quits.

- (NSApplicationTerminateReply)applicationShouldTerminate:
 (NSApplication *)sender
{
 [self _killTask];
 [animalTask release];
 animalTask = nil;
 [dataFilePath release];
 dataFilePath = nil;
 return NSTerminateNow;
}

Configuring NSTask for Asynchronous Operation

To understand how to control the animal_tool, it is easiest to consider how NSTask is used. The NSTask object
encapsulates the running process. This time, the process is to run in the background. The process is handed three pipes,
one each for stdin, stdout, and stderr. The AnimalController object sets itself up as an observer. Because
the task will be run in the background, the GUI will continue processing its event loop. Instead of having to poll for
data, a notification is sent when data comes in on the file handle for the stdout or stderr pipe. When the task
ends, another notification will be sent. Therefore, all output from the command will arrive through notifications.

Here is the basic code used to launch the task and set up all the pipes and notifications. Note that it makes heavy use of
several instance variables defined in AnimalController.h. For simplicity, the code used to send text about the
task's launch to the debug console has been omitted from this listing. The full source can be found on the book's Web
site, www.cocoaprogramming.net.

- (void)_startAnimalProcess
{

http://www.cocoaprogramming.net/

 NSNotificationCenter *defaultCenter = [NSNotificationCenter defaultCenter];
 NSString *toolPath = [[NSBundle mainBundle]
 pathForResource:@"animal_tool" ofType:@""];
 NSArray *arguments = [[NSArray alloc]
 initWithObjects:@"-f", dataFilePath, nil];
 NSDictionary *defaultEnvironment =
 [[NSProcessInfo processInfo] environment];
 NSMutableDictionary *environment = [[NSMutableDictionary alloc]
 initWithDictionary:defaultEnvironment];

 // set up the task
 animalTask = [[NSTask alloc] init];
 [defaultCenter addObserver:self selector:@selector(taskCompleted:)
 name:NSTaskDidTerminateNotification object:animalTask];
 [animalTask setLaunchPath:toolPath];
 [animalTask setArguments:arguments];

 // set up the environment
 [environment setObject:@"YES" forKey:@"NSUnbufferedIO"];
 [animalTask setEnvironment:environment];

 // set up pipe for stdout
 outputPipe = [NSPipe pipe];
 taskOutput = [outputPipe fileHandleForReading];
 [defaultCenter addObserver:self selector:@selector(taskDataAvailable:)
 name:NSFileHandleReadCompletionNotification object:taskOutput];
 [animalTask setStandardOutput:outputPipe];

 // set up pipe for stderr, just like stdout
 errorPipe = [NSPipe pipe];
 errorOutput = [errorPipe fileHandleForReading];
 [defaultCenter addObserver:self selector:@selector(errorDataAvailable:)
 name:NSFileHandleReadCompletionNotification object:errorOutput];
 [animalTask setStandardError:errorPipe];

 // set up pipe for stdin
 inputPipe = [NSPipe pipe];
 taskInput = [inputPipe fileHandleForWriting];
 [animalTask setStandardInput:inputPipe];

 // start the task and start looking for data
 [animalTask launch];
 [taskOutput readInBackgroundAndNotify];
 [errorOutput readInBackgroundAndNotify];

 // clean-up
 [arguments release];
 [environment release];
}

There is one other important point of note in the previous code. Rather than using the default environment, taken from
the current process' environment, the environment variable NSUnbufferedIO is added, setting it to YES. This is a
necessary addition to make sure that the output of the command-line program is received as soon as it is sent. If this
variable is not set, the output from the program will wait in a buffer until the buffer is filled. Because this program is
interactive, the data needs to be passed on immediately without any buffering. The animal_tool program expects
to see responses back before it ever sends enough text to fill the buffer. (To learn more about buffering on Unix-based
systems, such as Mac OS X, and why it is important, consult a textbook or try man setbuf in a Terminal window.)

Buffering can often cause puzzling problems when working with NSTask. If the environment change is taken out of
the previous code, the GUI still works when the program is launched from within Project Builder. However, when
launched from the finder, it won't work! Try it. Take out the code, build the example, run it, and open the debug
console. Note the difference: When launched from the Finder, the first question from animal_tool won't appear.
Why? If an NSTask is launched without first setting its environment, it will use the environment of the process
launching it. When an application is launched from Project Builder, the NSUnbufferedIO environment variable is
set to YES. The Finder doesn't set it, though, so the application's behavior changes. This is solved by explicitly setting
it in the previous code.

For further illumination, take a look at the code for the -applicationDidFinishLaunching: method on the
Web site. There is some code in it that is commented out. If the comments are removed, it will print the application's
environment variables to the console. Using code such as this can help to diagnose problems caused by differences in a
running program's environment. The lack of the NSUnbufferedIO environment variable becomes obvious when
this code is run.

Stopping, Pausing, and Signaling an NSTask

The next method for controlling the task is for stopping it. The -_killTask method stops the subprocess by sending
the -terminate message to the NSTask object. The -terminate message should only be sent after the task is
launched and should not be sent if the task has completed. Therefore, the -isRunning method is used to determine
if the task is actually running or not. The code looks like this:

- (void)_killTask
{
 if ([animalTask isRunning]) {
 [animalTask terminate];
 }
}

The -terminate method actually sends a Unix signal, SIGTERM, to the subprocess. Some processes will catch this
signal, possibly ignoring it. This method is therefore not a fail-safe way to stop a subprocess. The -interrupt
method sends SIGINT, which by default also stops a process.

The only way to send another signal, such as SIGKILL (which is uncatchable and will always terminate the process),
is to use the NSTask method -processIdentifier to obtain the Unix process ID (pid) of the task, and then use
the C library call kill() to send the signal. Note that although the function's name is kill, it won't necessarily kill
the process. It all depends on what signal is sent with it. To definitively stop an NSTask, the code would be

kill([myTask -processIdentifier], SIGKILL);

It is best to use that only as a last resort, however, because it's a rather severe way to stop a process. In most cases, the
-terminate method is sufficient. For more information on Unix signals, consult a textbook or peruse the signal,
sigaction, kill, and related Unix manual pages.

To pause a process temporarily, as opposed to stopping or signaling it, send the -suspend method. Use -resume to
make it continue. These method calls should be balanced just like retain/release pairs. If multiple -suspend
messages are sent, the process remains paused until the same number of -resume messages have been received.

Restarting an NSTask

Returning to the Animal example, there is also a method for restarting the task. NSTask objects actually cannot be
restarted after they have been run. Instead, a new NSTask must be created each time a Unix task needs to be started.

The restart method in the example is used to stop the task and restart it when the user uses the preferences panel to
change the data file. This method kills the task, resets the GUI, and sets a flag that causes the task to be restarted. The
flag is noticed when the task termination notification is sent and causes the notification handler to relaunch the task.

NOTE

A flag is used to delay the restarting of the task, instead of just calling -_startAnimalProcess
outright because the termination notification handler closes up all the pipes that have been set up. If the
task is restarted before the handler is called, the handler closes the pipes to the new task instead of the
pipes to the old task, which would be disastrous. All communications with animal_tool would be
lost! To solve this, the code must wait for the notification that the task has ended before the next task can
be started.

The code looks like this:

- (void)_restartSubprocess
{
 [self _killTask];
 [animalTask release];
 animalTask = nil;
 doRestart = YES;
 currentPage = 1;
 [self _gotoPage:currentPage];
 gotLastQuestion = NO;
}

NSTask Termination Status and Cleanup

Next, consider the methods that are used to handle the notifications from the NSTask and NSFileHandle. As can
be seen from the previously shown code for -_startAnimalProcess, the -taskCompleted: method is set to
receive the NSTaskDidTerminateNotification notification. The first thing it does is determine why the task
exited by asking for the task's return code. The NSTask method -terminationStatus can be used to obtain this
value. Most Unix tasks exit with a value of zero if everything finished successfully, so if the task exits with an error
condition a message is printed with the NSLog() function.

The object then removes itself as an observer of the NSTask and NSFileHandle objects. Finally, the doRestart
flag is consulted. If it is set to YES, the task is restarted and the flag is cleared, as shown in the following code:

- (void)taskCompleted:(NSNotification*)aNotification
{
 int exitCode = [[aNotification object] terminationStatus];

 if (exitCode != 0) {
 NSLog(@"Error: animal_tool exited with code %d", exitCode);
 }
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 if (doRestart) {
 [self _startAnimalProcess];
 doRestart = NO;
 }
}

Receiving Output from an NSTask

To handle output from the task, the -taskDataAvailable: method handles data coming from the task's stdout
pipe, and the -errorDataAvailable: method handles data coming from the task's stderr pipe. Both methods
are very similar, so both are considered simultaneously.

Each method retrieves the data from the file handle, as in the previous example. However, this time the code doesn't
read all the data at once using the file handle's -readDataToEndOfFile method. Instead, a notification is sent
each time data is received from animal_tool. The data itself can be found in the user info object with each
notification. If the pipe has been closed, or the data has ended, the data object is nil. Therefore, the code checks for a
non-nil, non-empty data object before proceeding.

The NSData object is then converted to an NSString. In the case of stdout, the string is passed to another
method, -_handleIncomingDataString:, which updates the GUI appropriately. For stderr, the data is
logged with NSLog() instead. A more industrial-strength program might try to parse the error and attempt some sort
of recovery or abort based on the contents.

Finally, each method ends by asking the file handle to continue looking for data on the pipe. The code is as follows:

- (void)taskDataAvailable:(NSNotification*)aNotification
{
 NSData *incomingData = [[aNotification userInfo]
 objectForKey:NSFileHandleNotificationDataItem];
 if (incomingData && [incomingData length]) {
 NSString *incomingText = [[NSString alloc] initWithData:incomingData
 encoding:NSASCIIStringEncoding];
 [self _handleIncomingDataString:incomingText];
 [taskOutput readInBackgroundAndNotify]; // go back for more.
 [incomingText release];
 return;
 }
}

- (void)errorDataAvailable:(NSNotification*)aNotification
{
 NSData *incomingData = [[aNotification userInfo]
 objectForKey:NSFileHandleNotificationDataItem];
 if (incomingData && [incomingData length]) {
 NSString *incomingText = [[NSString alloc] initWithData:incomingData
 encoding:NSASCIIStringEncoding];
 NSLog(@"animal_tool error: %@", incomingText);
 [errorOutput readInBackgroundAndNotify]; // go back for more.
 [incomingText release];
 return;
 }
}

Sending Data to an NSTask

One aspect of communication with the NSTask remains: A method for sending data to the subprocess is needed. This
is actually quite simple. The NSFileHandle method -writeData: on the file handle for the stdin pipe does the
trick. The only other issue is that the string needs to be converted to an NSData before being sent to the file handle.
The code looks like this:

- (void)_sendData:(NSString *)dataString
{
 [taskInput writeData:[dataString dataUsingEncoding:

 [NSString defaultCStringEncoding]]];
}

One important thing to remember when sending data is to include the newline character. For example, many of the
responses sent to the animal_tool are yes/no answers. Here's a method that, given a BOOL, will send a yes/no
answer to the subprocess:

- (void)_sendBoolean:(BOOL)flag
{
 if (flag) {
 [self _sendData:@"y\n"];
 } else {
 [self _sendData:@"n\n"];
 }
}

Parsing NSTask Output in the Animal Example

The -_handleIncomingDataString: method, as mentioned earlier, parses the data coming from the NSTask.
It is a big switch() statement based on the currentPage variable. The data is passed to it as an NSString. The
raw string could potentially contain multiple lines of data and will definitely contain newline characters. This line is
used as the first step of parsing:

NSArray *lines = [aString componentsSeparatedByString:@"\n"];

The rest of the code for this method looks at the incoming lines for the text that is expected at each point of the game.
It is not shown here because it is rather long and primarily contains NSString manipulations that aren't particularly
special.

A group of messages also handles the various actions when a user clicks a button in the user interface. The method
names are

- (IBAction)start:(id)sender; // sent by page #1
- (IBAction)answer:(id)sender; // sent by page #2
- (IBAction)playAgain:(id)sender; // sent by page #3 and page #6
- (IBAction)setAnimalName:(id)sender; // sent by page #4
- (IBAction)setAnimalQuestion:(id)sender; // sent by page #5

Each of these actions handles sending the appropriate data to the NSTask and advancing to the next "page" in the
interface. Again, the code for each method is not shown here because it is simply typical GUI glue code. It handles the
debug console, preferences panel, and programmatically changing the NSTabView from one tab to the next. Although
this code isn't shown here, it is worth spending a little time examining it. Of course, it can be found on the book's Web
site, www.cocoaprogramming.net.

As you consider this implementation of the Animal program, it is quickly realized that creating a command-line
program, and then wrapping it, is a lot more work than just creating either the command line or a 100% GUI
application. The one advantage is that there are two interfaces-command line and GUI-for accessing the same data.
Some users might like this, especially for a program the user might want to run remotely over an ssh connection.
(Type "man ssh" in a Terminal window to learn about ssh.) For a program such as Animal, however, that's not
enough of an advantage to counteract the liability caused by the increased complexity of this approach.

In a case like this example, where the command-line tool's source code is under the developer's control, it might make
more sense to put the core code into a framework. A GUI interface and a command-line interface can be created
independently of each other, each taking advantage of the framework. This enables them to share their code while

http://www.cocoaprogramming.net/

avoiding the complexity of wrapping a Unix command. Chapter 27, "Creating Your Own Frameworks," describes how
to create a custom framework and use it in a project.

Book: Cocoa® Programming
Section: Chapter 24. Subprocesses and Threads

Using the NSThread Class

Several features of the Application Kit make use of threads. For example, in the previous NSTask examples, the task
itself is actually run from a separate thread. Many of the animations in Aqua, such as throbbing buttons and progress
meters, are also run from other threads. All these threads are entirely transparent to the programmer. For programmer-
controlled threads, however, the NSThread class is the Cocoa interface to the operating system's thread
functionality. On Mac OS X, the pthreads library is the underlying functionality being tapped. Although the full
functionality of pthreads is not available through the NSThread interface, the careful programmer can get away
with calling the pthread functions when and if the functionality is needed.

The ThreadExample Program

The ThreadExample program on the book's Web site (www.cocoaprogramming.net) shows a basic example of how
you might take advantage of multithreading. It doesn't show everything that can be done with threads, but it should
be enough to get you started with the class. Be sure to also read all the way through the last section of this chapter, on
threading issues, before jumping headlong into multithreading. Threads introduce many ways to create huge, difficult-
to-find bugs. It's best to know a little bit about what lies ahead before jumping into the thick of it.

ThreadExample User Interface

The user interface for the ThreadExample program is shown in Figure 24.4. It is divided into two sections. Each
section is a simulation of a long-running calculation. In the top section, clicking Start Server Calculation starts the
thread. The thread can be paused or resumed by clicking Pause/Unpause Server Calculation or stopped by clicking
Stop Server Calculation. The NSProgressIndicator shows how far the server's calculation has progressed. The
lower sections work a little differently. Clicking the Run Console Feeder button starts the thread. Every few seconds,
the thread will append a new line to the scrolling text console. The user can also append strings to the console by
entering text in the text field and clicking Append. As demonstrated in Figure 24.4, both threads can be run at the
same time.

Figure 24.4. The user interface for the ThreadExample program.

http://www.cocoaprogramming.net/

Internally, there are four object classes. A controller class, ApplicationDelegate, which manages the GUI.
The ServerObject class encapsulates all the details of launching a new thread. It is meant to be a reusable,
abstract superclass, which is used by both example threads. The ProgressServerObject encapsulates the
thread that sits behind the top section of the GUI. The MessageServerObject handles the lower half of the
window. The last two objects provide a demonstration of how you might subclass ServerObject. The
ApplicationDelegate class shows how to use these subclasses in a custom program.

Detaching Threads

Let's start by looking at the ServerObject class. This is the meat of the example because this is the class that
actually deals with the NSThread class directly. A thread can be as simple as a single method that gets called, runs
to completion, and then exits. If that is all that is needed, a single call to NSThread is all that is needed. The method
to call is

+ (void)detachNewThreadSelector:(SEL)aSelector toTarget:(id)aTarget
 withObject:(id)anArgument

Unfortunately, instead of taking an NSInvocation as the single argument, which would be more flexible,
NSThread can only perform a very specific invocation. Provide a target, action, and a single object and the thread is
detached and run. The thread exits when the method call is completed. The selector for the action should have a
method signature of the normal form for an Application Kit action, to wit:

- (void)selectorName:(id)anObject;

So, suppose a programmer wanted to send the following message:

[target someAction:anObject];

To have that message invocation run in a thread of its own, the call would change to this:

[NSThread detachNewThreadSelector:@selector(someAction:) toTarget:target
 withObject:anObject];

Kicking off a new thread is that simple. However, as threading issues begin to rear their ugly heads, it is generally
important to do a little more than this for all but the most simple calls. Because all an application's threads have
access to the same memory space, communication can take place by simply altering global or otherwise shared
variables while taking extra care to not alter data that is in use by another thread. (The section "Locking," later in this
chapter, discusses how to do this safely.)

Messages Between Threads

If one thread wants to send an Objective-C message to another thread, things become more complex. The common
answer is to use Distributed Objects. That is where the ServerObject comes in. It will launch a thread, set up an
event loop in that thread, and set up a Distributed Objects (DO) connection between the new thread and the thread
that launched it. In the example program, all communication takes place over DO. This makes locking and other
complexities unnecessary-for this example, at least.

The source code for the header begins by defining two protocols. One is for the server object, the other for the
controller object. The server object, answering to the ServerMethods protocol, is in the new thread. The
controller is in the original thread, answering to the ServerObjectController protocol. Here is the header file:

#import <Foundation/Foundation.h>

@protocol ServerMethods

- (void)start;
- (void)togglePause;
- (void)pause;
- (void)resume;
- (void)stop;

@end

@protocol ServerObjectController

- (void)setServer:(id)anObject tag:(int)serverTag;
- (void)setServerProgress:(double)newStatus finished:(BOOL)running
 tag:(int)tag;
@end

@interface ServerObject : NSObject <ServerMethods>
{
 int amountDone, tag;
 BOOL paused, running, suppressProgress;
 id <ServerObjectController> parent;
}

+ (NSConnection *)startServerThreadWithTag:(int)tag
 forController:(id <ServerObjectController>)controller;
- (id <ServerMethods>)initForParent:(id)theParent withTag:(int)theTag;
- (void)doCalculationStep;
- (float)delayBetweenSteps;

@end

The +startServerThreadWithTag:forController: class method is where the ServerObject is
created and the thread is detached. The three other methods are all meant to be overridden by subclasses.

An important design point to notice is that many methods take a tag argument, and the server object itself keeps track
of its own tag. This is to allow a single controller object to control multiple server objects. The objects are identified
by their tag, which is really only of significance to the controller. The servers just hold the tag and pass it back as
needed. Of course, the tag selected by the controller should be unique for each server it starts. If only one server is
ever used, the tag could just be set to zero and ignored.

Let's look at how the server thread itself is actually created and set up. There are actually two methods involved. The
public method starts the thread and the setup process finishes with a private method that runs within the new thread.
Here is the code for the first half:

+ (NSConnection *)startServerThreadWithTag:(int)theTag
 forController:(id <ServerObjectController>)controller
{
 NSPort *port1 = [NSPort port];
 NSPort *port2 = [NSPort port];
 NSArray *portArray = [NSArray arrayWithObjects:port2, port1,
 [NSNumber numberWithInt:theTag], nil];
 NSConnection *serverConnection = [[NSConnection alloc]
 initWithReceivePort:port1 sendPort:port2];
 [serverConnection setRootObject:controller];

 [NSThread detachNewThreadSelector:@selector(_connectWithPorts:)
 toTarget:self withObject:portArray];
 return serverConnection;
}

As expected, a call to NSThread is needed to start a new thread at the end of the method. The rest of the code is to
set up Distributed Objects. To set up DO, a connection to the remote process or thread is needed. Because in this case
it does not exist yet, it isn't possible to just look up a connection. Instead, a pair of NSPort objects is created to be
used for communications between the threads. The ports are used to create an NSConnection object. Two ports
are needed because ports are unidirectional. One port is used to send data while the other receives data. Obviously,
the port that is a receive port for the main thread needs to be the send port for the new thread and vice-versa. To swap
the ports for the new thread, the ports are put into the portArray in reverse order, port2 before port1.

The DO connection also is handed the controller object as its root object. When the other side of the connection is
established, a proxy for the root is obtained. Initially, that object receives all messages that come from the server
thread. It could, however, return pointers to other objects to the server so that it can send direct messages to other
objects in the main thread, if that is desired. Also of note is the fact that this DO connection is anonymous. This
means that it is private between just these two threads. Other threads and processes will not be able to tap into the
connection.

The portArray variable is interesting. Remember from the preceding discussion that only a single object can be an
argument of the method that will be run in the new thread. However, it is necessary to pass two ports and a tag to the
new method, a total of three objects. The way around this is to use a collection object such as an array or a dictionary
to hold all the arguments. By turning the integer tag into an NSNumber and adding it to the array, it is passed
through to the other side along with the ports.

The method ends by returning the NSConnection to the caller in case it wants to do any advanced manipulation.
In most cases, the caller simply ignores this object. At this point, the method exits and the main thread continues
executing.

Meanwhile, a new thread has been created and the ServerObject method +_connectWithPorts: starts
executing in the new thread. This is a private method, so it is not exposed by the header. To complete the setup, it
creates a ServerObject instance, finishes connecting DO, and then starts a run loop. Here is the code:

+ (void)_connectWithPorts:(NSArray *)portArray
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 NSConnection *serverConnection = [NSConnection connectionWithReceivePort:
 [portArray objectAtIndex:0] sendPort:[portArray objectAtIndex:1]];
 int theTag = [[portArray objectAtIndex:2] intValue];
 id rootProxy = (id)[serverConnection rootProxy];
 ServerObject *serverObject = [[self alloc] initForParent:rootProxy
 withTag:theTag];
 [rootProxy setServer:serverObject tag:theTag];
 [serverObject release];
 [[NSRunLoop currentRunLoop] run];
 [pool release];
}

The first line of code creates a new autorelease pool. It is imperative to ensure that every thread that uses Cocoa
objects has its own autorelease pool. Because this method is executing in a new thread, the first thing it must do is
create the pool. To balance this creation, the pool is released as the very last statement in the method.

Next, the new thread's DO connection is created. The connection is set up using the same ports that were created in
the first method before the thread was spawned. After that the tag is retrieved and a proxy to the root object of the

connection is obtained. Remember that the root was previously set to be the server's controller.

The root proxy is not the controller object itself, but it does act as its representative inside the server thread. Any
messages that are sent to the root proxy will be passed across the DO connection, and then be handled by the actual
controller object in the main thread. In other words, this thread has no pointers to the actual root object. The
controller does live in the same memory space, so a pointer to it would be valid. Messages could be sent to it directly.
Such messages would be executed in the server thread, though, which is probably not what is wanted. DO is
therefore being used as a partitioning device. Messages sent to a proxy actually cross thread boundaries and are
executed in the other thread. This is also true of messages sent to the server from the controller.

The next line of code creates the actual server object instance. The object is given the proxy to the controller and its
tag. Then, the controller is handed the serverObject and the tag. The tag will help the controller know which server
object is being handed to it. Because this message is being sent to the root proxy, it crosses the thread boundary.
Specifically, the message is bundled up and passed to the main thread. There, the main event loop unpacks the
message and sends it to the controller object. In the unpacking, a proxy to the server object is created, and that is
passed to the controller. In other words, the controller never gets a pointer to the actual server object. It gets a proxy
that passes messages over DO to the server object. Thus, DO keeps a solid partition between the threads.

Because the controller object retains the server object, it is now safe to release it. Finally, an NSRunLoop is started.
This is important because without a run loop, messages coming over DO will not be received. When the run loop is
exited, then the autorelease pool will be cleaned up and the method will exit. When it exits, the thread will also exit.
As long as the run loop is alive, the thread will be running as well.

When the controller gets the -setServer:tag: message, it knows that the server has been set up and is ready to
go. At that point the run loop will be idling, waiting for messages to come in over DO. In general, the -start
method would then be sent to the server at some point; in the example it is sent when the user clicks the start button.
In the meantime, the server thread is in a "blocked" state, waiting for a message. While blocked, the thread uses up
no CPU resources. It remains blocked until the controller sends a message. This is much more efficient than
continually polling to see if it is time to do work yet.

Because the remainder of the code for the ServerObject class is straightforward, it won't be shown here. Look at
the example code on the book's Web site (www.cocoaprogramming.net) to see it in its entirety. Instead of showing all
the code, a summary of what it does and how it can be subclassed is explained.

The run loop is needed to receive messages from the main thread. As a result, it is important that the server object
occasionally return to the top of the run loop to see if there are any new messages. To make this automatic, the
subclass should define -doCalculationStep to perform just a part of the computations expected of the server.
The server calls this method continually until the calculations are completed. Between each call, the run loop has a
chance to respond to any messages coming from the parent thread.

Recall that NSThread has no means of pausing a thread. Although the pthreads functions can be used to do this, the
fact that there is a run loop can be used to avoid having to drop down to those functions. Instead, the server object
implements the -pause method to simply stop sending the -doCalculationStep messages until the -resume
method is called. Likewise, the -start method starts the calculation steps, and the -stop method resets the server
back to an idle state. The -delayBetweenSteps method tells the run loop how long to wait before sending the
next -doCalculationStep message. The default implementation returns zero, which means there will be no
waiting.

NOTE

There is no method to actually exit the run loop, thereby stopping the thread. A good enhancement to
this class would be to implement an -exit method to terminate the run loop. This implementation,
with a run loop and the associated overhead, might seem somewhat inefficient, but the flexibility that is
gained far overshadows any inefficiencies that have been introduced.

http://www.cocoaprogramming.net/

Subclassing ServerObject

Now it is time to consider the concrete subclasses of ServerObject. The first subclass,
ProgressServerObject, handles the top part of the UI, which has a progress bar that slowly advances in short
jumps. To make the jumps happen at random times, and be somewhat spaced out, the -delayBetweenSteps
method is overridden to return a random value between 0.5 and 1.0 seconds.

The ServerObject class actually manages tracking the progress of the calculations. To facilitate this, it expects
that the -doCalculationStep method sets the amountDone instance variable to a new value after each
calculation step. The value should be an integer between 0 and 100. If it is greater than or equal to 100, that signals
the computation has completed. The server stops sending itself -doCalculationStep messages and starts
waiting for a new -start message. Each time a calculation step is performed, if amountDone changed, the
ServerObject code sends a message to the main thread updating it on the progress of the calculation. In our
example, this causes the NSProgressIndicator to be updated.

If the suppressProgress instance variable is set to YES, the automatic progress message updates to the main
thread are suppressed. For applications lacking progress indicators, this makes the server run slightly more efficiently.

Given all this information, all this subclass needs to do is to increment the amountDone variable by a random
amount each time a calculation step is performed. (A random number from 1 to 6 is used.) The implementation of the
entire subclass is rather trivial; here is the code:

#import "ProgressServerObject.h"

@implementation ProgressServerObject

- (void)doCalculationStep
{
 amountDone += (random() % 5) + 1;
}

- (float)delayBetweenSteps
{
 return ((random() % 500) + 500) / 1000.0;
}

@end

For the other ServerObject subclass, a different approach to subclassing is taken. This time, all the calculations
take place inside a single invocation of the -doCalculationStep method. This means that the server won't
return to the run loop until the long running computation has completed. The implication is that the overhead of
multiple calls will be eliminated at the expense of rendering the -pause, -resume, and -stop methods impotent.
This is certainly a valid tradeoff, and ServerObject was designed to still be functional if subclassed in this
manner.

Because the progress happens in a single call, the automatic progress messages are suppressed by setting the
suppressProgress instance variable to YES in an overridden -initForParent:withTag: method. It is
important to remember to call the super implementation of this method in any overrides. There is no need to override
the -delayBetweenSteps method, so the default implementation is left alone.

Finally, the -doCalculationStep method holds the meat of this class's functionality. Because the class of the
controller is known, this method sends a message back to the controller that isn't part of the formal controller

protocol. To suppress warnings, a cast is used to move from the parent instance variable's anonymous id type to
the ApplicationDelegate type. This introduces a dependency between the controller and server, which, for our
purposes here, is fine. Most real-world implementations would probably require some degree of this.

The implementation of the -doCalculationStep method simply posts a Starting server. message to the
console, and then enters a loop to count from one to 100. Each time through, a message is sent to the console with the
number, and then the thread sleeps for a second. The Unix sleep() function will put a thread to sleep for a
specified period of time. During that time, the thread is blocked, using no CPU resources. When it wakes after the
allotted time, execution proceeds as normal. When the loop exits, a Server finished. message is sent to the
console and the method returns. In all, this method simulates a calculation that takes 100 seconds to complete.

Here is the implementation file for the MessageServerObject class:

#import "MessageServerObject.h"
#import "ApplicationDelegate.h"
#include <unistd.h>

@implementation MessageServerObject

- (id)initForParent:(id)theParent withTag:(int)theTag
{
 self = [super initForParent:theParent withTag:theTag];
 if (!self) return nil;
 suppressProgress = YES;
 return self;
}

- (void)doCalculationStep
{
 int i;
 ApplicationDelegate *castedParent = (ApplicationDelegate *)parent;
 [castedParent appendStringToConsole:
 NSLocalizedString(@"Starting server.\n", @"")];
 for (i=1; i<=100; i++) {
 NSString *theString = [NSString stringWithFormat:
 NSLocalizedString(@"Server count at %d.\n", @""), i];
 [castedParent appendStringToConsole:theString];
 sleep(1);
 }
 [castedParent appendStringToConsole:
 NSLocalizedString(@"Server finished.\n", @"")];
 amountDone = 100;
}

@end

Using ServerObject Subclasses

The final piece of code to complete this example is the controller class, ApplicationDelegate, which provides
the glue between the GUI and the server objects. It uses instance variables server and messageServer for pointers
to the two servers thread objects. There are also three outlets to connect to the progress indicator, the scrollable text
view, and the text field near the bottom of the UI. The object adopts the ServerObjectController protocol
and implements five action methods, one for each of the buttons on the window. There is also the -
appendStringToConsole: method to add text to the end of the text view, and the -
launchServerThreads method to start the two threads going. Here is the header file:

#import <Cocoa/Cocoa.h>
#import "ServerObject.h"

@interface ApplicationDelegate : NSObject <ServerObjectController>
{
 id <ServerMethods>server;
 id <ServerMethods>messageServer;
 IBOutlet NSProgressIndicator *progressView;
 IBOutlet NSTextView *console;
 IBOutlet NSTextField *appendText;
}

- (id)init;
- (void)applicationDidFinishLaunching:(NSNotification *)notification;
- (void)launchServerThreads;
- (IBAction)startServer:(id)sender;
- (IBAction)stopServer:(id)sender;
- (IBAction)pauseServer:(id)sender;

- (IBAction)runFeeder:(id)sender;
- (IBAction)appendText:(id)sender;
- (void)appendStringToConsole:(NSString *)aString;

@end

The implementation begins with initialization code that is called when the application's launch completes. It starts the
two server threads and resets the user interface. The +startServerThreadWithTag:forController:
method, sent to the class objects for the ProgressServerObject and MessageServerObject classes, is
used to start each thread. The tags 0 and 1 are used to distinguish between the two objects.

- (void)applicationDidFinishLaunching:(NSNotification *)notification
{
 [self launchServerThreads];
 [progressView setDoubleValue:0.0];
}

- (void)launchServerThreads
{
 [ProgressServerObject startServerThreadWithTag:0 forController:self];
 [MessageServerObject startServerThreadWithTag:1 forController:self];
}

The ServerObjectController protocol requires that two different methods be implemented. The first is the -
setServer:tag: method. It gives us a proxy to the server object after it has been created. The -
setProtocolForProxy: method is used so that Distributed Objects can be more efficient with communications.
This eliminates the need for the DO connection to determine if the target object responds to a method or not. It will
be able to check for all the methods in the protocol at once instead of individually. The new proxy is retained and the
previous proxy (if any) is released. Finally, the appropriate instance variable is assigned the pointer to the proxy.
Note that the tag is used to determine which server object is being dealt with. This matches up with the tags assigned
in the previous -launchServerThreads method.

- (void)setServer:(id)anObject tag:(int)serverTag
{
 [anObject setProtocolForProxy:@protocol(ServerMethods)];
 [anObject retain];

 if (serverTag == 0) { // progress view server
 [(id)server release];
 server = (id <ServerMethods>)anObject;
 } else if (serverTag == 1) { // console "feeder" server
 [(id)messageServer release];
 messageServer = (id <ServerMethods>)anObject;
 }
}

The next method required by the protocol is for dealing with progress reports from the server as it performs its
calculations. The -setServerProgress:finished:tag: method can safely ignore the tag. It is already
known that the MessageServerObject instance will never send this message because of its implementation. The
ProgressServerObject instance is the only one that will send it. Therefore, the information can be passed on
to the NSProgressIndicator without filtering, like this:

- (void)setServerProgress:(double)newStatus finished:(BOOL)running tag:(int)
tag
{
 [progressView setDoubleValue:newStatus];
 if (!running) [progressView stopAnimation:self];
 else [progressView startAnimation:self];
}

The short method -appendStringToConsole: is used to append a text string to the end of the console
represented by the scrollable text view. It simply places the selection point at the end of the text, and then calls a text
insertion method. Because the view is not editable, it needs to be made editable before doing the insert. The code
then reverts it to noneditable status. This method will be called by both the MessageServerObject instance's
thread and one of the action methods. The text in the console can come from both the GUI and the background
thread. Here's the code:

- (void)appendStringToConsole:(NSString *)aString
{
 int length = [[console string] length];
 [console setSelectedRange:NSMakeRange(length, 0)];
 [console setEditable:YES];
 [console insertText:aString];
 [console setEditable:NO];
}

Finally, there are the five action methods. The first four simply pass the message from the GUI on to the appropriate
server object. The last one simply takes the text in the append text field and adds it to the end of the text in the
console. The rest of the implementation of the ApplicationDelegate class is as follows:

- (IBAction)startServer:(id)sender
{
 [server start];
}

- (IBAction)stopServer:(id)sender
{
 [server stop];
}

- (IBAction)pauseServer:(id)sender
{

 [server togglePause];
}

- (IBAction)runFeeder:(id)sender
{
 [messageServer start];
}

- (IBAction)appendText:(id)sender
{
 NSString *fieldString = [appendText stringValue];
 NSString *withNewline = [NSString stringWithFormat:@"%@\n", fieldString];
 [self appendStringToConsole:withNewline];
}

And that completes the ThreadExample program. Build it and try running it. Click the buttons and monkey with
the interface to see how it all works. Try running both threads simultaneously.

In a real application, it would be good practice to determine how many processors are available, and then create
exactly that many server threads. Because threads can be scheduled so that each processor takes its own thread, this
will allow for maximum processor utilization. Of course, this means that the code needs to be designed well enough
to be able to be partitioned into a reasonable chunk of work for each processor. To determine the number of
processors that are available, use this Carbon call:

ItemCount MPProcessors();

For example, try adding this line to the ThreadExample's -applicationDidFinishLaunching: method, and
then run the program from within Project Builder so that the logging output can be readily examined:

NSLog(@"Number of processors available: %d", MPProcessors());

Book: Cocoa® Programming
Section: Chapter 24. Subprocesses and Threads

Locking

When writing multithreaded programs, it is often necessary to find ways to ensure that certain resources or
code sections can only be used by one thread at any given time. A special term, critical section, is used to
refer to segments of code that require this special protection. For example, if two threads both attempt to do
Application Kit drawing at the same time, the drawing commands sent to Quartz will be coming from both
threads and could interleaved with each other. The resulting drawing will be an utter mess.

The use of Distributed Objects to isolate threads can provide a partial answer to this need, but it is not a
complete solution. DO causes requests sent to a given thread to be serialized because the requests will be
queued up and executed one at a time by the thread's event loop. If all Application Kit drawing is performed
by the main thread with all subthreads sending drawing requests over DO to the main thread, the drawing
will be done in an orderly manner. If two threads access the same variables or run the same section of code,
however, the serialization provided by DO is effectively bypassed. Because running everything in the same
thread defeats the purpose of multithreading, something else is needed.

One way to complete the picture is to use locks. Although other techniques might be described in textbooks,
locking is the approach supported by Cocoa. A lock, also known as a mutex in some texts, is a special flag
that can only be set (or owned) by one process or thread at a time. If another thread already owns the lock,
no others can obtain it until it has been relinquished. If multiple threads attempt to obtain a lock
simultaneously, only one will actually get it.

The operating system guarantees that only one thread can have a given lock at any point in time. This means
that a lock can be used to protect a resource or critical section. Each resource and critical section of code
needs its own lock. For a lock to work, all code accessing a protected resource must by convention obtain
the lock before accessing the resource and release the lock as soon as the resource is no longer needed.

By following a locking convention, access to a resource can be serialized. Only one thread at a time will use
the resource in question, and each will have to take its turn with the resource. Some important implications
of this are discussed in the "Threading Issues" section later in this chapter. Before going into that detail,
however, it is important to explain how to use the various lock classes provided by Cocoa.

Using the NSLock and NSConditionLock Classes

In Cocoa, the most common locking class is the NSLock class. It adopts the extremely simple NSLocking
protocol. Only two methods exist, -lock and -unlock. Neither takes any arguments nor do they return
anything. An NSLock would be shared between two threads, probably as a global variable. Code to protect
a section of code would look something like this:

[theLock lock];
// critical section of code here
[theLock unlock];

If the lock is unavailable, the thread will block until it becomes available. The critical section and any
resources used by the protected section of code will only be accessed by one thread at a time. For this code
to work, the variable theLock should be a global variable that was initialized before the application
spawns any threads. This guarantees that theLock will be assigned a value only once, which is very

important. Somewhere early in the application's initialization code would be something like this:

NSLock *theLock = nil; // global variable

+ (void)initialize
{ // or in a did finish launching method, etc.
 theLock = [[NSLock alloc] init];
}

That's all there is to using a lock in its most basic way.

Locks Without Blocking

Sometimes, though, it is nice to be able to try to obtain a lock without blocking the thread. If the thread can't
get the lock, it can go do something else in the meantime and try again later. To do this, just send -
tryLock instead of -lock. The -tryLock method returns immediately with a YES or NO answer. If
YES was returned, the lock was obtained. The critical code can be executed and the lock should be sent -
unlock as soon as the code finishes. If NO was returned, the thread should not enter the critical section and
no -unlock message should be sent because the lock was not obtained. It can try again later, or take some
other appropriate action.

There is one other way to obtain a lock. It is somewhere between the two extremes of blocking and not
blocking at all. By sending -lockBeforeDate: to the NSLock, the thread will block, but it will be
blocked only until the NSDate passed with the message. If the lock is obtained before that time, the method
returns YES. The thread can safely proceed with the critical section, and then send -unlock when it is
finished. If NO is returned, the date passed and no lock was obtained. The thread will have to decide what to
do from there. This method is nice because it means that the thread will not be blocked indefinitely. It also
relieves the programmer of having to do continuous polling with -tryLock. Because there's no need for
polling, there is none of the CPU overhead that would be caused by polling the lock.

Locks for Interthread Communication

A lock can be thought of as a cheap interthread communications system. The message conveyed by the lock
is a simple yes/no answer to some question. The way suggested previously for using the lock asks the
question "Can I proceed through this next chunk of code?" However, locks could be used to pass yes/no
answers to any question a thread might want to ask of another. Usually a simple -tryLock would be used
to get the answer to the question to avoid blocking the thread when using locks in this manner. Although
locks are considered to be expensive performance-wise, they are definitely cheaper than sending a round-
trip DO message to get a YES/NO answer to a given question.

To use this little trick, however, care must be taken. Unlike just inspecting a global Boolean value, using -
tryLock actually changes the value of the lock if it is set to no. Here are two methods that could be used
as get/set for a lock's value when using this scheme:

+ (void)setLockBoolean:(BOOL)flag
{
 [theLockProtector lock];
 [theLock tryLock]; // make sure the lock is set
 if (!flag) {
 [theLock unlock]; // unset it if we want it to be "NO"

 }
 [theLockProtector unlock];
}

+ (BOOL)lockBooleanValue
{
 BOOL current;
 BOOL ret = YES;
 [theLockProtector lock];
 current = [theLock tryLock];
 if (current) { // lock was at "NO"
 [theLock unlock]; // return it to its previous value
 ret = NO;
 }
 [theLockProtector unlock];
 return ret;
}

Both methods require the existence of two global variables called theLock and theLockProtector.
The first is the actual signal between threads, the latter is used to keep the implementation threadsafe. Both
methods are critical sections of code in and of themselves, so they need to be protected by a lock.

NOTE

It is very important to understand that these methods should not be used to protect critical
code! They do not follow the proper locking conventions for doing so. They should only be
used to pass a message between threads. Also, remember that these are globals. A new pair of
methods would be needed for each flag that needs to be passed between threads.

Condition Locks

Although that code works, it isn't necessarily the best way to pass a message. The most obvious limitation is
that the information that is shared can only be a yes/no answer. Another Cocoa locking class can be used to
pass an integer value between threads and it is better designed to handle this type of communication. The
class is NSConditionLock. It defines a whole new set of methods that parallel the names of the NSLock
methods. The most important methods are

- (id)initWithCondition:(int)condition
- (int)condition
- (void)lockWhenCondition:(int)condition
- (BOOL)tryLockWhenCondition:(int)condition
- (BOOL)lockWhenCondition:(int)condition beforeDate:(NSDate *)limit
- (void)unlockWithCondition:(int)condition

The designated initializer -initWithCondition: sets up the lock's initial condition. The condition is
an arbitrary integer that has meaning only to the code that uses the lock. It is like a tag; the lock just passes
the value around. For example, it is common for the condition's meaning to be the state number of a state
machine's current state.

To determine what the lock's current condition is, simply use -condition to find out. It will not block
and simply returns the value.

The three new methods for obtaining the lock all require that a condition be provided. They will block or
will not block in the same way as the parallel methods in NSLock. Thus, -lockWhenCondition: will
block and -tryLockWhenCondition: will not. Of course, -lockWhenCondition:
beforeDate: will block, but only until the date passed in. The lock will only be obtained if and when the
condition of the lock is equal to the condition passed into the method. Even if the lock is available, these
locking methods will not actually obtain the lock until the condition is also met.

The last method, -unlockWithCondition:, will relinquish the lock and set it to a new condition at the
same time. This is the only way to change the lock's condition to a new value. Clearly, the lock must be
obtained before it can be changed.

NOTE

The NSConditionLock class also responds to all the standard NSLock methods, as well. If
the NSLock methods are used, the lock's condition value will be ignored. This presents two
ways that the NSConditionLock might be used.

The first application is to make a thread block until a certain condition is met or an event has occurred.
When the condition is met or the event occurs in another thread, that thread will then obtain the lock and
release it with a condition value that will flag that the change has happened. For example, suppose thread A
wants to wait for something to happen in thread B. The condition lock is set to zero and when thread B does
its thing, it will set the lock to 1. The code would look like this:

// in thread A, wait for a condition of 1
[myConditionLock lockWhenCondition:1]; // will block until condition is
1
[myConditionLock unlock];
// execution continues....

// in thread B, we do stuff
// critical event happens....
[myConditionLock lock];
[myConditionLock unlockWithCondition:1];
// we continue on our way; thread A will be woken up

Of course, multiple threads could set up a cascade of conditions or other complex cause/effect relationships
with this technique. The other application of the condition lock is to simply pass an integer value between
threads as a form of threadsafe global communications. Here's how you would do the get/set of the value:

value = [myGlobalValueLock condition]; // this is the "get"

// here's a "set" operation:
[myGlobalValueLock lock];
[myGlobalValueLock unlockWithCondition:newValue];

Usually, it is best to go to the trouble of using an NSConditionLock instead of just using a global integer
variable. The reason is that using the lock is threadsafe, whereas the global variable is not. To make a global
integer threadsafe, all accesses to it need to be protected by an NSLock. What the NSConditionLock
does is combine the two into a single construct, which makes it easier to consistently follow the conventions
needed to keep the code threadsafe.

It is common to ask what to do to communicate more information than just an integer value between
threads. Of course, messages can always be sent over Distributed Objects. Another option is to associate a
condition lock with a collection of data to be shared. For example, the sending thread would obtain the lock,
prepare the data, and then unlock by setting it to a condition that signals "data is ready." The receiving
thread would wait for the "ready" condition by blocking on the lock, requesting that condition. It would then
do whatever is necessary with the data, such as copying it to a private area, and then release the lock with a
"data is used up" condition. It could then process the data further. Releasing the lock with the "data used up"
condition could signal the sender thread to start stuffing in more data, and so on. Obviously, many variations
on this theme are possible.

Using the NSDistributedLock Class

Locks aren't used only with multithreaded programming. Different processes often need to coordinate their
actions in the file system in the same way threads need to coordinate their accesses to memory. For example,
imagine if one process was writing to a file. If another process comes along and tries to write to the same
file before the first process is finished, the resultant file will probably end up an unholy mess.

The locking classes described in the previous section won't help solve this problem because they only exist
within one process's memory space. They don't cross process boundaries. On the other hand, most operating
systems do provide a means of locking files in the filesystem. Sometimes it is a special function that sets a
file attribute flag on the file, locking other processes out of being able to modify that file. In other cases,
locking is done by convention. For example, for a file blahblah.log the existence of another file
blahblah.log.lock would be taken to mean that the file is locked and shouldn't be modified until the
lock file has been deleted.

To isolate the programmer from the operating system-specific means of locking, Cocoa introduces the
NSDistributedLock class. It uses the current OS convention for locking files, and is consistent. As
long as all applications accessing a particular resource each use this class, accesses to the resource will be
safe.

Creating an NSDistributedLock object is simple. Just use one of these two methods:

+ (NSDistributedLock *)lockWithPath:(NSString *)aPath
- (NSDistributedLock *)initWithPath:(NSString *)aPath

The only difference is that the class method returns an autoreleased instance. The alloc plus init approach
returns an object with a retain count of one. Both methods require a path. This is the path of the resource to
be protected. The resource must exist and be writable to the program attempting to create the lock. If either
condition is not met, the lock cannot be created. The NSFileManager and other Foundation classes can
be used to see if either condition is a problem as well as attempt to fix it.

After an object is returned, it does not mean that the application actually has the lock. To obtain the lock
itself, the -tryLock method must be invoked. As with NSLock, this method does not block and will
return a YES or NO immediately. If YES, the lock was obtained. If NO, the lock is already owned by another

process. No methods will block, so the programmer will need to set up some kind of polling loop, perhaps
with a timeout, if such behavior is desired. This method will raise an exception if a file system problem
occurs.

To relinquish the lock, an -unlock message should be sent. This will raise an exception if the lock isn't
already owned by the process trying to do the unlock. This is different from the previous locking classes
because the thread-based locks can't really tell which thread owns a given lock. That is controlled by
adherence to conventions only. In the case of a distributed lock, however, the owner is known, so exceptions
can be raised.

It is possible for processes to die or to freeze up. If that happens to a process that owns a lock, there's really
no way to tell. But it would be disastrous to have a lock in place with no way to release it. Thus, the
distributed lock does provide a way to "break" the lock. This forces the lock to be relinquished, no matter
what process owns the lock. Breaking a lock is a very bad thing to do unless it is certain that the process
owning it has died or is frozen. (It is bad because effectively it defeats the very purpose of the lock itself.)
To aid in determining whether a lock should be broken, it is possible to check how old the lock is. If it is
very, very old (stale), breaking it might be the right thing to do. The methods to do this are

- (NSDate *)lockDate
- (void)breakLock

The -lockDate method can also be used by a program to see if somebody else has broken a lock it holds.
If the date isn't the same as when the lock was obtained, the lock has been broken. It is a good idea to get the
current date when obtaining a lock and storing it so that this check can be performed later. If the lock has
been broken, further modification of the protected resource would be dangerous.

Book: Cocoa® Programming
Section: Chapter 24. Subprocesses and Threads

Threading Issues

This section discusses some of the issues that must be taken into account when writing
multithreaded programs. It is beyond the scope of this book to describe every detail of
multithreading. Furthermore, the discussions of each of the issues will be necessarily
abbreviated. As such, if you are interested in further discussion it is strongly recommended
that you obtain a good computer-science textbook that discusses the issues surrounding
multithreaded and concurrent programming. Most operating systems textbooks provide in
depth discussions of all the threading issues described in this chapter.

Performance Issues

The first issue is performance. Multithreading can affect a program's performance in several
ways. It can affect a user's perception of performance as well. Surprisingly, the effects on
perceived and actual performance aren't always the same.

On a single CPU system, multithreading can hurt performance. This is because each thread
has an overhead associated with it. The first time a new thread is spawned, the Objective-C
runtime moves into a thread-safe mode that adds a small overhead to all message calls. When
the operating system switches from one thread to another, some CPU work is required to
make the switch. That's all work that wouldn't have to be done in a single-threaded
application.

On a multiple CPU system, this changes. Threads won't be switched as often, if at all because
they don't have to all be scheduled on the same CPU. The optimal situation is to have one
CPU for every thread so that no context switches will, in theory, be necessary. Obviously,
with other processes also competing for CPUs, there will be an unavoidable number of
context switches no matter how many threads are used. The idea, though, is to keep the
number of switches to a minimum. Clearly, if a process spawns more threads than there are
CPUs, there will be some degree of extra overhead to support the extra threads.

There is also an overhead associated with thread synchronization. Locking code sections,
something that is necessary for thread safety, takes longer to do than no locking at all. The
Distributed Objects communication commonly used between threads takes much longer to
perform than a normal Objective-C message. The first time a thread is spawned, Cocoa and
Objective-C will move into a threadsafe mode.

In that mode, the various locking code and other conventions required by multithreading will
be turned on and there will be an application-wide performance hit that can be on the order of
15% or so.

Perceived performance is a very different beast, however. Suppose that a calculation takes
two seconds to complete. If the user clicks a button to initiate the calculation, a single
threaded application will freeze up for two seconds while the calculation completes. That's
not very long, but during that time the application won't respond to user input such as
keystrokes or mouse clicks and drags. That two seconds is long enough for the user to notice
and probably long enough to momentarily trigger the dreaded spinning disk wait cursor. To
the user, the application feels slow because the two-second wait is almost emphasized by the
computer's behavior.

Now consider the same situation with that calculation being performed in a background
thread. The user clicks the button and the main event loop continues immediately. The user
can click other buttons, type somewhere else, and do other things while the calculation
completes. And, most important of all, there is no spinning disk! The calculation still takes
about two seconds before it shows its results in the interface, but the user won't have that wait
emphasized as strongly by the user interface, so the delay tends to not be noticed as much.
The possibly surprising result is that a multithreaded application can feel like it is faster than
its single-threaded counterpart even if that is not actually the case.

An operation such as saving a file to disk is an excellent example of where the user thinks
there's a real speed-up because there's no interface verification that the save completed. If the
file is saved in the background, the user has no idea how long it actually took! To them, the
file save was instantaneous. Now, if the user is allowed to continue modifying a document
while the save proceeds, the data could be corrupted. That can be solved by making a copy of
the document in memory first. After the copy is made, the save thread is spawned to save the
copy. That's extra work, but a copy operation is much faster than writing to disk, so the user
perceives a speed up even though reality is quite the opposite.

Critical Sections

Critical sections of code present all sorts of problems for multithreaded code. Access to
critical sections must be serialized. That means that only one thread at a time can be using
that code. If too much of the code is critical and serialized, then at the extreme a
multithreaded program is behaving just like a single-threaded program. If things can't be
done simultaneously, especially on a multiple CPU machine, the threads aren't helping at all.
All the overhead is experienced with none of the gains.

To alleviate this, the best multithread code has as few critical sections as possible and keeps
them as short as possible. If all the threads hit bottlenecks when trying to access critical
sections, performance suffers. Throwing more CPUs at the problem won't help. The speed of
the slowest CPU is the limiting factor as the code becomes over-serialized.

Some programs lend themselves to multithreading nicely because there are very few, if any,
critical sections. Other programs should never be made multithreaded. This should be
determined early on in the design phase by analyzing what code sections are critical. If there
are too many-or any of them will have a long execution time- multithreading might not be a

good idea. There's no clear heuristic other than experience to make this decision, but a little
common sense up front certainly goes a long way.

By carefully analyzing your code, it might also be possible to shorten a critical section.
Anything that doesn't need to be in the critical section should always be moved before or
after the locking code whenever possible. Because this optimization happens later in the
development stage, it almost never makes up for poor planning of critical sections early in the
design phase.

Global Variables

Global variables, of course, are a great way to make data available between threads. All
threads can see globals. The problem is that they also create critical sections. Any access
touching a global, read or write, is a potential critical section. If it can be guaranteed that no
other thread will ever touch the variable, the thread can use it safely. That's a big if, and it can
be hard to prove for all cases. When in doubt, use a lock. It might hurt performance a little
bit, but creating unsafe code would be far worse.

Sometimes it is nice to have a global variable that is really global only within the context of a
thread. Such a variable would be accessible from anywhere, but yet would not be visible to
other threads. Because all threads share the same memory space, this might not seem
possible. A variable is either global or not; there are no compiler directives to say a variable
is "global to a thread, make one copy of the variable for each thread."

Of course, Cocoa comes to the rescue here. One variable is global to a thread, with exactly
one copy of it for each thread. And, even better, it is an NSDictionary, so it is possible to
put any amount and any kind of data into it. All the "thread globals" can be stored in this
dictionary. Here's how to obtain a thread's dictionary:

threadDictionary = [[NSThread currentThread]
threadDictionary];

This dictionary is unique to the thread, so items stored in it won't be seen by other threads. It
is still accessible throughout the entire thread, just like any real global variable. It is true that
there is a minor performance penalty in obtaining the dictionary and extracting a data object
from it, but this is certainly better than not having this functionality at all.

This dictionary is in use by Cocoa already. Each thread has its various default objects. Some
of these thread-wide objects are kept in the thread's dictionary. The dictionary is usually
empty for new threads, though. Because of this, it is best to use keys that do not begin with
the prefix "NS" to avoid collisions.

Race Conditions

One of the most common bugs in multithreaded code is the race condition. This is basically
what happens when a critical code section or resource isn't protected by a lock. It can happen
if one thread forgets to use a lock, too, even if other threads are properly using the lock.

To explain what a race condition actually is, an example will help. Consider this C statement:

x += 1;

This statement, when compiled, actually could translate into several instructions. Retrieve x,
add one, store x. Other statements or groups of statements might be broken up in different
ways depending on the compiler. The important thing here is that thread context switches
happen between CPU instructions, not necessarily between C or Objective-C statements. It
all depends on the compiler and CPU. A context switch could happen between the retrieve
and add instructions, for example.

Next, suppose there are two threads that both need to increment x. This is the desired
sequence:

Variable x starts at 0.
Thread A increments x, so it is now 1.
Thread B increments x, so it is now 2.

If the increment is broken down into separate statements, and then has an unfortunate context
switch right in the middle, this situation could happen:

Variable x starts at 0.
Thread A retrieves x. It sees a 0.
<context switch to thread B>
Thread B retrieves x. It sees a 0.
Thread B increments x to 1.
Thread B stores x. Now x = 1.
<context switch back to thread A>
Thread A increments x to 1. (Remember, it saw a zero.)
Thread A stores x. Now x = 1.

So at the end of this, x should be 2, but instead it is 1. That is an incorrect result. That's a race
condition: two or more threads all racing to do something first, interfer-ing with each other.
The outcome all depends on which thread gets there first. This means that each time the
program is run, something different could happen. If the critical section is short, the bug only
happens once in a blue moon. But it is there, lurking, waiting to bite at most inopportune
moment.

The solution, of course, is to remember to use locks whenever data, resources, or code are
shared between threads. The more locks there are, the more overhead and the more risk of
over-serialization. On the other hand, having too few locks leads to unpredictable behavior

that is difficult to find and fix. This is why experts warn to avoid multithreading unless
there's a clear need for it.

Deadlocks

It is possible for a multithreaded program to get some or all its threads wedged or frozen.
This state is called deadlock. It is generally avoidable through good design. To understand
how things could get locked up, let's look at an example.

Suppose there are two resources, A and B. Two threads, 1 and 2, want to access both
resources. Suppose that thread A obtains the lock for A, and then the lock for B before
proceeding. Next, suppose that thread 2 obtains the lock for B, and then the lock for A, and
then proceeds. Here's what could happen:

Thread 1 obtains the lock on A.
Thread 2 obtains the lock on B.
Thread 1 is now blocked waiting for lock B.
Thread 2 is now blocked waiting for lock A.

Note that neither thread can proceed. Thread 1 has the A lock and is waiting for the B lock.
That lock is held by thread 2. Thread 2 can't release it until it gets the A lock because it needs
it to proceed. But the A lock won't be given up by thread 1 until it gets the B lock, hence a
deadlock. Neither lock can be released. Neither thread can continue. The whole situation is
reminiscent of the Dr. Seuss story where two stubborn creatures are walking opposite
directions on a pathway and meet up. Neither is willing to step aside for the other, so their
progress is halted until one or the other makes a move. In computer programs, neither side
will budge unless they've been programmed to do so.

Clearly, in the previous example, there's a simple solution. Just have both threads obtain the
locks in the same order. If they both grab A before B, there is no deadlock. Also note that this
example is really just a special case of a race condition, because if thread 1 obtained both
locks before thread 2 tried for lock B, there would have been no problem. This serves to
remind us that even if locks are used, if they aren't used correctly, there is still a danger of
race conditions.

Most deadlock situations are more complex than the previous example. For example, there
might be a chain of resources that create a large multistep circle of waiting. Any good
operating systems text has a discussion on how to prevent, avoid, detect, and correct
deadlock situations. A complete discussion of this topic is beyond the scope of this book.

Before leaving the topic of deadlocks, there are two other situations where deadlock can
occur, which should be considered. First, deadlock can happen between processes. It isn't just
an interthread problem. Applications using NSDistributedLock can end up deadlocked
waiting for locked files. If a process dies before releasing a lock, there is no cycle as in the
previous example, yet there is still a potential deadlock. That is why the -breakLock

method exists. Of course, telling the difference between a resource hog and a true deadlock
situation can be somewhat difficult, so you must be very careful about breaking locks.

Finally, deadlock doesn't even require two threads or two resources to occur. Consider a
thread that obtains a lock, and then forgets it has the lock and tries to obtain it again. It will
block, waiting for itself to give up the lock so that it can get it again. That sounds like a pretty
stupid hole for a programmer to dig himself into, but it can and does happen. Sometimes, the
design of some code practically mandates it. Obviously, if the lock is obtained and released
from within the context of a single method and that method doesn't send any messages or
make any function calls, this is easy to avoid. But if the lock and unlock statements are
farther apart, or there are method calls in between them, this situation can be a lot harder to
avoid and track down.

This last case is common enough that Cocoa offers another class to help out. The
NSRecursiveLock class is a lock that can be obtained multiple times by a given thread. It
cannot be obtained by more than one thread at a time, so it still behaves like a lock should
behave. But once a thread has obtained the lock, the same thread is allowed to obtain it again
as many times as it wants. The stipulation is that the thread must unlock it exactly as many
times as it was locked. In other words, the -lock and -unlock messages must be paired
up exactly, just like -retain and -release. This class responds to the same set of
messages as the NSLock class, so -lockBeforeDate: and -tryLock also exist and
work as expected. Just like the -lock message, each of these other messages must be paired
with an -unlock message if the lock was obtained.

Starvation

Sometimes it might seem like a thread is deadlocked when that is not actually the problem. In
the case of deadlock, the locks actually become dead. They are being held and are never
given up. It sounds like a deadlock if a thread is blocked waiting for a lock and never gets it.
But in some cases it is simply that there are so many threads contending for a lock that the
blocked thread is never given a chance.

For example, suppose there are four threads A, B, C, and D. Threads B, C, and D are waiting
for a lock that is being held by thread A. Suppose that A releases the lock and C gets it. Then,
C unlocks and D gets it. Meanwhile, C decides it wants the lock again, as does A. When D
drops the lock, suppose it goes to A, and then C gets it next. Thread B still hasn't seen the
lock, and might never see it if the contention for the lock doesn't quiet down.

Many operating systems use a round-robin system or other scheduler to avoid this problem.
With round-robin scheduling, as the locks are requested the requests are put into a queue (a
line). The requestor that has been waiting longest is always the next in line to get the lock.
Note that if the contention for the lock is really this bad, eventually all the threads but one
will be waiting in line at any given time. That is the extreme limit of the problem. At that
point the operation has been fully serialized, and a single-threaded design would be more
efficient.

The round-robin approach does prevent starvation, but not all operating systems do this.
Considering the issue, it is clear that the high contention for the lock is a problem. Having
fewer threads or changing the design to reduce the need for locked resources decreases the
risk of starvation. If the critical sections and resource usage are kept to a minimum,
contention will be reduced. The less communication between threads, the less likelihood that
this will be a problem.

If Distributed Objects are being used, the messages sent will be coming through the run loop
and will be queued up. Once again, using DO offers an advantage. And, as before, the same
techniques to reduce overhead and decrease the negative impact of critical sections will help
to prevent starvation.

Debugging

Debugging multithreaded programs is extremely hard to do. Period. The previous discussions
of threading issues should convince any reader of this fact. Good, solid design up front helps
a lot here, but it won't fix everything.

Even with the most careful design work, race conditions will happen. Things slip through the
cracks. It is possible to test, test, and test again and never see them. Worse, it sometimes
seems like the first customer to pick up the application gets "lucky." Now there's a bug that
has never been seen, can't be reliably reproduced, but is being randomly experienced by
users. Sometimes the bug pops up months after a release. Either way, a bug such as this is a
programmer's nightmare!

The gdb debugger can peek into all a program's threads, but it only gives snapshots for a
single point in time. It can't tell a developer how threads are interacting with each other as
time marches forward. All it can do is provide a series of snapshots from which the in-
between parts must be inferred, which is a hit-or-miss proposition. With experience,
developers can improve at this ability, but very few people are experts at it. For many, it
seems as bad as trying to stumble through a minefield in a thick fog. Instrumenting the code
to log progress often disturbs the code enough to lessen or remove the race condition, so
careful code analysis is often the only way to find the problem.

Luckily, most of the other threading issues can be dealt with a bit more easily than race
conditions. Deadlocks are pretty easy to spot; they tend to happen more reliably than race
conditions, as well. Differentiating between starvation and deadlock can be difficult at first,
but careful consideration of the bugs' symptoms usually makes it possible to sort out the
difference. Complete starvation is rare, so even a starved thread usually gets a little bit of
work done. Deadlocked threads are blocked and don't get anything done. Running the
program in the debugger and stopping execution to look at a stack backtrace will usually
help, too. If the backtrace shows a thread waiting to obtain a lock, the problem may be a
deadlock.

There are many techniques for debugging multithreaded programs, and it is beyond the scope
of this book to dive into all the possible techniques. Developers should obtain books on
concurrent programming and operating systems to learn more about this topic. Many good
texts exist that will make the task of multithreaded programming much less daunting.

Using NSTimers Instead of Threads

Because of the difficulty of using threads, it is valuable to consider the use of NSTimer
objects as an alternative. To do this, the code in question is first broken up into smaller parts.
When each part is finished, a timer is set up to call the next part. Between timer firings, the
application's event loop is free to continue normally.

An example of applying this technique is the SimpleAnimation program from Chapter 14,
"Custom Views and Graphics Part III." The animation loop for the program is what is broken
up into parts. Each animation frame is calculated and rendered every time a repeating timer
fires, so the loop itself executes only one pass per firing of the timer. In this way, the
application seems to be multithreaded because the animation continues while the menus and
other application features remain usable. No spinning cursor appears while the animation
runs.

Using timers in this way is far simpler to write and debug than multithreading. The user is
provided with many of the same benefits as with multithreading. There is only one downside.
This technique is not true multithreading, and, therefore, applications that make use of it
cannot take full advantage of multiple processors on machines that have them.

Book: Cocoa® Programming
Section: Chapter 24. Subprocesses and Threads

Summary

This chapter discusses running Unix tasks from Cocoa and how to use multithreading in a
Cocoa application. It also discusses many of the issues surrounding threading. All this
might scare a developer away from trying to use multiple threads. That is not the intent,
though. Yes, it is hard, but it can also be very rewarding. Developers need to carefully
think through the decision to jump into multithreading and only use it where it is necessary
and makes sense. Knowing what to expect before making the jump will hopefully help with
the decision and make the jump, if taken, much less painful. Advance knowledge enables
the possibility of making preparations with the intent of avoiding potential pitfalls.

The next chapter talks about how Cocoa handles printing. There are several objects to help
Cocoa programs integrate seamlessly into the Mac OS X printing architecture.

Book: Cocoa® Programming
Section: Part II: The Cocoa Frameworks

Chapter 25. Printing

IN THIS CHAPTER

● Basic Printing
● Overview of the Printing Classes
● NSView's Printing Support
● Printing and Pagination Example
● Printing in NSDocument-Based Applications

This chapter explores the classes encountered when adding printing support to Cocoa
applications. The Cocoa framework classes automatically provide basic printing features.
There is a standard File, Print menu item included by default in Cocoa application user
interfaces designed with Interface Builder. The menu item sends the -print: message up
the responder chain. Cocoa views and windows in the responder chain respond to the -
print: message to automate printing. This chapter explains how to modify and extend
the default printing capabilities. The NSPrintInfo, NSPageLayout,
NSPrintPanel, and NSPrintOperation classes are described, and techniques for
printing views are presented. This chapter also focuses on printing support in
NSDocument-based multidocument applications.

Book: Cocoa® Programming
Section: Chapter 25. Printing

Basic Printing

Printing is usually handled by NSView and its subclasses. The code executed to print a
view is most often the same code used to draw the view onscreen. When a view receives
the -print: message it displays a standard Cocoa Print panel. If the user clicks the Print
panel's Print or Preview buttons, the view's -drawRect: method is called, much like
when the view is requested to draw to the screen. The main difference is that when
printing, the current graphics context is a printing context instead of a display context.

When implementing the -drawRect: method of an NSView subclass, it is possible to
determine if the view is drawing to the screen or to another device, such as a printer, by
calling [[NSGraphicsContext currentContext] isDrawingToScreen].
When not printing to the screen, don't draw elements such as the user's highlighted
selection and other view-specific features that should not show up in the printed output.
Little or no extra code is needed to support basic printing. The details about printing views
are provided in the "NSView's Printing Support" section later in this chapter as well as in
Apple's NSView class documentation.

NOTE

If a window is the first responder when the -print: message is sent up the
responder chain, the entire window is printed-including its title bar.

The default printing features provided by Cocoa are enough for many applications. Cocoa
provides additional printing functionality including automatic pagination, customized
pagination, and specialized drawing on each page, such as headers and footers. The rest of
this chapter describes the classes used to control printing and advanced-printing features.

Book: Cocoa® Programming
Section: Chapter 25. Printing

Overview of the Printing Classes

Cocoa supports printing with the NSPrintInfo, NSPageLayout, NSPrintPanel, and
NSPrintOperation classes. Each class controls a different aspect of printing and of the
resulting output.

NSPrintInfo

The NSPrintInfo class encapsulates information used to control printing. It provides
methods to access the dimensions of the user's selected paper size, the type of pagination to
use, whether the output should be centered horizontally or vertically on the page, and the
orientation of the paper. It also provides information about the selected printer and the
current print job status. NSPrintInfo instances store a dictionary containing detailed
information about printing options.

Creating an NSPrintInfo Instance

A graphical Cocoa application automatically has a single shared instance of NSPrintInfo
that is accessed by calling [NSPrintInfo sharedPrintInfo]. It is very common to
need several different NSPrintInfo instances, especially in multidocument applications.
For example, each open document might be configured to print with a different paper size or
orientation. Additional instances of NSPrintInfo are best created by copying an existing
instance, as shown in the following line of code:

documentPrintInfo = [[NSPrintInfo sharedPrintInfo] copy];

NSPrintInfo instances can also be created by allocating them, and then using the -
initWithDictionary: designated initializer. NSPrintInfo instances store many
attributes, however, and most should be set to the default values chosen by the user. By
copying an existing instance, all the default values are preserved, and it is only necessary to
change a handful of attributes instead of setting them all.

The shared NSPrintInfo instance is set by calling +setSharedPrintInfo:. An
application can use this feature to set the default printing attributes. For example, if the
application's views are usually printed with a landscape orientation, the shared
NSPrintInfo instance can be set to default to a landscape orientation.

Using NSPrintInfo's Paper Attributes

The type of paper that the user has selected (for example, Letter, Legal, A4) is obtained by
calling NSPrintInfo's -paperName method that returns an NSString containing a

localized name. The size of the selected paper type is returned by the -paperSize method
that returns an NSSize structure containing the width and height of the page in points (1/72
inch).

The margins (the empty space around the edge of the paper) are returned by -topMargin, -
bottomMargin, -leftMargin, and -rightMargin. These methods return a float
representing the width of the respective margin in points. Each of these margins is set by
using the -setTopMargin:, -setBottomMargin:, -setLeftMargin:, and -
setRightMargin: methods.

NOTE

It is possible to set margins outside of the printable area supported by a printer.
An application should warn a user if he attempts to set the values out of the
appropriate range for the selected printer.

The content area of a page is calculated with the following code, which subtracts the margins
from the paper size:

printableWidth = [printInfo paperSize].width -
 ([printInfo leftMargin]+[printInfo rightMargin]);
printableHeight = [printInfo paperSize].height -
 ([printInfo topMargin]+[printInfo bottomMargin]);

The content width and height are used extensively during pagination and can also be used in
representing the page visually onscreen.

Using NSPrintInfo's Pagination Attributes

Pagination is the action of breaking a single large view into smaller chunks that represent
each printed page. Figure 25.1 shows one form of pagination in which a single large view is
broken into four pages.

Figure 25.1. Pagination is used to break a single large view into multiple pages when
printed.

NSPrintInfo's -setVerticalPagination: and -
setHorizontalPagination: methods control the type of pagination that is used. The
argument to these methods is one of the NSPrintingPaginationMode constants
identified in Table 25.1.

Table 25.1. Pagination Type Constants

Pagination Constant Description

NSAutoPagination The drawing produced by the view being printed is split up into
the number of pages required to print the view.

NSFitPagination The drawing produced by the view being printed is scaled to
produce one row or one column of pages. Note that setting this
will cause the other pagination direction to scale as needed to
preserve the view's aspect ratio.

NSClipPagination The drawing produced by the view being printed is clipped to a
single row or column of pages.

By default, the vertical pagination is set to NSAutoPagination, and horizontal pagination
is set to NSClipPagination. This results in only the far-left column of pages represented
by a view being printed. Horizontal NSAutoPagination should usually be explicitly set
when creating an NSPrintInfo instance or a copy so that the entire view is printed.

NOTE

The shared NSPrintInfo instance is used to control printing when a -
print: message is received by a view. A good practice is to set the shared
instance's pagination mode before the first time -print: is called.

The current pagination mode is queried by calling NSPrintInfo's -
horizontalPagination and -verticalPagination methods. The methods return
the NSPrintingPaginationMode constants in effect for horizontal and vertical
pagination, respectively.

The position of the output on each page is controlled through the -
setHorizontallyCentered: and -setVerticallyCentered: methods. Each
accepts a BOOL argument. The output is only centered if it isn't larger than a single page. If
multiple pages are needed, the output is always positioned on the pages to reflect the
pagination. The current values for centering are obtained using -
isHorizontallyCentered and -isVerticallyCentered, which return BOOL
values.

A page can be printed either in portrait orientation (with the long edge of the page vertical) or
landscape orientation (the long edge is horizontal). The orientation is set by calling -
setOrientation: and passing one of the NSPrintingOrientation constants:
NSPortraitOrientation or NSLandscapeOrientation.

Using NSPrintInfo's Job Disposition

The disposition of a currently running print job is provided by NSPrintInfo's -
jobDisposition method, which returns an NSString instance. The possible values
returned in the string are shown in Table 25.2.

Table 25.2. Pagination Type Constants

Disposition String Meaning

NSPrintSpoolJob Normal print job

NSPrintPreviewJob The output is sent to the Preview application

NSPrintSaveJob The output is being saved to a file

NSPrintCancelJob The print job was cancelled

NSPrintFaxJob The output is sent to a fax

Using NSPrintInfo's Dictionary

All the data managed by an NSPrintInfo instance is stored in an
NSMutableDictionary instance that can be accessed by calling NSPrintInfo's -
dictionary method. The returned dictionary can be archived along with a document's
data or stored in an application's defaults database. A new NSPrintInfo instance with the
same dictionary is initialized using NSPrintInfo's -initWithDictionary: method.

Many NSPrintInfo dictionary keys are defined in the NSPrintInfo.h header file.
Table 25.3 contains the dictionary keys supported in Mac OS X 10.1.3. Keys that have a type
of float, int, BOOL, or a constant are stored as NSValue objects.

Table 25.3. NSPrintInfo Dictionary Keys

Dictionary Key Type Description

NSPrintPaperName NSString Paper name:
Letter, Legal,
A4, and so on.

NSPrintPaperSize NSSize Height and
width of paper.

NSPrintMustCollate BOOL Output must be
collated.

NSPrintOrientation NSPrintingOrientation Portrait or
Landscape.

NSPrintLeftMargin float Left margin, in
points.

NSPrintRightMargin float Right margin,
in points.

NSPrintTopMargin float Top margin, in
points.

NSPrintBottomMargin float Bottom margin,
in points.

NSPrintHorizontallyCentered BOOL Pages are
centered
horizontally.

NSPrintVerticallyCentered BOOL Pages are
centered
horizontally.

NSPrintHorizontalPagination int One of the
enumerated

NSPrintingPaginationMode constants.

NSPrintVerticalPagination int One of the
enumerated

NSPrintingPaginationMode constants.

NSPrintScalingFactor float Scale before
pagination.

NSPrintAllPages BOOL Include all
pages in the job.

NSPrintReversePageOrder BOOL Print last page
first.

NSPrintFirstPage int First page to
print in job.

NSPrintLastPage int Last page to
print in job.

NSPrintCopies int Number of
copies to spool.

NSPrintPrinter NSPrinter Printer to use
for print job.

NSPrintJobDisposition NSString The job's
disposition; one
of the constants
in Table 25.2.

NSPrintSavePath NSString Path use to save
a print job.

The string obtained with the NSPrintJobDisposition key contains one of the strings
identified in Table 25.2

If the print job disposition string is NSPrintSaveJob, the NSPrintSavePath key in
the NSPrintInfo dictionary is used to obtain the path to which the print job is saved.

Accessing the Selected Printer

The printer to use for a print job is obtained with NSPrintInfo's -printer method. The
-printer method returns an instance of the NSPrinter class.

NOTE

Apple has licensed the Common Unix Printing System (CUPS) printing
technology for use in the next major version of Mac OS X, 10.2. This may lead
to changes in the way the selected printer is accessed.

NSPrinter

The NSPrinter class encapsulates the properties and capabilities of a printer. It is possible
to obtain specific attributes of a printer, but they cannot be set via the NSPrinter class.
Each printer's attributes and capabilities are defined by an appropriate PostScript Printer
Description (PPD) file, or by the operating system driver for the printer.

NSPrinter instances are created to represent printers attached to the computer or
accessible on the network.

The NSPrinter class method +printerWithName: returns an instance of
NSPrinter for the named printer passed as an NSString argument. If no printer with the
requested name is available, nil is returned.

The class method +printerWithType: returns an NSPrinter instance for a specified
type of printer. An array of available printer types is obtained by calling NSPrinter's
+printerTypes method. The type of printer represented by an existing NSPrinter
instance accessed with NSPrinter's -type method.

It is also possible to get a list of the available printers using the +printerNames method.
It returns an NSArray of NSStrings containing the names of available printers. The name
associated with an existing NSPrinter instance is returned by the -name method.
NSPrinter's -name method returns nil if the NSPrinter represents a type of printer
rather than a specific printer.

NSPageLayout

The NSPageLayout class handles the user interface for presenting page layout information
to the user. The standard File, Page Setup menu item in graphical Cocoa applications sends
the -runPageLayout: message up the responder chain. If -runPageLayout: reaches
the application object, NSApplication's -runPageLayout: method displays the Page
Setup user interface as either a modal panel or as a sheet. Figure 25.2 shows the Page Setup
panel used as a standalone panel.

Figure 25.2. The Page Setup user interface controlled by an instance of the
NSPageLayout class is displayed as a panel.

Figure 25.3 shows the Page Setup user interface as a document modal sheet attached to a
document window.

Figure 25.3. The Page Setup user interface controlled by an instance of the
NSPageLayout class is displayed as a document modal sheet.

When a new Cocoa application is created in Project Builder using either the Cocoa
Application or Cocoa Document-based Application templates, the File, Page Setup menu
item is automatically included in the user interface. There are three common ways to change
the standard page layout behavior of Cocoa applications: subclass NSApplication
override its -runPageLayout: method, implement -runPageLayout: in an object
earlier in the responder chain than NSApplication, or change the target and action of the
standard Page Setup menu item.

Configuring an NSPageLayout Instance

An NSPageLayout instance is created by calling the NSPageLayout class method
+pageLayout.

Similar to many of Cocoa's standard panels, the NSPageLayout panel can be augmented
by adding an accessory view. This is done using NSPageLayout's -
setAccessoryView: method and passing an NSView instance as the argument.
Accessory views are described in the "Document Actions and the Save Panel" section of
Chapter 9, "Applications, Windows, and Screens." Chapter 17, "Color," describes accessory
views used with the standard Color panel. If an NSPageLayout instance has an accessory
view, it is returned by the -accessoryView method.

Presenting the Page Setup Panel

The Page Setup panel is presented using either NSPageLayout's -runModal or -
runModalWithPrintInfo: methods. The -runModal method uses the shared
NSPrintInfo instance as the source of information displayed by the panel. The -
runModalWithPrintInfo: method uses the NSPrintInfo instance provided as an
argument. Both methods return an integer value corresponding to the button on the Page
Setup panel that is clicked by the user to close the panel. If the OK button is clicked, the
integer constant NSOKButton is returned. If the Cancel button is clicked, the
NSCancelButton constant is returned.

To present the panel as a document modal sheet, the following method is used:

- (void)beginSheetWithPrintInfo:(NSPrintInfo *)printInfo
 modalForWindow:(NSWindow *)docWindow
 delegate:(id)delegate
 didEndSelector:(SEL)didEndSelector
 contextInfo:(void *)contextInfo

An NSPrintInfo instance is passed as the first argument. Document-based applications
use an instance of NSPrintInfo that is associated with the active document, applications
that don't support documents can use [NSPrintInfo sharedPrintInfo] instead. The
window to which the sheet is attached is passed as the docWindow argument. The object
passed as the delegate argument is automatically sent the message identified by the
didEndSelector selector when the sheet's OK or Cancel buttons are clicked. The
contextInfo argument specifies additional information to be passed to the
didEndSelector method. The use of sheets, sheet delegates, didEndSelector, and
contextInfo are described in the "Changes to MYDocument to Support Sheets" section
of Chapter 9.

NOTE

If the contextInfo argument is not null, it should be retained before
passing it to -beginSheetWithPrintInfo:modalForWindow:
delegate:didEndSelector:contextInfo:. Otherwise, the object
could be inadvertently deallocated before the sheet is closed. Release the
contextInfo object in the associated didEndSelector method.

The method identified by the didEndSelector must take three arguments like the
following -pageLayoutDidEnd:returnCode:contextInfo: method:

- (void)pageLayoutDidEnd:(NSPageLayout *)pageLayout
 returnCode:(int)returnCode
 contextInfo:(void *)contextInfo

When the method identified by the didEndSelector is called, the NSPageLayout
instance that sent the didEndSelector message is passed as the first argument. The
returnCode is an integer value corresponding to the button clicked to close the sheet;
NSOKButton for the OK button and NSCancelButton for the Cancel button. The
contextInfo associated with the sheet is passed as the third argument.

After the Page Setup panel or sheet has been presented to the user, the NSPrintInfo
instance returned by NSPageLayout's -printInfo stores the page layout information
entered by the user.

NSPrintPanel

The NSPrintPanel class handles Cocoa's standard Print panel user interface, which can
be presented as a normal panel or as a document modal sheet. Figure 25.4 shows the standard
Print panel.

Figure 25.4. The Print user interface controlled by an instance of the NSPrintPanel
class is displayed as a standalone panel.

Figure 25.5 shows the Print user interface as a document modal sheet attached to a document
window.

Figure 25.5. The Print user interface controlled by an instance of the NSPrintPanel
class is displayed as a document modal sheet.

The Print panel or sheet is presented in response to the user selecting the File, Print menu
item.

When a new Cocoa application is created in Project Builder using either the Cocoa
Application or Cocoa Document-based Application templates, the File, Print menu item is
automatically included in the user interface. The File, Print menu item is normally configured
to send the -print: message up the responder chain as described in the introduction to this
chapter. Views and windows implement the -print: method to display a standard Print
panel controlled by an instance of the NSPrintPanel class in cooperation with an instance
of the NSPrintOperation class.

Direct programmer interaction with the NSPrintPanel class is rarely necessary. It's

creation, configuration, and presentation are automatically handled by an instance of the
NSPrintOperation class.

NSPrintOperation

The NSPrintOperation class coordinates the interaction between an NSPrintInfo
instance and an NSView instance while printing takes place. The NSPrintOperation
class is also used to create PDF and EPS representations of an NSView's contents suitable
for copy and paste between applications. Specified areas of a view are converted to cross-
platform standard Encapsulated Postscript (EPS) or Portable Document Format (PDF) data.
The use of EPS and PDF data is described in the "Pasteboard Types" section of Chapter 19,
"Using Pasteboards."

Creating and Configuring an NSPrintOperation

A new NSPrintOperation instance is created by calling NSPrintOperation's
+printOperationWithView: class method. The NSView instance to be printed is
passed as the argument. The +printOperationWithView: method returns an
autoreleased NSPrintOperation instance configured to print with the attributes specified
by the shared NSPrintInfo instance. NSPrintOperation also provides the
+printOperationWithView:printInfo: method that is used to specify an
NSPrintInfo instance other than the shared instance.

The NSPrintInfo instance used by an NSPrintOperation instance is returned by
NSPrintOperation's -printInfo method. A print operation's NSPrintInfo
instance is set by calling -setPrintInfo:. The NSView instance that is being printed is
returned by NSPrintOperation's -view method.

An NSPrintOperation instance is able to display the standard Print panel controlled by
an instance of NSPrintPanel. It is also able to display a progress indicator to indicate the
status of a print operation to the user. The display of the Print panel and the progress
indicator happens automatically unless NSPrintOperation's -setShowPanels:
method is called with the BOOL argument NO. The -showPanels method returns the value
set by -setShowPanels:.

NSPrintOperation provides the -setAccessoryView: method that is used to
specify an accessory view to be attached to the NSPrintPanel used by the printing
operation. The current accessory view is returned by calling NSPrintOperation's -
accessoryView.

In the unlikely situation when a custom NSPrintPanel subclass is required by an
application, the NSPrintOperation class provides the -setPrintPanel: method
that accepts an instance of an NSPrintPanel subclass as the argument. The
NSPrintPanel instance used by an NSPrintOperation instance is returned by -

printPanel.

Print Operation Attributes

The order that pages are printed by an NSPrintOperation instance is set using the -
setPageOrder: method and passing one of the following NSPrintingPageOrder
constants as the argument, as shown in Table 25.4:

Table 25.4. NSPrintingPageOrder Constants

Constant Description

NSAscendingPageOrder Prints pages in ascending (back to front) page order.

NSDescendingPageOrder Prints pages in descending (front to back) page order.

NSSpecialPageOrder Pages are printed in the order the print spooler receives
them.

NSUnknownPageOrder No page order is specified.

The default page ordering for a print operation is NSAscendingPageOrder. The page
order constant used by an NSPrintOperation instance is returned by the -pageOrder
method.

An NSPrintOperation is configured to create a new thread to run the printing operation
by calling -setCanSpawnSeparateThread: and passing a BOOL value of YES as the
argument.

Running a Print Operation

An NSPrintOperation instance begins printing when its -runOperation method is
called. The Print panel and progress indicator are displayed unless the -setShowPanels:
method was called to prevent that. The -runOperation method returns YES if the print
operation was successful.

The Print panel can be presented to the user as a sheet instead of a standalone panel by using
the following NSPrintOperation method that is similar to the -

beginSheetWithPrintInfo:modalForWindow:delegate:didEndSelector:
contextInfo : method already presented:

-(void)runOperationModalForWindow:(NSWindow *)docWindow
 delegate:(id)delegate
 didRunSelector:(SEL)didRunSelector
 contextInfo:(void *)contextInfo

This method displays the Print interface as a sheet attached to docWindow. When the sheet's
OK or Cancel buttons are clicked, the delegate object receives the didRunSelector
message. The contextInfo argument is passed to the method identified by
didEndSelector. The contextInfo argument can be NULL. The following method
declaration is representative of the type of method that didEndSelector should identify:

- (void)printOperationDidRun:(NSPrintOperation *)
printOperation
 success:(BOOL)success
 contextInfo:(void *)contextInfo

When the sheet is dismissed, the delegate method identified by didRunSelector is called
with the sending NSPrintOperation instance as the first argument. The success
argument has a BOOL value of YES if the printing operation completed successfully, and NO
if there was an error or the sheet's Cancel button was clicked.

The NSPrintOperation instance that is currently printing, if any, is returned by
NSPrintOperation's +currentOperation class method. The
+currentOperation method returns nil if there isn't a print operation in progress.
Although a print operation is still sending pages to a printer, the integer page number of the
page currently being sent to the printer is returned by NSPrintOperation's -
currentPage method.

Creating EPS and PDF Data with NSPrintOperation

NSPrintOperation is used to create either EPS or PDF representations of an NSView's
contents. This feature is often used for exporting a view's representation to the pasteboard.

NSPrintOperation's +EPSOperationWithView:insideRect:toData: class
method returns an autoreleased NSPrintOperation instance configured to generate EPS
data that represents the portion of the specified view drawn within the specified rectangle.
When the NSPrintOperation returned by this method is sent a -runOperation
message, it generates the EPS data and appends it to the NSMutableData instance passed
as the toData argument. The shared NSPrintInfo instance is used to control the
generation of the EPS data. The +EPSOperationWithView:insideRect:toData:
printInfo: method is used to obtain an NSPrintOperation instance that uses a

specified NSPrintInfo instance when creating EPS data.

To generate a PDF representation of the drawing within a rectangle of a view, use
NSPrintOperation's +PDFOperationWithView:insideRect:toData: or
+PDFOperationWithView:insideRect:toData:printInfo: methods. Both
methods operate in the same manner as the EPS variants, but produce PDF data instead.

An application can determine if the current print operation is printing to a printer or
generated EPS/PDF data by calling NSPrintOperation's -isCopyingOperation.
This method returns a BOOL value of YES if the NSPrintOperation is generating EPS
or PDF data and NO otherwise.

Book: Cocoa® Programming
Section: Chapter 25. Printing

NSView's Printing Support

NSView subclasses in Cocoa applications are responsible for drawing to the screen and to
the printer. During a print operation, the -drawRect: method of a view being printed is
called once for each page that is printed. The view is responsible for drawing the appropriate
content within the rectangle passed to -drawRect: for each printed page. Basic printing is
handled automatically by NSView's implementation of the -print: method, which creates
a print operation, uses the shared NSPrintInfo instance, displays a print panel, and, unless
the user cancels the print operation, prints the view including all subviews.

It is often desirable to draw slightly differently if the drawing is being sent to a printer instead
of the screen. Within the implementation of an NSView subclass's -drawRect: method, it
is possible to determine if the drawing is going to the screen or not by calling
[[NSGraphicsContext currentContext] isDrawingToScreen]. In the
following example implementation of -drawRect:, a background grid is drawn only when
drawing to the screen:

- (void)drawRect:(NSRect)rect
{
 [[NSColor whiteColor] set];
 NSRectFill(rect);

 // draw the grid if we're drawing to the screen
 if ([[NSGraphicsContext currentContext] isDrawingToScreen])
{
 [self drawGrid];
 }

 // draw the regular contents of the view
 [self drawViewContents];
}

The custom -drawGrid and -drawViewContents methods are not shown here.

Additional Printing Features

When views are printed, NSView methods are called at various stages of the printing
operations. NSView's implementations of the methods can be overridden to enable detailed
control of printing.

NSView's -printJobTitle is called before the first page of a print operation is printed.

NSView's implementation of -printJobTitle returns a string based on the title of the
window that contains the view being printed. A subclass of NSView can override -
printJobTitle to return a different job title string for the printing operation.

At the start of a printing operation, the -beginDocument method is called. NSView's
implementation of -beginDocument configures the view's graphics context for printing.
This method can be overridden in a subclass to perform operations such as modifying the
shared NSPrintInfo instance. If -beginDocument is overridden, the superclass's
implementation must be called.

Just before each page is printed, NSView's -beginPageInRect:atPlacement:
method is called. NSView implements this method to set up the view's coordinate system
and scaling for the page being printed. If this method is overridden, the superclass's
implementation must be called.

Views are given two chances to add extra drawing to each printed page. Extra drawing can
include items such as headers, footers, page numbers, crop marks, fold lines, and watermarks.
The -drawPageBorderWithSize: method is called once for each page printed. The -
drawSheetBorderWithSize: method is called once for each sheet of paper used in a
print operation. To understand the difference between the two methods, consider the situation
in which multiple pages are printed on a single sheet of paper when 2-up printing is used. The
-drawPageBorderWithSize: method is called twice for each sheet of paper printed
(once for each logical page on the sheet of paper). The -drawSheetBorderWithSize:
method is called only once for each sheet of paper printed.

After each page is printed, NSView's -endPage method is called. This method calls -
unlockFocus, and then ensures that the output of the page is properly terminated.
Subclasses must call the superclass's implementation.

Finally, after the last page of a view is printed, the -endDocument method is called.
Subclasses that override -endDocument must call the superclass's implementation.

Book: Cocoa® Programming
Section: Chapter 25. Printing

Printing and Pagination Example

The example project, PaginationDemos, (available at www.cocoaprogramming.net) contains three application
targets: AutomaticPagination, AdjustedPagination, and CustomPagination. These targets show different ways to use
pagination.

The PaginationDemos application draws a representation of student's desks in a classroom with their names and seat
numbers labeled on each desk, as shown in Figure 25.6.

Figure 25.6. A single large view that displays images of student desks is shown unpaginated.

The desks are drawn by an NSView subclass called ClassDeskView. The ClassDeskView is instantiated
inside the application's MyDocument.nib file and is 700 Postscript Points wide by 1050 Postscript Points tall.
Because Postscript Points equal 1/72 inches, the view is approximately 9.7 inches wide and 14.6 inches tall. A view
of this size requires pagination to print on multiple 8.5 by 11 inch sheets of paper.

The view initialization and drawing code for the ClassDeskView class are implemented within the
ClassDeskView.m file that is part of the PaginationDemos project.

AutomaticPagination

AutomaticPagination is used when the NSPrintInfo instance for the current printing operation has had its
horizontal and vertical pagination modes set to NSAutoPagination. The NSPrintInfo -
setHorizontalPagination: and -setVerticalPagination: methods are described in the "Using
NSPrintInfo's Pagination Attributes" section of this chapter. AutomaticPagination generates pages that are tiled
together at the edges to recreate the entire view contents.

//
// ClassDeskView.m
// AutomaticPagination

http://www.cocoaprogramming.net/

//
// Created by Scott Anguish on Mon Jun 03 2002.
//

#import "ClassDeskView.h"

#define CP_IMAGEDISTRIBUTION 175.0
#define CP_HORIZONTALITEMS 4
#define CP_VERTICALITEMS 6

@implementation ClassDeskView

- (float)imageDistribution
{
 return CP_IMAGEDISTRIBUTION;
}

- (int)numberOfHorizontalItems
{
 return CP_HORIZONTALITEMS;
}

- (int)numberOfVerticalItems
{
 return CP_VERTICALITEMS;
}

- (void)initializeImage
{
 theImage=[[NSImage imageNamed:@"Desk"] retain];
 [theImage setScalesWhenResized:YES];
 nameArray=[[NSArray arrayWithObjects:@"Ginger",@"Todd",@"Shyerl"
 ,@"Devon",@"Liam",@"Jackie",@"Kevin"
 ,@"Joy",@"mmalc",@"Heather",@"Steve"
 ,@"Skip",@"Ernie",@"Eric",@"Gary",@"Erik",
 @"Marcie",@"Don",@"Nicky",@"Stan",@"Scott",
 @"Dorothy",@"Simon",@"Tori",nil] retain];
}

- (id)initWithFrame:(NSRect)frame {
 self = [super initWithFrame:frame];
 if (self) {
 [self initializeImage];
 }
 return self;
}

- (void)awakeFromNib
{
 [self initializeImage];
}

- (void)dealloc
{
 [theImage release];

 [nameArray release];
 [super dealloc];
}

- (void)drawRect:(NSRect)rect {
 int x,y;
 NSString *letterConstants;
 NSMutableDictionary *seatTextAttributes;
 NSMutableDictionary *nameTextAttributes;

 [[NSColor whiteColor] set];
 NSRectFill(rect);

 // This string is used in the labelling of the
 // vertical repeating elements
 letterConstants=@"ABCDEFGHIJKLMNOPQRSTUVWYZ";
 // setup the attributes dictionary that is
 // used repeatedly to draw the labels on the
 // repeating elements
 seatTextAttributes=[NSMutableDictionary dictionary];
 [seatTextAttributes setObject:[NSFont labelFontOfSize:14.0]
 forKey:NSFontAttributeName];
 [seatTextAttributes setObject:[NSColor blackColor]
 forKey:NSForegroundColorAttributeName];
 nameTextAttributes=[NSMutableDictionary dictionary];
 [nameTextAttributes setObject:[NSFont labelFontOfSize:24.0]
 forKey:NSFontAttributeName];
 [nameTextAttributes setObject:[NSColor blackColor]
 forKey:NSForegroundColorAttributeName];

 // start looping over the pages
 // note that drawing is done from the bottom to the top
 for (y=0;y<[self numberOfVerticalItems]; y++)
 {
 for (x=0;x<[self numberOfHorizontalItems]; x++)
 {
 float horizontalCenter, verticalBottom;
 float labelHLoc, labelVLoc;
 NSString *imageLabel;
 NSSize overallTextSize;
 NSRange theRange;
 NSString *imageLetter;
 float nameHLoc,nameVLoc;
 NSPoint compositeLocation;
 NSString *nameForDesk;

 // draw the repeating element at
 // the location for the current x and y
 // positioning
 compositeLocation=NSMakePoint(x*[self imageDistribution],
 y*[self imageDistribution]);
 [theImage compositeToPoint:compositeLocation
 operation:NSCompositeSourceOver];

 // determine the letter to use for this
 // repeating element in labelling
 // and then construct the string

 theRange=NSMakeRange([self numberOfVerticalItems]-1-y,1);
 imageLetter=[letterConstants substringWithRange:theRange];
 imageLabel=[NSString stringWithFormat:
 @"Seat: %@-%d",imageLetter,x+1];

 // we want to center the text, so first order of duty
 // is to determine the size of the text with the
 // given attributes, then determine the center of the
 // current element, and move left, down half the appropriate
 // sizes
 horizontalCenter=x*[self imageDistribution]+
 [self imageDistribution]/2;
 verticalBottom=y*[self imageDistribution];
 overallTextSize=[imageLabel sizeWithAttributes:
seatTextAttributes];
 labelHLoc=(horizontalCenter-overallTextSize.width/2);
 labelVLoc=verticalBottom+20;
 // draw the element's label
 [imageLabel drawAtPoint:NSMakePoint(labelHLoc,labelVLoc)
 withAttributes:seatTextAttributes];

 // do the same to figure out the name
 // to print on each desk
 nameForDesk=[nameArray objectAtIndex:
 (y*[self numberOfHorizontalItems]+x)];
 overallTextSize=[nameForDesk sizeWithAttributes:
 nameTextAttributes];
 nameHLoc=(horizontalCenter-overallTextSize.width/2);
 nameVLoc=verticalBottom+56;
 [nameForDesk drawAtPoint:NSMakePoint(nameHLoc,nameVLoc)
 withAttributes:nameTextAttributes];
 }
 }
}

@end

The NSPrintInfo is configured when the MyDocument class (an NSDocument subclass) responds to -
windowControllerDidLoadNib:.

- (void)windowControllerDidLoadNib:(NSWindowController *) aController
{
 [super windowControllerDidLoadNib:aController];
 [self setPrintInfo:[[[NSPrintInfo sharedPrintInfo] copy] autorelease]];
 [[self printInfo] setHorizontalPagination:NSAutoPagination];
 [[self printInfo] setVerticalPagination:NSAutoPagination];

}

For this example, the horizontal and vertical pagination is set to NSAutoPagination. To enable the document to
print, it is necessary to override the -printShowingPrintPanel: method in MyDocument. The example
creates an NSPrintOperation for the demoView, and then runs the print operation as a document sheet.

- (void)printShowingPrintPanel:(BOOL)flag
{
 NSPrintOperation *printOp;

 printOp=[NSPrintOperation printOperationWithView:demoView
 printInfo:[self printInfo]];
 [printOp setShowPanels:flag];
 [printOp runOperationModalForWindow:[demoView window]
 delegate:nil
 didRunSelector:NULL
 contextInfo:NULL];
}

The output from running the Automatic Pagination application is shown in Figure 25.7. Notice how the automatic
pagination cuts the pages without regard to the location of the desks.

Figure 25.7. The printed output doesn't respect the location of the desks when cutting pages with automatic
pagination.

To prevent the desks from being cut off, the application can adjust the pagination.

Customizing Automatic Pagination

Implementing these methods can modify the automatically provided pagination:

- (void)adjustPageWidthNew:(float *)newRight
 left:(float)left

 right:(float)proposedRight
 limit:(float)rightLimit

- (float)widthAdjustLimit

The -adjustPageWidthNew:left:right:limit: method can be overridden by an NSView subclass to
allow for adjustments to the right hand edge of the page. This is useful to prevent an element on the page from
overlapping two pages. The left argument contains the horizontal location (in pixels) of the left side of the page to
be imaged. The argument proposedRight is the location where the right side of the page will break by default.
The argument rightLimit indicates the smallest value that the proposedRight location could be adjusted to.
The adjusted value that should be used for the right hand page break is returned by reference in the newRight new
argument.

The value of rightLimit is determined by the method -widthAdjustLimit. This method can be overridden
to limit the amount of change that can be made to the proposedRight location by returning a float value between
0 and 1. The default value is 0.2.

The default implementation will iterate over any subviews, allowing each the opportunity to return the newRight
value. A custom implementation should call super with the new value for newRight.

- (void)adjustPageHeightNew:(float *)newBottom
 top:(float)top
 bottom:(float)proposedBottom
 limit:(float)bottomLimit

- (float)heightAdjustLimit

The method -adjustPageHeightNew:top:bottom:limit: is the vertical equivalent of the -
adjustPageWidthNew:left:right:limit: method. This can be overridden to cause elements to be
pushed onto the next page that would otherwise be disturbed by a page break.

The top argument contains the vertical location (in pixels) of the top edge of the page to be imaged. The argument
proposedBottom is the location where the bottom edge of the page will break by default. The argument
bottomLimit indicates the minimum value that the proposedBottom location could be adjusted to. The
adjusted value that should be used for the bottom edge page break is returned by reference in the newBottom new
argument.

The value of bottomLimit is determined by the method -heightAdjustLimit. This method can be
overridden to limit the amount of change that can be made to the proposedBottom location by returning a float
value between 0 and 1. The default value is 0.2.

In the example project PaginationDemos, the application AdjustedPagination implements these methods to ensure
that none of the students' desks are split across pages. The code that implements this is contained within the
ClassDeskView+AdjustPagination.m file. This category on the ClassDeskView class contains the
following code.

//
// ClassDeskView+AdjustPagination.m
// AdjustedPagination
//
// Created by Scott Anguish on Tue Jun 04 2002.
//

#import "ClassDeskView+AdjustPagination.h"

@implementation ClassDeskView(AdjustPagination)

- (void)adjustPageWidthNew:(float *)newRight
 left:(float)left
 right:(float)proposedRight
 limit:(float)rightLimit
{
 // inherit the superclass behaviuor
 [super adjustPageWidthNew:newRight
 left:left
 right:proposedRight
 limit:rightLimit];

 // adjust the page such that any partial images are
 // bumped to the next page
 *newRight=((int)(proposedRight / [self imageDistribution])
 * [self imageDistribution]);
}

- (float)widthAdjustLimit
{
 // allow up to half a page to be bumped to
 // the next page
 return 0.5;
}

- (float)heightAdjustLimit
{
 // allow up to half a page to be bumped to
 // the next page
 return 0.5;
}

- (void)adjustPageHeightNew:(float *)newBottom
 top:(float)top
 bottom:(float)proposedBottom
 limit:(float)bottomLimit
{
 // inherit the superclass behaviuor
 [super adjustPageHeightNew:newBottom
 top:top
 bottom:proposedBottom
 limit:bottomLimit];
 // adjust the page such that any partial images are
 // bumped to the next page
 *newBottom=top-((int)((top-proposedBottom) / [self imageDistribution])
 * [self imageDistribution]);
}

@end

The output from running the application AdjustedPagination is shown in Figure 25.8. Notice how all the desks are
now printed without being broken at a page break.

Figure 25.8. The printed output respects the location of the desks when cutting pages with adjusted pagination.

The location on the page where the printing takes place can be customized by implementing -
locationOfPrintRect:. This method is called for each page, passing an NSRect representing the printable
rectangle of the current page with the origin at 0.0,0.0. A subclass should return an NSPoint with the location to use
to place the rectangle on the page. Alternately, it can call the super implementation to inherit the standard behavior.
Overriding this method and not calling super removes the effectiveness of the NSPrintInfo -
setHorizontallyCentered: and -setVerticallyCentered: methods.

CustomPagination

An application may require still more control over the areas that are printed. In that case, custom pagination may be
the solution. CustomPagination requires the application to determine the number of pages available, be able to return
an NSRect for each page upon request and optionally specify the position on the page that the printed area will
appear.

If an NSView subclass implements CustomPagination, it must override and implement the method -
knowsPageRange:. The subclass modifies the contents of the NSRangePointer argument to return the first
page, and the number of pages that can be printed, and returns YES. If -knowsPageRange: returns NO,
AutomaticPagination is used instead.

For each page an application using CustomPagination is expected to return an NSRect describing the location in the
view to be printed for a given page. This is accomplished by implementing -rectForPage:. This method has one
argument, an integer, which is the page number that the NSRect should represent. This method is not called when

AutomaticPagination is used.

The PaginationDemos example application CustomPagination implements -knowsPageRange: and -
rectForPage: and causes each desk to be printed on a separate page (suitable for labeling a child's desk perhaps).
The implementation is again in a separate Category ClassDeskView+CustomPagination.m.

//
// ClassDeskView+CustomPagination.m
// CustomPagination
//
// Created by Scott Anguish on Tue Jun 04 2002.
//

#import "ClassDeskView+CustomPagination.h"

@implementation ClassDeskView(CustomPagination)
- (BOOL)knowsPageRange:(NSRangePointer)aRange
{
 aRange->location=1;
 aRange->length=[self numberOfHorizontalItems]
 * [self numberOfVerticalItems];
 return YES;
}
- (NSRect)rectForPage:(int)page {
 float x=(int)((page-1) % [self numberOfHorizontalItems]);
 float y=(int)((page-1)/[self numberOfHorizontalItems]);
 return NSMakeRect(x*[self imageDistribution],
 y*[self imageDistribution],
 [self imageDistribution],
 [self imageDistribution]);
}

@end

Example output from the CustomPagination example is shown in Figure 25.9.

Figure 25.9. The printed output has one desk per page when custom pagination is used.

Alternative Pagination Technique

Often Cocoa's CustomPagination capabilities rely on the technique of dividing a single large view into smaller page-
sized rectangles. There are occasions, however, where this may not be the optimum solution.

An alterative method to this would be to determine the page that is currently being printed in the -drawRect:
implementation and draw only the contents of that page. This requires the implementation of both the -
knowsPageRange: and -rectForPage: methods in the NSView subclass.

//
// AltPrintView.m
// AlternativePrintingStrategy
//

#import "AltPrintView.h"

@implementation AltPrintView

- (NSAttributedString *)attributedStringForPageNumber:(int)i
{
 NSAttributedString *pageString;
 NSString *page;
 page=[NSString stringWithFormat:@"PAGE %d",i];
 pageString=[[[NSAttributedString alloc] initWithString:page] autorelease];
 return pageString;
}

- (void)drawRect:(NSRect)rect {
 if (![[NSGraphicsContext currentContext] isDrawingToScreen])
 {
 int page;
 NSAttributedString *attrString;
 NSRect destRect;

 page=[[NSPrintOperation currentOperation] currentPage];

 attrString=[self attributedStringForPageNumber:page];
 destRect=[self rectForPage:page];
 [attrString drawInRect:destRect];
 }
}

- (BOOL)knowsPageRange:(NSRangePointer)aRange
{
 aRange->location=1;
 aRange->length=6;
 return YES;
}

- (NSRect)rectForPage:(int)page {
 NSAttributedString *attrString;
 NSSize attrStringSize;
 attrString=[self attributedStringForPageNumber:page];
 attrStringSize=[attrString size];
 return NSMakeRect(0.0,0.0,
 attrStringSize.width,
 attrStringSize.height);
}

@end

In this example the -knowsPageRange: causes six pages to be printed. Each time a page is generated the -
rectForPage: determines the size of page required to display the NSAttributedString containing the page
number. The -drawRect: method is called for each page as well, and draws the string on the page.

Book: Cocoa® Programming
Section: Chapter 25. Printing

Printing in NSDocument-Based Applications

An NSDocument-based Cocoa application provides cover for more of the printing functionality, isolating
the developer even further from direct NSPageLayout and NSPagePanel interaction.

Each NSDocument contains its own NSPrintInfo instance, which is accessible through the method -
printInfo. The document's NSPrintInfo instance can be set using the method -setPrintInfo:
and passing the NSPrintInfo as the argument.

NOTE

Overriding -setPrintInfo: in an NSDocument subclass provides an opportunity to
react to a user having changed the page orientation, scale, or page type. The subclass's
implementation of -setPrintInfo: can cause any views to redraw as required.

NSPageLayout Interaction

There are several opportunities to customize behavior when an NSDocument application is going to
present the Page Setup panel. When the user selects the Page Setup menu item, the NSDocument subclass
will receive the message -runPageLayout: passing the sender object as the argument. The normal
behavior of this method is to call -runModalPageLayoutWithPrintInfo:delegate:
didRunSelector:contextInfo: with the NSDocument's NSPrintInfo. If the user clicks the
OK button in a presented Page Setup panel, the NSDocument method -shouldChangePrintInfo is
called with the NSPrintInfo instance passed as the argument. This method returns YES by default,
allowing changes.

If an NSDocument subclass overrides -shouldChangePrintInfo: it can modify the
NSPrintInfo data and return YES, or simply return NO to disallow the changes.

NOTE

Overriding -shouldChangePrintInfo: provides another opportunity to react to a user
having changed the page orientations, scale, or paper type. A subclass implementation of -
showChangePrintInfo: could notify NSView instances that need to redraw and then
return YES.

The display of an NSPageLayout panel is done using one of the following methods:

-runModalPageLayoutWithPrintInfo:
-runModalPageLayoutWithPrintInfo:delegate:
 didRunSelector:contextInfo:

The method -runModalPageLayoutWithPrintInfo: returns an int value of NSOKButton or
NSCancelButton depending on the user's actions. The more complete method -
runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo:
allows setting of a delegate and didRunSelector method to act after the print function is complete.
The didRunSelector method should have the following signature:

- (void)documentDidRunModalPageLayout:(NSDocument *)document
 accepted:(BOOL)accepted
 contextInfo:(void *)contextInfo

When the OK or Cancel button is clicked, the delegate receives a message to the didRunSelector
method with the current document passed as an argument, along with an optional user-provided
contextInfo object. The didRunSelector and the delegate can both be nil, if no action needs to
be taken as a result of the panel dismissal.

When these methods are used to run the NSPageLayout panel, the application is given a further
opportunity to modify the NSPageLayout object, by overriding -preparePageLayout:. This
method provides the opportunity to send the NSPageLayout instance (passed as an argument to -
preparePageLayout:) messages such as -setAccessoryView: to add an accessory view to the
panel. A subclass implementation of -preparePageLayout: should return YES if the
NSPageLayout panel was successfully prepared, and NO if there was a failure.

Printing Documents

In an NSDocument application, the Print menu item is configured to send the action -
printDocument: to the First Responder. The NSDocument implementation of -printDocument:
simply calls -printShowingPrintPanel: passing YES as the argument.

The method -printShowingPrintPanel: is always overridden in NSDocument applications that
want to print. The subclass implementation needs to create an NSPrintOperation, configure it to
display the panels using the passed BOOL argument and then run the print operation.

The print operation can be run using this NSDocument method:

- (void)runModalPrintOperation:(NSPrintOperation *)printOperation
 delegate:(id)delegate
 didRunSelector:(SEL)didRunSelector
 contextInfo:(void *)contextInfo;

The method expects an NSPrintOperation as the first argument, the delegate object that receives the
didRunSelector message as the second and third arguments, and an optional contextInfo object.
The didRunSelector method must have a signature like the following:

- (void)documentDidRunModalPrintOperation:(NSDocument *)document
 success:(BOOL)success
 contextInfo:(void *)contextInfo

When the OK or Cancel button is clicked, the delegate receives a message to the didRunSelector

method with the current document passed as an argument, along with an optional user-provided
contextInfo object. The didRunSelector and the delegate can both be nil, if no action needs to
be taken as a result of the panel dismissal.

The following code provides the -printShowingPrintPanel implementation from the
PaginationDemo project:

- (void)printShowingPrintPanel:(BOOL)flag
{
 NSPrintOperation *printOp;

 printOp=[NSPrintOperation printOperationWithView:demoView
 printInfo:[self
printInfo]];
 [printOp setShowPanels:flag];
 [self runModalPrintOperation:printOp
 delegate:nil
 didRunSelector:NULL
 contextInfo:NULL];
}

The example creates the new NSPrintOperation for the demoView with the document's
NSPrintInfo instance, sets the print operation's panels flag to the value passed to -
printShowingPrintPanel:, and then calls the NSDocument method -
runModalPrintOperation:delegate:didRunSelector:contextInfo: with the
NSPrintOperation, nil for the delegate, and NULL for didRunSelector and contextInfo.

NOTE

Be aware that an NSDocument can have multiple NSWindowController instances and,
therefore, multiple windows associated with it. In these examples, the demoView is
hardwired to the NSDocument because each document is known to have only a single
window.

Book: Cocoa® Programming
Section: Chapter 25. Printing

Summary

Cocoa's basic NSView printing support is sufficient for many applications and complex
printing support is available, if needed. The Cocoa classes provide hooks for extending the
basic printing behavior to handle each application's needs. Adding printing support to
Cocoa applications is seldom a large task. Cocoa programmers are able to focus on the
unique features of each application instead of printing.

Chapter 26, "Application Requirements, Design, and Documentation," delves into the
subtleties of application design using Cocoa. A simple game called TransparentTetris is
developed to illustrate each step in the process of developing a representative complete
Cocoa application.

Book: Cocoa® Programming

Part III: Cocoa Techniques

IN THIS PART

 26 Application Requirements, Design, and Documentation

 27 Creating Custom Frameworks

 28 Distributing Applications

Book: Cocoa® Programming
Section: Part III: Cocoa Techniques

Chapter 26. Application Requirements, Design, and
Documentation

IN THIS CHAPTER

● Designing an Application with Requirements
● Designing TransparentTetris
● Implementing the Design
● Using AutoDoc

In this chapter, the design of a Cocoa application is described by using the requirements,
design, and documentation of a very simple Cocoa game that is similar to the classic Tetris
puzzle game. Learning by example is often the most efficient method. Other chapters
provide examples that highlight the use of Cocoa classes and the details of the API.
Through examples, this chapter explains why an application is designed and implemented
in a particular way. In some cases, alternate designs are described to illustrate the trade-offs
and reasoning employed. The chapter also outlines a process for application development,
which starts with a description of the goal and ends with documentation.

The TransparentTetris example illustrates universal design techniques and also delves into
the subtleties of application design using Cocoa. Application requirements, specification,
application design, and the use of the Model/View/Controller architecture apply to any
application. Cocoa idioms and best practices used in this application include one way to
implement graphical animation, use of notifications to decouple code (separate Model from
Controller), use of categories to decouple code (separate Model from View), use of user
defaults/preferences, a simple subclass of NSView, hiding and showing a view, coordinate
system transformations, simple display optimization, and one way to automatically
generate documentation.

Book: Cocoa® Programming
Section: Chapter 26. Application Requirements, Design, and Documentation

Designing an Application with Requirements

Application design is an essential stage of application development. Small applications are
often designed entirely within the imagination of a single programmer, but every
application benefits from a design. Software development projects have become very
complex and expensive. Few people would consider building a house without a plan, yet
all but the smallest software projects are much more complex than the construction of a
typical house, and can cost as much money to complete. A design does not necessarily
imply a bureaucracy. The purpose of a design is to communicate the plan to individual
developers. Sometimes one page or a diagram on a white board is sufficient.

Before a design can be written, a set of objectives or requirements must be defined. It is not
possible to explain design decisions without first listing the requirements that influenced
the decisions. Requirements answer the question, "What is being built?" The design
answers the question, "How is it being built?" After a design has been developed, it can be
evaluated to determine how well it meets the requirements. Again, the requirements and the
design do not need to be a chore. Their purpose is to aid communication and avoid wasted
or misguided effort.

Most successful applications are guided to completion by one or more people who have a
vision of the complete application. Expressing any complex idea is very difficult and
frustrating. Pictures, diagrams, and even prototypes or demonstrations can help, but written
requirements and design are the best and most reliable way to make sure an application
achieves the designer's vision. Unfortunately, requirements are hard to write and are never
complete. Designs often change during implementation. Written requirements and a design
do not guarantee successful application development; they are merely the best technique
available.

Describing the Goal

The first step in the development of requirements is to describe the goal. Figure 26.1 shows
the TransparentTetris game designed in this chapter.

Figure 26.1. TransparentTetris is implemented with the two windows shown.

TransparentTetris is a puzzle game in which a block falls from the top of a game board that
is organized in a grid pattern. The falling block might have several different shapes relative
to the game grid. The player can shift the falling block left or right, and rotate it in
increments of 90°. When the falling block can not fall any farther without leaving the game
board or colliding with another object, the falling block's motion stops. When the falling
block's motion stops, the falling block occupies the positions within the game grid, which
correspond to the block's shape and position when it has stopped falling. If blocks occupy
any complete rows within the grid, the filled rows of blocks are removed from the game.
Any blocks in rows above the rows that were removed fall to fill the space left by the
removed rows. Then, a new block with a randomly selected shape starts falling from the
top. When there is no room for a new block that has just started falling from the top to fall
without colliding with blocks already displayed, the game is over. The player's score
increases every time a row of blocks is removed from the game. The player's goal is to
maximize the score by shifting the falling blocks left or right and rotating them to create
the maximum number of filled rows that are removed before the game is over. As the game
progresses, the falling blocks fall faster and faster, making game play more difficult. The
player can change the color of the blocks and can even make the blocks transparent, so that
a background can be seen through the blocks.

The description does not include the finer points of the game such as the shapes of the
falling blocks; the size of the game grid; the speed at which blocks fall, what background is
visible; how the player shifts and rotates blocks; how shifting, rotating, and falling are
animated; what sounds, if any, are played; and how the player changes the color of the
blocks. These finer points are design decisions that can impact the value of the game, but
do not fundamentally alter the nature of the game.

Deriving Requirements from a Description

Given the description of the game, requirements can be derived. The requirements should
be as general as possible. Requirements should not dictate design decisions, but they
should be specific enough that any design that meets all the requirements will result in an
application that is satisfactory. Of course, it is always better when a design and
implementation exceed the minimum standard of satisfactory.

Programmers and designers (like most people) want to create high art whenever possible,
but losing sight of the requirements may cause the result to be beautiful, but unsatisfactory.

In the context of a requirement, certain words have specific meaning. The word shall is
used in formal requirement clauses. Any design that does not satisfy all shall requirement
clauses will not be satisfactory. The word should is used to describe features that are
expected but not required. A design that does not satisfy some of the should clauses might
still be satisfactory. The word may is used to describe an optional implementation. The
word may should be used sparingly and only to clarify a shall or a should clause.

The TransparentTetris game has the following requirements derived directly from the game
description:

Requirement 1-There shall be a game board.

Requirement 2-The game board shall consist of a rectangular grid (the
subblock grid) that subblocks (game pieces) may occupy.

Requirement 3-At the start of a game, no subblocks shall occupy positions
in the subblock grid.

Requirement 4-During game play, there shall be exactly one falling block at
all times.

Requirement 5-A falling block shall consist of some number of subblocks
arranged in a pattern.

Requirement 6-It shall be possible for the subblocks of a falling block to be
arranged in several different patterns.

Requirement 7-During game play, the falling block shall be animated to fall
from the top of the game board toward the bottom.

Requirement 8-The pattern of subblocks in a falling block shall be
randomly selected from the set of available patterns when the falling block

first starts falling.

Requirement 9-It shall be possible for the player to shift the falling-block
left or right as long as doing so does not cause any part of the falling block
to leave the game board.

Requirement 10-It shall be possible for the player to rotate the falling block
clockwise or counterclockwise in increments of 90° as long as doing so
does not cause any part of the falling-block to leave the game board.

Requirement 11-When the falling block cannot fall any farther without
either leaving the game board or overlapping a subblock that occupies a
position in the subblock grid, the displayed falling block shall stop falling.

Requirement 12-When a falling block stops falling, subblocks shall be
placed in the subblock grid so that they occupy positions corresponding to
the subblock positions in the falling block given the falling block's position
and orientation when it stopped falling.

Requirement 13-After subblocks have been added to the subblock grid, any
rows that are completely filled with subblocks shall be removed from the
game.

Requirement 14-When a row of subblocks is removed from the game, the
players score shall be increased.

Requirement 15-When a row of subblocks is removed from the game, all
subblocks above the removed row shall be moved down one row in the grid
to fill the space formerly occupied by the removed row.

Requirement 16-After sub-blocks have been placed in the subblock grid,
the falling-block shall be removed from the game.

Requirement 17-After a falling-block has been removed from the game, a
new falling-block with a randomly selected pattern shall be placed at the
top of the game board and start falling.

Requirement 18-Each new falling-block that is placed at the top of the
game board shall fall faster than the preceding falling block.

Requirement 19-If a new falling-block at the top of the game board cannot
fall without overlapping one or more subblocks already in the subblock
grid, the game shall be over.

The following requirements are implied even though they do not appear in the game
description. The game description cannot include all the details and features that puzzle
games on Mac OS X can be assumed to have.

Requirement 20-It should be possible for the player to specify the color of
the subblocks including any transparency.

Requirement 21-The game board should be displayed in a window.

Requirement 22-It should be possible for a game to be paused. (All game
animation will halt and the game state should not change until the game is
resumed.)

Requirement 23-It should be possible to resume a paused game.

Requirement 24-It should be possible to start a new game. (When starting a
new game, all windows and state of previously started games may be
discarded.)

Requirement 25-A sound should be played when a row of subblocks is
removed and at other times when events of interest to the player occur.

Requirement 26-It should be possible to disable sound playing.

Requirement 27-Any player selected subblock color and transparency
should be saved as a user preference and used in subsequent game play
sessions.

Selecting an Architecture

Now that the requirements of the application being designed are known, the next step is to
define the architecture. An application's architecture is sometimes called top-level design.
The purpose of the architecture is to factor the application into subsystems that can be
developed independently. A small application, such as this one, can easily be developed by
a single person in a short time. Most applications, however, require multiple programmers
and will be in development for months or years. The architecture is a means to divide the
work so different teams of programmers can work in parallel, and so that everybody knows
how the application will fit together in the end. The architecture can also simplify future
software maintenance by preventing changes in one part of the application from requiring
changes to other parts.

This example uses the Model-View-Controller (MVC) architecture described in Chapter 6,
"Cocoa Design Patterns." The MVC architecture partitions the application into three
subsystems: the model, the view, and the controller. Every application has different

architectural needs. MVC will not apply in every case, but it is well-suited to most
graphical applications, including TransparentTetris.

Book: Cocoa® Programming
Section: Chapter 26. Application Requirements, Design, and Documentation

Designing TransparentTetris

Designing classes to meet requirements is largely magic. There are many schools of thought and modeling
techniques. Every application can be decomposed into classes in an infinite number of ways. The collection of
classes used can have a dramatic impact on the quality and success of an implementation, yet there is no modeling
technique that guarantees an optimal implementation or even a successful implementation. The best approach is to
rely on the intuition of experienced application designers and copy related successful designs.

The top-level design (architecture) can reduce the complexity of the application design by breaking it into multiple
subsystems that can be designed independently. This divide and conquer approach can be extended to the subsystems
to break them into smaller pieces, but the utility of that usually diminishes before the granularity of individual classes
is achieved. When the divide and conquer approach is overapplied, opportunities for shared classes and class reuse
are missed. A popular approach is to model the application's objects on their real-world equivalents. That can work
well if the application models the real world. For some applications, a successful technique is to use the nouns in the
application description and requirements as a starting point.

The design of TransparentTetris consists of five classes organized within the MVC architecture as follows:

Model: MYGameModel, MYBlock, MYSubBlock

View: MYBlockView

Controller: MYGameController

Not all designs should specify the precise classes that will be implemented. In most large applications, only the
classes that play a major role, or encapsulate specific critical data, should be identified by name in the design.
However, TransparentTetris is a very simple application, and the emphasis of this chapter is an explanation of the
rationale behind the design and implementation. The TransparentTetris design is over detailed to provide a context
for the rationale.

TransparentTetris Model

All the mandatory requirement clauses for TransparentTetris apply the model subsystem. The model must contain a
game grid, subblocks that can occupy space in the grid, a falling block that is composed of subblocks, an API to
move the falling block left or right, and an API to rotate the falling block clockwise or counterclockwise. The model
must define several different subblock patterns that a falling block can have. The model must be able to select the
subblock pattern randomly. The model must be able to detect when moving or rotating the falling block would cause
some portion of the falling block to leave the game board and prevent such actions. The model must be able to detect
when a falling block can no longer fall and when the game is over. The model must be able to place subblocks into
the grid appropriately when the falling block stops falling. The model must be able to detect full rows of subblocks
and remove them. The model must move subblocks that are above a removed row. The model must store a score and
increase the score when rows are removed.

The model in the TransparentTetris application consists of three classes, MYSubBlock, MYBlock, and
MYGameModel. MYSubBlock encapsulates the subblocks described in the application requirements. Subblocks are
stored in a game grid and in falling blocks. The MYBlock class encapsulates the falling block including its position,
rotation, and collection of subblocks in a variety of patterns. Finally, MYGameModel encapsulates the entire model
including the game grid that stores subblocks, the falling block, the score, and the game over state. Given this
decomposition, each of the classes has distinct responsibilities.

MYSubBlock Class

Each subblock occupies a single position in the game grid or in a falling block. Therefore, the data encapsulated by
an instance of MYSubBlock is a position. In all cases, the position of a subblock is relative to the coordinate system
of its container, the grid, or a falling block. The position is stored as two integer values on the assumption that
subblocks always occupy integral (x, y) positions in a coordinate system. The use of only integral positions has the
desirable consequence that subblocks with different positions will not overlap. Several requirements imply the
capability to detect the collision (overlap) of subblocks during game play. The foresight to specify integer positions
in the design yields the benefit that subblock collision can be detected by simply comparing positions for equality.
This foresight is a small example of the magical element in design.

Designers must anticipate implementation problems. When designing one part of an application, designers must use
intuition and analysis to side step potential problems in other parts of the application. The following code defines the
interface to the MYSubBlock class, which will be used to represent the parts that compose the pattern of a block
within the model.

//
// MYSubBlock.h
// TransparentTetris
//

#import <Foundation/Foundation.h>

@class NSButtonCell;
@class NSView;
@class NSColor;

@interface MYSubBlock : NSObject
{
 int _myXPosition; /*" integral X position "*/
 int _myYPosition; /*" integral Y position "*/
}

/*" Designated initializer "*/
- (id)initX:(int)x y:(int)y;

/*" Overridden initializer "*/
- (id)init;

/*" Accessors "*/
- (int)xPosition;
- (int)yPosition;
- (void)setXPosition:(int)x;
- (void)setYPosition:(int)y;

@end

NOTE

Specially formatted comments appear in the class declarations and also in the implementation code. The
comments that begin with the sequence /*" and end with "*/, can be automatically extracted with a
tool called AutoDoc to produce formatted documentation. Documentation generation is described in
this chapter.

The position of a subblock within a falling block is determined by the pattern of the falling block. The position of a
subblock within the game grid is determined by the subblock's position within the falling block when the falling
block stops falling. It is implied that a subblock's position can change; first it is set relative to a position in the falling
block, and then it is set to a position in the game grid. Therefore, accessor methods are provided to change a
subblock's position. An alternative approach would be to make a subblock's position immutable after initialization.
Then, when a falling block stops falling, rather than placing the falling block's existing subblock instances in the
game grid and changing their positions to match, new subblock instances are created and initialized with positions in
the grid. Both approaches are reasonable. The decision to enable the modification of a subblock's position via
accessors was arbitrary.

There is no need for the MYSubBlock class to override its inherited -dealloc method because the MYSubBlock
class does not allocate any memory or copy or retain any objects.

MYBlock Class

The MYBlock class implements the falling block. Each instance of MYBlock must have a position, a rotation, and
some number of subblocks arranged in a pattern. The position of a falling block is always relative to the coordinate
system of the game grid. As an instance of MYBlock falls, or is moved by the player, its position must change. The
rotation must also change. Therefore, accessors to set the position and rotation must be available.

To enable smooth animation as a block falls or moves side to side, the falling block's position is stored as floating-
point values. Using floating-point values for the position of a block means that the falling block can occupy positions
with fractional offsets from the integral grid positions. As a block moves, it can be between grid positions rather than
snapping from grid intersection to grid intersection.

Smooth movement of falling blocks was not a requirement. Designers should anticipate nice features that might not
be required, but can enhance the quality of the application. Smooth movement of falling blocks is easy to implement
if it is anticipated in the design. This is another example of the "magic" inherent in design.

Even though the falling block can occupy positions between grid intersections, the subblocks within the falling block
occupy integral positions in a coordinate system defined by the falling block. As the falling block moves relative to
the grid, the subblocks within the falling block remain in the same positions relative to the falling block.

The header file for the MYBlock class includes the definition of the number of subblocks stored in a block. The
definition is in the header rather than the implementation file, so that storage can be reserved in the class interface,
and so that other classes can easily reference a block's subblocks by index. To access the subblocks by index, the
calling code must know how many subblocks are available. The pivot point for blocks is also defined in the header.
The pivot point is the point within the block around which the block rotates.

///
// MYBlock.h
// TransparentTetris
//

#import <Foundation/Foundation.h>

#define MYNUM_SUBBLOCKS_IN_BLOCK (4) /*" Num sub-blocks in block "*/
#define MYBLOCK_PIVOT_X (2) /*" X pos about which block rotates "*/
#define MYBLOCK_PIVOT_Y (2) /*" Y pos about which block rotates "*/

The requirements dictate that a sound should be played when events of interest to the player occur. Interesting events
might include the movement of a block left or right or the rotation of a block. Furthermore, the display of special
visual effects after such events can be anticipated even though it is not required. The MYBlock class is an obvious

place to detect the events, but the MYBlock class is part of the model in the MVC architecture. The model should
not have knowledge about, or dependencies on, playing sounds and displaying visual effects that belong in the view
or controller subsystems.

The use of notifications is one Cocoa technique that enables satisfaction of the requirements without violating the
MVC architecture. Notifications provide a way to transfer information from the model to the other subsystems
without creating an inappropriate coupling or dependence. The MYBlock class can broadcast notifications of events
to anonymous observers. The sender of a notification does not know anything about the observers of the notification,
if any.

The MYBlock class sends two notifications:

/*" Notification Names "*/
#define MYBLOCK_DID_SLIDE_NOTIFICATION (@"MYSubBlockDidSlideNotification")
#define MYBLOCK_DID_ROTATE_NOTIFICATION (@"MYSubBlockDidRotateNotification")

In addition to the position and rotation of the block, a target position and a target rotation are stored. These instance
variables enable a technique called a low-pass filter to smooth large changes in position into several gradual changes.
During each game update, the falling block will move half the distance from its actual position and rotation to its
target position and rotation.

@class MYSubBlock;
@class MYGameModel;

@interface MYBlock : NSObject
{
 MYSubBlock *_mySubBlocks[MYNUM_SUBBLOCKS_IN_BLOCK]; /*" sub-blocks
 compose block "*/
 NSPoint _myPosition; /*" Pos of block in sub-block
grid"*/
 NSPoint _myTargetPosition; /*" Target position of block "*/
 float _myRotationDegrees; /*" Degrees (-180 to 180) "*/
 float _myTargetRotationDegrees; /*" Deg. (-180 to 180) (should be
 0, 90, 180, or 270) "*/
}

/*" Designated initializer "*/
- (id)init;

The low-pass filter is time based. An -update method is needed to implement the filter and should be called at
regular time intervals.

/*" Update "*/
- (void)update;

This is yet another magical aspect of design. The thought process that resulted in the specification of an -update
method in the MYBlock class progressed as follows: First, smooth motion of blocks was anticipated even though it
is not required. Then, a low-pass filter was selected to implement smooth motion from an actual position and rotation
to a target position and rotation. Finally, the -update method was needed to implement the filter. The need to call
the -update method at regular time intervals effects the design of the other classes that must call it. Each design
decision has rippling effects. A designer must consider each design decision, anticipate the consequences, and judge
the merits. Different designers will invariably make different subjective judgments.

Accessor methods are needed to set and get the actual and target positions and rotations.

/*" Positioning & rotation "*/
- (void)setPosition:(NSPoint)aPosition;
- (NSPoint)position;
- (BOOL)canFallDelta:(float)aDelta inModel:(MYGameModel *)aModel;
- (void)fallDelta:(float)delta inModel:(MYGameModel *)aModel;
- (void)moveTargetPositionLeftInModel:(MYGameModel *)aModel;
- (void)moveTargetPositionRightInModel:(MYGameModel *)aModel;
- (void)moveTargetRotationClockwiseInModel:(MYGameModel *)aModel;
- (void)moveTargetRotationCounterclockwiseInModel:(MYGameModel *)aModel;

The requirement to place subblocks into the game grid based on the position and orientation of the falling block,
implies the need to be able to convert subblock positions from the coordinate system of the falling block to the
coordinate system of the grid.

/*" Conversion to grid coordinates "*/
- (void)convertSubBlocksToGrid;

The need to place the subblocks contained in the falling block into the grid suggests that an accessor method is
needed. The most direct approach is to access subblocks by index. Some equally valid approaches include the use of
a custom enumerator, or an accessor that returns an array containing the subblocks.

/*" Sub-block access "*/
- (MYSubBlock *)subBlockAtIndex:(int)anIndex;

/*" Clean-up: "*/
- (void)dealloc;

Finally, the MYBlock class must override its inherited -dealloc method to release the contained subblocks.

@end

MYGameModel Class

MYGameModel is the final class in the model subsystem. This class defines and stores the game grid data structure
and indirectly stores all game state. The -update method must be called periodically to update the game state. In
this design, the game update rate is determined by the controller subsystem, which calls -update. A reasonable
alternative design includes the periodic game update in the model itself. In this game, each time the model is updated,
the view should also be updated. The controller subsystem has access to both the model and the view, making it an
ideal location to update both. If game update was handled entirely within the model, a notification sent from the
model could be used to trigger view updates.

//
// MYGameModel.h
// TransparentTetris
//

#import <Foundation/Foundation.h>

The size of the game grid is available in the class interface rather than hidden in the implementation so that other
classes can use the information. The MYBlock class and MYSubBlock class can use the information to detect
attempts to position subblocks outside the bounds of the grid. Classes in the view or controller subsystems can use
the information.

In this design, the grid dimensions are specified with symbolic constants. An alternative approach would be to
provide methods to obtain the grid dimensions. If the grid dimensions were only accessed through methods the grid
dimensions could be variable. For variety, they could be different every time the game is played. Using methods
exclusively would also improve encapsulation and avoid the necessity of recompiling all classes that use the
dimensions whenever the dimensions are changed.

The primary reason for using symbolic constants rather than methods is that storage for the game grid is defined
using a two-dimensional C array. Multidimensional C arrays must be declared with constant sizes. If the size of the
grid was not a constant expression evaluated at compile time, the storage for the grid would have to be allocated
explicitly in the implementation introducing additional complexity. In a more complicated application, the additional
complexity in the implementation might be justified by the improved encapsulation and flexibility provided by
methods. In this case, simple is better, but it is a close judgement call.

#define MYGAME_GRID_HEIGHT (20) /*" number of rows in sub-block grid "*/
#define MYGAME_GRID_WIDTH (10) /*" number of columns in sub-block grid "*/

Just as notifications were used to inform interested, anonymous observers about events in the MYBlock class, they
are used by MYGameModel when the falling block stops falling, when a row of subblocks is removed from the grid,
and when individual subblocks are removed from the grid. Classes in the controller or view subsystems can observe
these notifications to play sounds or display visual effects as appropriate. The key to the design is that the
MYGameModel class has no dependencies on classes outside the model.

/*" Notification Names "*/
#define MYROW_WAS_REMOVED_NOTIFICATION (@"MYRowWasRemovedNotification")
#define MYSUBBLOCK_WILL_BE_REMOVED_NOTIFICATION (\
 @"MYSubBlockWillBeRemovedNotification")
#define MYSBLOCK_WAS_PLACED_IN_GRID_NOTIFICATION (\
 @"MYBlockWasPlacedInGridNotification")

@class MYSubBlock;
@class MYBlock;

The MYGameModel class stores the game grid, the current falling block, the status of the game, the score, and the
distance that the falling block should fall during each game update.

@interface MYGameModel : NSObject
{
 /*" Sub-blocks grid "*/
 MYSubBlock *_mySubBlockGrid[MYGAME_GRID_HEIGHT][MYGAME_GRID_WIDTH];
 MYBlock *_myFallingBlock; /*" block that is falling "*/
 BOOL _myIsRunning; /*" YES iff game running (not paused) "*/
 BOOL _myIsGameOver; /*" YES iff the game is over "*/
 BOOL _myIsDropping; /*" YES iff falling block was dropped "*/
 int _myScore; /*" Score "*/
 float _myCurrentFallDelta; /*" Increases-> game more difficult "*/
}

/*" Designated Initializer "*/
- (id)init;

The need for periodic game updates is implied by the game description. The fact that a block moves, rotates, and falls
implies time-based changes in game state. The need for update is also dictated by the design decisions made in the
MYBlock class. The MYGameModel class is responsible for calling the -update method of the current falling
block at regular time intervals.

/*" Periodic update "*/
- (void)update;

Methods must be provided, so that the controller subsystem can query and modify the game state as the result of
player actions.

/*" Game State "*/
- (void)reset;
- (BOOL)isRunning;
- (BOOL)isGameOver;
- (void)pause;
- (void)resume;
- (int)score;

/*" falling block "*/
- (MYBlock *)fallingBlock;
- (BOOL)fallingBlockCanFall;
- (void)moveFallingBlockLeft;
- (void)moveFallingBlockRight;
- (void)dropFallingBlock;
- (void)rotateFallingBlockClockwise;
- (void)rotateFallingBlockCounterclockwise;

The subblocks at specific grid positions are accessible so that other classes can detect collisions, and so that the
model can be displayed.

/*" sub-block grid access "*/
- (MYSubBlock *)subBlockAtX:(int)column y:(int)row;

/*" Clean-up: "*/
- (void)dealloc;

The MYGameModel class must override its inherited -dealloc method to release the falling block and the
subblocks stored in the game grid.

@end

TransparentTetris View

The view subsystem is implemented with one custom class, some categories on model classes, and the object
instances stored in the application's .nib file. As usual with Cocoa applications, very little code is required for the
view subsystem. The MYBlockView class has only five methods.

MYBlockView Class

Ideally, the view subsystem should not have dependencies on the model or controller subsystems. In this case, the
MYBlockView class contains an instance variable to directly reference the model. The additional complexity
required to limit model access strictly to the controller subsystem would defeat the purpose of the MVC architecture
in this application. The goals of MVC should be applied in the following order of decreasing importance for Cocoa
applications:

● Limit dependencies between the model and other subsystems
● Limit the complexity of the controller subsystem

● Limit the dependencies between the view and other subsystems

The primary justification for ordering the goals this way is the relative simplicity of view subsystems in Cocoa. Other
development environments make the view subsystem so difficult and inflexible that almost any degree of complexity
can be tolerated in the controller subsystem to simplify and isolate the view subsystem. Given Interface Builder, most
changes to the view subsystem in Cocoa applications do not require any code. The controller subsystem of Cocoa
applications, therefore, becomes the most prone to expensive code changes throughout the life of the application. To
reduce the cost of the code changes, the controller subsystem should be kept as simple as possible, even at the
expense of increased dependencies in the view subsystem.

There is no need to override the initializer inherited from the NSView class. No special initialization is required.

//
// MYBlockView.h
// TransparentTetris
//

#import <AppKit/AppKit.h>

@class MYGameModel;

@interface MYBlockView : NSView
{
 MYGameModel *_myGameModel; /*" Reference: model to display "*/
}

/*" Model access "*/
- (MYGameModel *)gameModel;
- (void)setGameModel:(MYGameModel *)aModel;

/*" Drawing configuration "*/
- (void)setBaseColor:(NSColor *)aColor;

/*" Drawing "*/
- (void)drawRect:(NSRect)aRect;

/*" Clean-up: "*/
- (void)dealloc;
@end

TransparentTetris Controller

The controller subsystem in TransparentTetris is implemented in just one class, MYGameController. The purpose
of the controller is to accept actions from the user interface in the view subsystem and translate them into messages
to the model. The controller must keep the information presented by the view consistent with the information stored
in the model. The controller must, therefore, tell the view subsystem to redraw the game board, update the displayed
score, and update the status of user interface elements such as menus to reflect the state of the model.

MYGameController Class

An instance of the MYGameController class is instantiated in Interface Builder, and set as the application object's
delegate. Classes in the controller subsystem are commonly implemented as singletons, meaning that only one
instance is ever allocated. The application's delegate is usually an object from the controller subsystem. For example,
an instance of NSDocumentController can be the application's delegate in multidocument applications built

using the Project Builder template provided by Apple, and there is only one instance of NSDocumentController
in such applications.

The MYGameController class registers as an observer of several notifications that are sent by the classes in the
model subsystem. When notifications are received, the controller plays sounds as required. MYGameController
also manages user preferences for colors, and sounds.

In this design, the controller is responsible for the periodic update of the game. The controller must call the -
update method of the MYGameModel class at regular intervals as long as the game is not over and not paused. The
technique used to enable periodic updates is described in the implementation of this class.

The MYGameController class does not implement an initializer. Game state initialization is performed in the -
applicationDidFinishLaunching: delegate method that is called automatically by the application object.

//
// MYGameController.h
// TransparentTetris
//

#import <Foundation/Foundation.h>
#import <AppKit/AppKit.h>

@class MYGameModel;
@class MYBlockView;
@class NSTextField;

@interface MYGameController : NSObject
{
 MYGameModel *_myGameModel; /*" model that stores game
 board data "*/
 // Outlets
 IBOutlet MYBlockView *_myBlockView; /*" View: display model "*/
 IBOutlet NSImageView *_myBackgroundView; /*" View: display background
 image "*/
 IBOutlet NSTextField *_myScoreField; /*" Field: display score "*/
 IBOutlet NSTextField *_myGameOverField; /*" Field: display
 GAME OVER "*/
 IBOutlet NSButton *_myEnableSoundButton; /*" Button: enable sound "*/
 IBOutlet NSColorWell *_mySubBlockColorWell; /*" Color well: display/set
 sub-block color "*/
}

/*" Actions "*/
- (IBAction)rotateCounterclockwise:(id)sender;
- (IBAction)rotateClockwise:(id)sender;
- (IBAction)moveLeft:(id)sender;
- (IBAction)moveRight:(id)sender;
- (IBAction)drop:(id)sender;
- (IBAction)togglePause:(id)sender;
- (IBAction)reset:(id)sender;
- (IBAction)takeSubBlockBaseColorFrom:(id)sender;
- (IBAction)takeSoundEnabledFrom:(id)sender;

/*" Application delegate methods "*/
- (void)applicationDidFinishLaunching:(NSNotification *)aNotification;

- (void)applicationDidBecomeActive:(NSNotification *)aNotification;
- (void)applicationDidResignActive:(NSNotification *)aNotification;

/*" Automatic menu validation "*/
- (BOOL)validateMenuItem:(NSMenuItem *)anItem;

/*" Clean-up: "*/
- (void)dealloc;

@end

The -togglePause: action method is used to implement a common idiom in Cocoa applications. A single menu
item is connected to the -togglePause: action. Each time the action is sent, the pause state of the application is
changed. The title of the menu item is changed to indicate the result of the next invocation of the action. When the
game is running, the menu's title is Pause. When the game is paused, the same menu item's title is Resume. The title
of the menu item is controlled by the automatic menu validation logic in the -validateMenuItem: method.
Menu validation is described in Chapter 16, "Menus."

Book: Cocoa® Programming
Section: Chapter 26. Application Requirements, Design, and Documentation

Implementing the Design

The design has defined the roles and public interfaces of the various classes in TransparentTetris. The
implementation of each class is straightforward. In some cases, private methods and private categories are needed.
Several idioms that are unique to Cocoa applications are described along with their uses in the implementations.

The user interface is built in Interface Builder. A MYBlockView instance is used to display the game board. An
instance of the MYGameController class is instantiated in Interface Builder and made the application object's
delegate. An instance of NSImageView is used to provide a background behind the game board, and made editable
so that the user can set the background image via drag and drop at runtime. Text fields are used for the score and the
"Game Over" indication. A utility panel with five buttons is used to enable the player to move the falling block left,
move it right, rotate it clockwise, rotate it counterclockwise, and drop it.

The best way to understand the interface and the connections between the objects is to examine the application's .
nib file in Interface Builder. One tool that is missing from the standard Cocoa tool set is an application to document
the connections made in .nib files. At least one commercial tool was available for use with previous versions of
Interface Builder, but it doesn't work with the latest versions.

MYSubBlock Class

The designated initializer for the MYSubBlock class is the - initX:y: method. The -init method inherited
from the NSObject class is overridden to call -initX:y: with default arguments. Whenever the designated
initializer for a class is different from the designated initializer of the superclass, the designated initializer of the
superclass must be overridden to call the new designated initializer. The new designated initializer must call the
superclass's designated initializer.

The most common Cocoa idiom for the introduction of a new designated initializer is used in the MySubBlock
class. The new designated initializer contains a line of the form self = [super
oldDesignetedInitializer]; MYSubBlock also overrides the inherited designated initializer to call the
new designated initializer with a line similar to return [self newDesignatedInitializer];.

Assertions are used to verify that the arguments to the initializer are within acceptable constraints. If the condition in
an assertion evaluates to NO, an NSAssertionFailed exception is raised with the exception's argument set to the
textual description of the assertion expression.

//
// MYSubBlock.m
// TransparentTetris
//

#import "MYSubBlock.h"
#import "MYGameModel.h"

@implementation MYSubBlock
/*"
Each instance of this class represents either a sub-block that occupies a
position in the grid or a sub-block that is part of the falling block. Each
sub-block stores its position (either in the grid or in a falling block). A
sub-block's position is always stored in whole numbers so that its position
lines up with the sub-block grid or with the other sub-blocks in a falling

block.
"*/

- (id)initX:(int)x y:(int)y
/*"
 Designated initializer: Initializes the receiver with the specified
position.
"*/
{
 // Always call the super-class's designated initializer
 self = [super init];

 // Sanity check the position
 NSAssert(x >= 0 && x < MYGAME_GRID_WIDTH,
 @"Attempt to init sub-block outside grid");
 NSAssert(y >= 0 && y < MYGAME_GRID_HEIGHT,
 @"Attempt to init sub-block outside grid");

 // Set the position
 myXPosition = x;
 myYPosition = y;

 return self;
}

- (id)init
/*" Implemented to return [self initX:0 y:0] "*/
{
 return [self initX:0 y:0];
}

// Accessors
- (int)xPosition
/*" Returns the receiver's X position "*/
{
 return _myXPosition;
}

- (int)yPosition
/*" Returns the receiver's Y position "*/
{
 return _myYPosition;
}

- (void)setXPosition:(int)x
/*" Sets the receiver's X position "*/
{
 _myXPosition = x;
}

- (void)setYPosition:(int)y
/*" Sets the receiver's Y position "*/
{

 _myYPosition = y;
}

@end

MYBlock Class

The requirements state that within falling blocks several different patterns of subblocks must be available. The
available patterns of subblocks are defined as static data in the implementation. The patterns could have been stored
in a data file for more flexibility, but the extra flexibility is not needed for this application. From a design and
implementation standpoint, any time more than a few lines of static data are declared, consider using a data file
instead.

The required random selection of a pattern from the set of available patterns is incorporated in the designated
initializer.

Requirements 5, 6, and 8 are satisfied by this class. This class assists the MYGameModel class satisfaction of
requirements 9, 10, 11, and 12.

//
// MYBlock.m
// TransparentTetris
//

#import "MYBlock.h"
#import "MYSubBlock.h"
#import "MYGameModel.h"

/*" The number of block shapes (patterns) defined for the game "*/
#define _MYNUM_BLOCK_SHAPES (7)
@implementation MYBlock
/*"
Instances of this class encapsulate the falling block in the game. A block
consists of some number of sub-blocks arranged in a pattern. The block can be
moved side to side as it falls. The block can also be rotated in increments of
90 degrees. Side to side motion and rotation are animated smoothly using a
simple low-pass filter. When a block is moved or rotated, its new target
position and rotation are stored. Each time a block is updated, it's position
and rotation are adjusted half the distance toward the target values. The
visual effect is that the block slides left or right and rotates smoothly
rather than jumping between integral positions in the sub-block grid. Call
-fallDelta:inModel: to move the block down and simulate falling. The speed at
which the block falls is determined by the delta argument to
-fallDelta:inModel:.

Notifications Posted:

MYBLOCK_DID_SLIDE_NOTIFICATION : Sent when block slides left or right.
 ARGUMENT: The block that is sliding.

 MYBLOCK_DID_ROTATE_NOTIFICATION : Sent whenever a block rotates.
 ARGUMENT: The block that rotated.

"*/

/*" Type used to store flags that indicate which sub-blocks are used by a
block shape (pattern) "*/
typedef struct {
 BOOL subBlockIsPresent[MYNUM_SUBBLOCKS_IN_BLOCK]
[MYNUM_SUBBLOCKS_IN_BLOCK];
} _MYBlockShapeData;

Figure 26.2 shows the block patterns defined by the following data.

Figure 26.2. The blocks in TransparentTetris have these patterns.

/*" Defines the available block shapes (patterns) "*/
static _MYBlockShapeData myBlockShapes[_MYNUM_BLOCK_SHAPES] = {
{{{NO, NO, NO, NO}, // Bar shape
 {YES, YES, YES, YES},
 {NO, NO, NO, NO},
 {NO, NO, NO, NO}}},
{{{NO, NO, NO, NO}, // Square shape
 {NO, YES, YES, NO},
 {NO, YES, YES, NO},
 {NO, NO, NO, NO}}},
{{{NO, NO, NO, NO}, // S Shape 1
 {YES, YES, NO, NO},
 {NO, YES, YES, NO},
 {NO, NO, NO, NO}}},
{{{NO, NO, NO, NO}, // S Shape 2
 {NO, NO, YES, YES},
 {NO, YES, YES, NO},
 {NO, NO, NO, NO}}},
{{{NO, NO, NO, NO}, // T Shape
 {NO, YES, NO, NO},
 {YES, YES, YES, NO},
 {NO, NO, NO, NO}}},
{{{NO, NO, NO, NO} // L Shape 1
 {NO, YES, NO, NO},
 {NO, YES, YES, YES},
 {NO, NO, NO, NO}}},
{{{NO, NO, NO, NO}, // L Shape 2
 {NO, NO, YES, NO},
 {YES, YES, YES, NO},
 {NO, NO, NO, NO}}}};

- (id)init
/*" Designated initializer: Initializes the receiver with a randomly selected
shape (pattern) "*/
{

 int i, j;
 int numberOfSubBlocksFound = 0;
 const _MYBlockShapeData *selectedBlockShape;

 // Always call the designated initializer of the super-class
 self = [super init];

 // Randomly select one of the pre-defined shapes
 selectedBlockShape = &myBlockShapes[random() % _MYNUM_BLOCK_SHAPES];

 // Set the initial actual and target position and rotation
 myPosition = _myTargetPosition = NSZeroPoint;
 myRotationDegrees = _myTargetRotationDegrees = 0.0;

 // Create the sub-blocks according to the selected shape
 for(j = 0; j < MYNUM_SUBBLOCKS_IN_BLOCK; j++) {
 for(i = 0; i < MYNUM_SUBBLOCKS_IN_BLOCK; i++) {
 if(selectedBlockShape->subBlockIsPresent[i][j]) {
 // We should not find more sub-blocks than we can store!
 NSAssert(numberOfSubBlocksFound < MYNUM_SUBBLOCKS_IN_BLOCK,
 @"Too many sub blocks in block shape definition");

 // Allocate, initialize, and store a new sub-block
 _mySubBlocks[numberOfSubBlocksFound] = [[MYSubBlock alloc] initX:i
 y:j];
 numberOfSubBlocksFound++;
 }
 }
 }

 return self;
}

The falling block must send an -update message periodically so that the low pass filter logic can be applied. In this
design, an instance of the MYGameModel class is responsible for calling the falling block's -update method.

// Update
- (void)update
/*"
 Call this method periodically. This method adjusts the receiver's
position and rotation half the distance toward the target values. The
effect is that the block slides left or right and rotates smoothly rather
than jumping between integral positions in the sub-block grid.

"*/
{
 if(!NSEqualPoints(_myPosition, _myTargetPosition)) {
 // Move the position half the distance to target position
 _myPosition.x += (_myTargetPosition.x - _myPosition.x) / 2.0;
 _myPosition.y += (_myTargetPosition.y - _myPosition.y) / 2.0;
 }

 if(_myRotationDegrees != _myTargetRotationDegrees) {
 // Rotate half the angular distance to target angle
 float deltaAngle = (_myTargetRotationDegrees -
_myRotationDegrees);

 // Limit the delta to range (180 to 180) so that direction of rotation is
 // preserved even across zero boundaries
 // There are always two angular distances (clockwise or counterclockwise)
 // to any target angle. This code makes sure that the shorter angular
 // distance is used.
 if(deltaAngle > 180.0) {
 deltaAngle -= 360.0;
 } else if(deltaAngle < -180.0) {
 deltaAngle += 360.0;
 }

 // Adjust the angle half the angular distance to the target angle
 _myRotationDegrees += deltaAngle / 2.0;

 // Limit to (-180 to 180) so comparisons to _myTargetRotationDegrees
 // will work.
 // Adding deltas can cause the angle to be less than -180 or greater
 // than +180 degrees. We convert the angle to its equivalent in the
 // (-180 to 180) range so that comparisons for equality will be
 // simpler.

 if(_myRotationDegrees > 180.0) {
 _ myRotationDegrees -= 360.0;
 } else if(_myRotationDegrees < -180.0) {
 _myRotationDegrees += 360.0;
 }
 }
}

Setting the position of a block also sets the target position. Otherwise, each update after the position is set will
change the block's position until it equals the target position. By setting both the position and the target position, the
block can be moved and it will stay at its new position until moved again or until the target position is set
independently.

// Positioning
- (void)setPosition:(NSPoint)aPosition
/*"
Set the receiver's position on a unit grid. Fractional values in aPosition
specify fractional offsets from integral grid alignment. Supporting fractional
offsets makes the smooth motion possible.

"*/
{
 _myPosition = aPosition;
 _myTargetPosition = aPosition;
}

- (NSPoint)position
/*" Returns the receiver's position "*/
{
 return _myPosition;
}

When a block stops falling, the subblocks contained in the block must be placed in the game grid. The conversion

from a position in the falling block to a position in the game grid is implemented here. The falling block's position,
pattern, and rotation are the inputs to the algorithm for converting positions. Because all the inputs to the algorithm
are available within the MYBlock class, the MYBlock class is a natural place to put the algorithm. Alternatively, the
algorithm could be implemented in the MYGameModel class, and use the available accessors of the MYBlock class
to obtain the inputs to the algorithm.

- (void)_myConvertPositionX:(int *)xPtr y:(int *)yPtr forAngle:(float)degrees
/*"
 Returns by reference in xPtr and yPtr the approximate integral positions
for a sub-block that is rotated degrees within the receiver. Use this method
to calculate the integral position at which a sub-block at (*xPtr, *yPtr)
within the receiver would be placed within the sub-blocks grid.

"*/
{
 float positiveDegrees = fmod(degrees + 360.0, 360.0); // constrain to
 // positive
degrees
 // for simplicity
 int resultX; // value to be returend
 int resultY; // value to be returned

 NSAssert(NULL != xPtr && NULL != yPtr, @"Invalid argument");

 if(positiveDegrees > 270.0 + 45.0 || positiveDegrees < 45.0) {
 // heading for 0 degrees so result position is same as position passed in
 resultX = *xPtr;
 resultY = *yPtr;

 } else if(positiveDegrees > 180.0 + 45.0) {
 // heading for 270 degrees so invert x and swap x and y
 resultY = (MYNUM_SUBBLOCKS_IN_BLOCK - 1) - *xPtr;
 resultX = *yPtr;

 } else if(positiveDegrees > 90.0 + 45.0) {
 // heading for 180 degrees so invert x and y
 resultX = (MYNUM_SUBBLOCKS_IN_BLOCK - 1) - *xPtr;
 resultY = (MYNUM_SUBBLOCKS_IN_BLOCK - 1) - *yPtr;
 } else {
 // heading for 90 degrees so invert y and swap x and y
 resultY = *xPtr;
 resultX = (MYNUM_SUBBLOCKS_IN_BLOCK - 1) - *yPtr;
 }

 // Return the results by reference
 *xPtr = resultX;
 *yPtr = resultY;
}

- (void)convertSubBlocksToGrid
/*"
 Converts the positions of all sub-block of the receiver to integral
grid aligned coordinates. After calling this method, the sub-blocks of
the receiver can be placed directly in the sub-block grid. Do not call
-update or -fall:inModel: after calling this method because the sub-block's

positions will have been altered in a way that will make -update or
-fall:inModel: work incorrectly!
"*/
{
 int i;

 // For each sub-block
 for(i = 0; i < MYNUM_SUBBLOCKS_IN_BLOCK; i++) {
 MYSubBlock *tempSubBlock = [self subBlockAtIndex:i];
 int subBlockPositionX = [tempSubBlock xPosition];
 int subBlockPositionY = [tempSubBlock yPosition];
 int gridPositionX;
 int gridPositionY;

 // Convert sub-block position by accounting for block's rotation
 [self _myConvertPositionX:&subBlockPositionX y:&subBlockPositionY
 forAngle:_myTargetRotationDegrees];

 // Offset the position based on the block's position
 gridPositionX = subBlockPositionX + _myTargetPosition.x - MYBLOCK_PIVOT_X;
 gridPositionY = subBlockPositionY + _myTargetPosition.y - MYBLOCK_PIVOT_Y;

 // grid pos may be outside game grid if block has not completely
 // fallen into the game board
 [tempSubBlock setXPosition:gridPositionX];
 [tempSubBlock setYPosition:gridPositionY];
 }
}

The MYBlock class determines whether it can occupy a particular position in the game grid. This private method is
used internally to validate requests to set the block's target position and rotation. In Objective-C, no method is truly
private. The Objective-C runtime allows messages to any method in any loaded class from any context. To indicate
that a method is private and should not be used except by the maintainers of the method, start the method name with
an underscore and a unique prefix. Don't declare private methods in the class interface. When using a class, respect
other developers' clear intentions for methods. Don't call methods that are not declared in the interface of a class or
one of its superclasses. Don't call or override methods that begin with an underscore unless absolutely necessary.

- (BOOL)_myCanOccupyPositionInModel:(MYGameModel *)aModel x:(int)x y:(int)y
 withRotation:(float)degrees
/*"
 Returns YES iff the falling block could occupy the integral grid-aligned
position specified without any sub-blocks hanging outside the sub-block grid
and without overlapping any existing sub-blocks in the sub-block grid.

*/
{
 int i;
 BOOL result = YES;

 for(i = 0; i < MYNUM_SUBBLOCKS_IN_BLOCK && result; i++) {
 MYSubBlock *tempSubBlock = [self subBlockAtIndex:i];
 int subBlockPositionX = [tempSubBlock xPosition];
 int subBlockPositionY = [tempSubBlock yPosition];
 int gridPositionX;
 int gridPositionY;

 [self _myConvertPositionX:&subBlockPositionX y:&subBlockPositionY
 forAngle:degrees];

 gridPositionX = subBlockPositionX + x - MYBLOCK_PIVOT_X;
 gridPositionY = subBlockPositionY + y - MYBLOCK_PIVOT_Y;

 if(gridPositionX < 0 || gridPositionX >= MYGAME_GRID_WIDTH) {
 // Position is outside grid
 result = NO;

 } else if(gridPositionY < 0) { // Don't check > MYGAME_GRID_
 // HEIGHT because we want block to fall in
 // Position is outside grid
 result = NO;
 } else if(nil != [aModel subBlockAtX:gridPositionX y:gridPositionY]) {
 // Position is occupied
 result = NO;
 }
 }

 return result;
}

- (BOOL)canFallDelta:(float)aDelta inModel:(MYGameModel *)aModel
/*"
 Returns YES iff the receiver can occupy the position in the sub-block
grid
that would result from lowering the receiver's position by aDelta.

"*/
{
 return ([self _myCanOccupyPositionInModel:aModel x:(_myTargetPosition.x)
 y:(_myTargetPosition.y - aDelta) withRotation:
_myTargetRotationDegrees]);
}

The -fallDelta:inModel: method must be called periodically. Both the target position and the actual position
are modified by the same delta, so that the low-pass filtering is not applied to falling. If only the target position was
set, the block would seem to speed up and slow down as it approached its target height. Falling only applies to the
vertical component of the block's position.

- (void)fallDelta:(float)delta inModel:(MYGameModel *)aModel
/*"
 If the receiver can occupy the position in the sub-block grid that
would result from lowering the receiver's position by aDelta this method
lowers the receiver's position and target position by delta. Otherwise
this method does nothing.

"*/
{
 if([self canFallDelta:delta inModel:aModel]) {

 _myPosition.y -= delta;
 _myTargetPosition.y -= delta;
 }

}

In each of the movement methods, if the commanded movement or rotation can occur without causing the block to
leave the game grid or overlap subblocks in the game grid, then the target position or rotation are modified
appropriately. Target rotation values are stored in the range -180°-+180°, so that angles can be easily compared and
so the direction of the difference between two angles is known. In the default-coordinate system used by Cocoa
applications, positive angular differences indicate counterclockwise rotation, whereas negative differences imply
clockwise rotation. For example, if angles were stored in the common 0°-360° Range when the block was rotated -90°
from 0, the target angle would be 270°. However, when the target angle and the actual angle are compared, the
difference is +270, indicating counterclockwise rotation when in fact the block was rotated -90° (clockwise). The
angle 270° and the angle -90° are identical except for the sign. Storing angles in the range -180°-180° preserves the
sign, and hence the direction of rotation in a way that the range 0°-360° does not.

- (void)moveTargetPositionLeftInModel:(MYGameModel *)aModel
/*"
 If the receiver can occupy the position in the sub-block grid that
would result from sliding the receiver's position left by one integral
position then this method moves the receiver's target position one integral
position left and sends the MYBLOCK_DID_SLIDE_NOTIFICATION notification to
the default notification center. Otherwise this method does nothing.

"*/
{
 if([self _myCanOccupyPositionInModel:aModel x:(_myTargetPosition.x - 1.0)
 y:_myTargetPosition.y withRotation:_myTargetRotationDegrees]) {

 _myTargetPosition.x -= 1.0;

 [[NSNotificationCenter defaultCenter]
 postNotificationName:MYBLOCK_DID_SLIDE_NOTIFICATION object:self];
 }
}

- (void)moveTargetPositionRightInModel:(MYGameModel *)aModel
/*"
 If the receiver can occupy the position in the sub-block grid that would
result from sliding the receiver's position right by one integral position
then
this method moves the receiver's target position one integral position right
and sends the MYBLOCK_DID_SLIDE_NOTIFICATION notification to the default
notification center. Otherwise this method does nothing.
"*/
{
 if([self _myCanOccupyPositionInModel:aModel x:(_myTargetPosition.x + 1.0)
 y:_myTargetPosition.y withRotation:_myTargetRotationDegrees]) {

 _myTargetPosition.x += 1.0;
 [[NSNotificationCenter defaultCenter]
 postNotificationName:MYBLOCK_DID_SLIDE_NOTIFICATION object:self];
 }
}

- (void)moveTargetRotationClockwiseInModel:(MYGameModel *)aModel
/*"

 If the receiver can occupy the position in the sub-block grid that would
result from rotating the receiver clockwise by 90 degrees then this method
moves the receiver's target rotation by 90 degrees clockwise and sends the
MYBLOCK_DID_ROTATE_NOTIFICATION notification to the default notification
center. Otherwise this method does nothing.

"*/
{
 float proposedTargetAngle = _myTargetRotationDegrees -90.0;

 // Limit to range (-180 to 180)
 if(proposedTargetAngle < -180.0) {
 proposedTargetAngle += 360.0;
 }

 if([self _myCanOccupyPositionInModel:aModel x:_myTargetPosition.x
 y:_myTargetPosition.y withRotation:proposedTargetAngle]) {

 _myTargetRotationDegrees = proposedTargetAngle;

 [[NSNotificationCenter defaultCenter]
 postNotificationName:MYBLOCK_DID_ROTATE_NOTIFICATION object:self];
 }
}

- (void)moveTargetRotationCounterclockwiseInModel:(MYGameModel *)aModel
/*"
 If the receiver can occupy the position in the sub-block grid that would
result from rotating the receiver counterclockwise by 90 degrees then this
method moves the receiver's target rotation by 90 degrees counterclockwise and
sends the MYBLOCK_DID_ROTATE_NOTIFICATION notification to the default
notification center. Otherwise this method does nothing.
"*/
{
 float proposedTargetAngle = _myTargetRotationDegrees + 90.0;

 // Limit to range (-180 to 180)
 if(proposedTargetAngle > 180.0) {
 proposedTargetAngle -= 360.0;
 }

 if([self _myCanOccupyPositionInModel:aModel x:_myTargetPosition.x
 y:_myTargetPosition.y withRotation:proposedTargetAngle]) {

 _myTargetRotationDegrees = proposedTargetAngle;

 [[NSNotificationCenter defaultCenter]
 postNotificationName:MYBLOCK_DID_ROTATE_NOTIFICATION object:self];
 }
}

// Sub-block access
- (MYSubBlock *)subBlockAtIndex:(int)anIndex
/*"
 Returns indexed sub-block of receiver.

anIndex must be >= 0 and < MYNUM_SUBBLOCKS_IN_BLOCK.

"*/
{
 NSAssert(anIndex >= 0 && anIndex < MYNUM_SUBBLOCKS_IN_BLOCK,
 @"Invalid sub-block index");

 return _mySubBlocks[anIndex];
}

The subblocks retained by an instance of MYBlock must be released in -dealloc. If the subblocks have been
retained in the game grid they will not be deallocated here.

- (void)dealloc
/*" Clean-up: Releases the receiver's sub-blocks. "*/
{
 int i;
 for(i = 0; i < MYNUM_SUBBLOCKS_IN_BLOCK; i++) {
 [_mySubBlocks[i] release];
 _mySubBlocks[i] = nil;
 }

 [super dealloc];
}

@end

MYGameModel Class

Most of the logic of the game is implemented in this class. The implementation is fairly long in printed form and
contains several private methods, but it is straightforward. The controller accesses the model by calling the methods
of this class.

This class directly or indirectly implements the following requirements:

● Stores the game board, which consists of a rectangular grid that stores subblocks. [Requirements 1, 2]
● Initializes the grid so that no subblocks are stored in the grid when the game starts. [Requirement 3]
● Creates and stores the falling block making sure that exactly one falling block exists at all times.

[Requirement 4]
● Is implemented to cause the falling block to fall during game updates. [Requirement 7]
● Provides methods that move the falling block's target position left or right. [Requirement 9]
● Provides methods that change the falling block's target rotation in increments of 90°. [Requirement 10]
● Detects when the falling block must stop falling, stops it, and adds subblocks to the grid. [Requirements 11,

12]
● Stores the score, removes complete rows of subblocks in the grid, increases the score, and moves subblocks

above removed rows down. [Requirements 13, 14, 15]
● Removes the falling block when it has stopped falling, creates a new falling block with a randomly selected

pattern, places the new falling block at the top of the game grid, increases the distance that the falling block
falls during each update of the game, and causes the block to fall. [Requirements 16, 17, 18]

● Stores the game over status, detects when a new falling block at the top of the game grid cannot fall without
overlapping one or more subblocks already in the grid, and sets the game over status. [Requirement 19]

● Stores sufficient game state so that a game can be paused and resumed. [Requirements 22, 23]

The following code implements the MYGameModel class defined in the TransparentTetris design.

//
// MYGameModel.m
// TransparentTetris
//

#import "MYGameModel.h"
#import "MYSubBlock.h"
#import "MYBlock.h"

Arbitrary constants are used to control the game difficulty and scoring logic. Try different constants to see their
impact on game play.

#define _MYINITIAL_FALL_DELTA (0.1) /*" Relatively slow (game easy) "*/
#define _MYMAX_FALL_DELTA (1.0) /*" Very Fast (game hard) "*/
#define _MYFALL_DELTA_INCREASE_PER_BLOCK (0.005) /*" Reach maximum speed
 after 200 blocks "*/
#define _MYINITIAL_SCORE_MULTIPLIER (10) /*" Initial number of point for each
 sub-block removed "*/
#define _MYSCRORE_MULTIPLIER_DELTA_PER_ROW (10) /*" Additional points for
each
 sub-block in consecutive removed
 rows "*/

The format of the comments results in attractive documentation generated by the AutoDoc application. Two or more
blank lines in the comments are necessary to persuade AutoDoc to leave a blank line in the documentation. AutoDoc
removes individual blank lines.

@implementation MYGameModel
/*"
In the model/view/controller (MVC) architecture, this class is the principal
component of the model. The majority of the application's state and data
structures are encapsulated by this class. The model is self contained. It
does not have any dependencies on code that is not part of the model such as
classes that are part of the view or controller portions of the application.
The firm separation between the model and the view/control portions of an
application can have dramatic positive influences on an application's design,
implementation, and maintainability. Ideally, the same model can be used with
any number of different views.

This class sends several notifications in order to inform the view and/or
controller portions of the application that something important has happened.
The other portions of the application can observe the notifications and act
appropriately when they are received. For instance, the controller might play
a sound when a row is removed from the sub-block grid.

Notifications Posted:

 MYROW_WAS_REMOVED_NOTIFICATION : Sent after a row is removed.
 ARGUMENT: NSNumber of removed row number

 MYSUBBLOCK_WILL_BE_REMOVED_NOTIFICATION : Sent before sub-block removed.
 ARGUMENT: The block that was removed.

 MYSBLOCK_WAS_PLACED_IN_GRID_NOTIFICATION : Sent after placed in grid.
 ARGUMENT: nil

"*/

// Initializer
- (id)init
/*" Designated initializer: Calls [self reset] to initialize game state. "*/
{
 // Always call super-class's designated initializer
 self = [super init];

 // Reset the game state
 [self reset];

 return self;
}

- (void)pause
/*" Pause the game "*/
{
 _myIsRunning = NO;
}

- (void)resume
/*" Resume the game "*/
{
 if(!_myIsGameOver) {

 _myIsRunning = YES;
 }
}

- (float)_myMaximumFallDeltaPerUpdate
/*" Returns maximum distance that falling block can fall in one update "*/
{
 return _MYMAX_FALL_DELTA;
}

- (float)_myFallDeltaPerUpdate
/*"
 Returns the distance that the falling block should fall during the
current update. The distance gradually increases as the game is played
to make the game get harder and harder. If the -dropFallingBlock method
has been called since the current falling block was created then the
distance returned is the maximum distance that the falling block can fall
in one update.

"*/
{
 float result = _myCurrentFallDelta; // Use current distance by
default

 if(_myIsDropping) {
 // return the maximum distance
 result = [self _myMaximumFallDeltaPerUpdate];

 }

 return result;
}
- (void)_mySetSubBlock:(MYSubBlock *)aBlock atX:(int)x y:(int)y
/*"
 Set the sub-block at the specified position in the sub-block grid.
"*/
{
 // Sanity check the specified position
 NSAssert(x >= 0 && x < MYGAME_GRID_WIDTH, @"Set sub-block outside grid");
 NSAssert(y >= 0 && y < MYGAME_GRID_HEIGHT,
 @"Attempt to set sub-block outside grid");

 // Normal "set" accessor idiom
 [aBlock retain];
 [_mySubBlockGrid[y][x] release];
 _mySubBlockGrid[y][x] = aBlock;

 // Make the sub-block's stored position consistent with its actual position
 [aBlock setXPosition:x]; // make sure the sub block knows its position
 [aBlock setYPosition:y]; // make sure the sub block knows its position
}

- (void)_myPlaceFallingBlock
/*"
 This method is called when the falling block can no longer fall. This
method places the sub-blocks that compose the falling block into the sub-block
grid. Sends the MYSBLOCK_WAS_PLACED_IN_GRID_NOTIFICATION with a nil argument.
Observers of the notification might draw special effects or play a sound to
highlight this event.

"*/
{
 int i;

 // Force falling block to convert all of its sub-block positions into the
 // sub-block grid's coordinate system. Assures correct placement of
 // sub-blocks in a rotated falling block.
 [_myFallingBlock convertSubBlocksToGrid];

 // Place each sub-block in the falling block into the sub-block grid
 for(i = 0; i < MYNUM_SUBBLOCKS_IN_BLOCK; i++) {
 MYSubBlock *tempSubBlock = [_myFallingBlock subBlockAtIndex:i];
 int gridPositionX;
 int gridPositionY;

 gridPositionX = [tempSubBlock xPosition]; // provides grid position after
 // call -convertSubBlocksToGrid
 gridPositionY = [tempSubBlock yPosition]; // provides grid position after
 // call -convertSubBlocksToGrid

 if(gridPositionX < 0 || gridPositionX >= MYGAME_GRID_WIDTH) {
 // Error: Position is outside grid

 } else if(gridPositionY < 0 || gridPositionY >= MYGAME_GRID_HEIGHT) {

 // Error: Position is outside grid

 } else if(nil != [self subBlockAtX:gridPositionX y:gridPositionY]) {
 // Error: Position is occupied

 } else {
 // Place the sub-block in the sub-block grid
 [self _mySetSubBlock:tempSubBlock atX:gridPositionX y:gridPositionY];
 }
 }

 // Send notification
 [[NSNotificationCenter defaultCenter] postNotificationName:
 MYSBLOCK_WAS_PLACED_IN_GRID_NOTIFICATION object:nil];
}

- (void)_myGenerateRandomFallingBlockAtPosition:(NSPoint)aPoint
/*"
 Releases the current falling block and allocates a new falling block
positioned at aPoint in game board coordinates.

"*/
{
 [_myFallingBlock release]; // Release current falling block
 _myFallingBlock = [[MYBlock alloc] init]; // Allocate/init new falling
block
 [_myFallingBlock setPosition:aPoint]; // Set new falling block's pos
 _myIsDropping = NO; // Reset flag so new block
 // will fall slowly
}

- (BOOL)_myRemoveAndScoreCompleteRowsWithMultiplyer:(int)scoreMultiplyer
/*"
 This method is called when a falling block can no longer fall. This
method searches the sub-block grid for a complete row of sub-blocks. If a
complete row is found, the sub-blocks in that row are removed from the
sub-block grid. Each time a sub-block is removed, the MYSUBBLOCK_WILL_BE_
REMOVED_NOTIFICATION notification is sent to the default notification center.
The argument to the notification is an NSValue containing an NSPoint that
identifies the x,y position of the sub-block that is about to be removed from
the sub-block grid. Observers of the notification may draw special effects or
play a sound for each block removed. After the row of sub-block is removed,
the rows above the removed row are moves down to fill in the empty row.
Finally, the score is increased by (MYGAME_GRID_WIDTH * scoreMultiplyer).

 If a row is removed by this method, this method returns YES. Otherwise
it returns NO. At most one row will be removed each time this method is
called. Therefore, this method should be called repeatedly in a loop until
it returns NO indicating that there are no more complete rows to remove.
Each time this method is called in the loop, the scoreMultiplyer can be
increase so that removing multiple rows increases the score.

"*/
{

 int i, j; // Loop index
 BOOL foundFullRow = NO; // YES iff a full row is found

 // Search bottom to top for full row of sub-blocks in the sub-block grid
 for(j = 0; j < MYGAME_GRID_HEIGHT && !foundFullRow; j++) {
 int numSubBlocksInRow = 0; // Num sub-blocks found so far

 // Search for sub-blocks in the row
 for(i = 0; i < MYGAME_GRID_WIDTH; i++) {
 if(nil != [self subBlockAtX:i y:j]) {
 numSubBlocksInRow++;
 }
 }
 foundFullRow = (numSubBlocksInRow == MYGAME_GRID_WIDTH);

 if(foundFullRow) {
 // A complete row of sub-blocks was found

 // Remove each sub-block in the row
 for(i = 0; i < MYGAME_GRID_WIDTH; i++) {
 // Notify any observers that a sub-block will be removed
 [[NSNotificationCenter defaultCenter] postNotificationName:
 MYSUBBLOCK_WILL_BE_REMOVED_NOTIFICATION object:
 [NSValue valueWithPoint:NSMakePoint(i, j)]];

 // Remove the sub-block
 [self _mySetSubBlock:nil atX:i y:j];
 }

 // Copy all of the rows above the removed row down
 for(; j < (MYGAME_GRID_HEIGHT - 1); j++) {
 for(i = 0; i < MYGAME_GRID_WIDTH; i++) {
 [self _mySetSubBlock:[self subBlockAtX:i y:j+1] atX:i y:j];
 [self _mySetSubBlock:nil atX:i y:j+1] }
 }

 // Increase the score
 _myScore += (MYGAME_GRID_WIDTH * scoreMultiplyer);
 }
 }

 return foundFullRow;
}

- (BOOL)isRunning
/*"
 Returns YES iff the game is NOT paused.
"*/
{
 return _myIsRunning;
}

- (BOOL)isGameOver
/*"
 Returns YES iff the game is not over. The game is over when a newly

created falling block can not fall because the sub-block grid is too full.

"*/
{
 return _myIsGameOver;
}

- (void)reset
/*"
 Removes all sub-blocks in the sub-block grid. Releases the current
falling block if any. Sets the score to zero. Sets the current fall delta
to its initial default value (slow), and sets the game over flag to NO.

"*/
{
 int i, j;

 // Clear out sub-block grid
 for(j = 0; j < MYGAME_GRID_HEIGHT; j++) {
 for(i = 0; i < MYGAME_GRID_WIDTH; i++) {
 [self _mySetSubBlock:nil atX:i y:j]; // Releases any blocks in grid
 }
 }

 // forget falling block
 [_myFallingBlock release];
 _myFallingBlock = nil;

 // reset score, falling delta, and game over state
 _myScore = 0;
 _myCurrentFallDelta = _MYINITIAL_FALL_DELTA;
 _myIsGameOver = NO;
}

- (int)score
/*"
 Returns the current score.
"*/
{
 return _myScore;
}

In this design, the MYGameController class calls the -update method at regular time intervals. The -update
method in turn calls the -update method of the falling block.

- (void)update
/*"
 Call this method at regular intervals. This method implements the
TransparentTetris game update logic. If the current falling block can not
fall without leaving the game board or colliding with sub-blocks in the
sub-block grid then the component sub-blocks of the falling block are
removed and placed in the sub-block grid. Then any complete rows are removed
and the score is increased appropriately. Each time a row is removed, the
 MYROW_WAS_REMOVED_NOTIFICATION notification with an NSNumber argument that

identifies the row number removed is posted to the default notification
center. Then a new falling block is created at the top center of the game
board. If the new falling block can not fall then the game is over.

In all cases, the current falling block is told to fall and update so that
smooth motion in the sub-block grid can be simulated.

"*/
{
 if(![self fallingBlockCanFall]) {
 int scoreMultiplyer; // Increase score when multiple
 // rows are removed at once
 int numberOfRowsRemoved = 0; // The falling block is done falling!

 [self _myPlaceFallingBlock]; // Add sub-block of falling block to
 // the sub-block grid

 // Score and remove rows that are complete after falling block placed
 // in the grid
 for(scoreMultiplyer = _MYINITIAL_SCORE_MULTIPLIER; [self
 _myRemoveAndScoreCompleteRowsWithMultiplyer:scoreMultiplyer];
 scoreMultiplyer += _MYSCRORE_MULTIPLIER_DELTA_PER_ROW) {
 numberOfRowsRemoved++;

 [[NSNotificationCenter defaultCenter] postNotificationName:
 MYROW_WAS_REMOVED_NOTIFICATION object:
 [NSNumber numberWithInt:numberOfRowsRemoved]];
 }

 // Start a new random block at the center top
 [self _myGenerateRandomFallingBlockAtPosition:
 NSMakePoint(MYGAME_GRID_WIDTH / 2, MYGAME_GRID_HEIGHT)];

 // If the falling block that was just placed at the top of the grid
 // can not fall then the game is over
 _myIsGameOver = ![self fallingBlockCanFall];
 }

 // Make the falling block fall if possible. -_myFallDeltaPerUpdate returns
 // increasing values as the game progresses causing the falling blocks to
 // fall faster and faster making the game harder and harder
 [_myFallingBlock fall:[self _myFallDeltaPerUpdate] inModel:self]; // Fall

 // Give the falling block a chance to rotate and move side to side
 [_myFallingBlock update];
}

- (MYSubBlock *)subBlockAtX:(int)column y:(int)row
/*"
 Returns the sub-block if any at the specified position in the sub-block
grid.

"*/
{
 MYSubBlock *result = nil;

 if(column >= 0 && column < MYGAME_GRID_WIDTH && row >= 0 &&
 row < MYGAME_GRID_HEIGHT) {

 result = _mySubBlockGrid[row][column];
 }
 return result;
}

- (MYBlock *)fallingBlock
/*"
 Returns the current falling block if any.

"*/
{
 return _myFallingBlock;
}

- (BOOL)fallingBlockCanFall
/*"
 Returns YES if the current falling block can fall without leaving the
game board or colliding with an existing sub-block in the sub-block grid.

"*/
{
 return (_myFallingBlock != nil && [_myFallingBlock canFallDelta:
 [self _myFallDeltaPerUpdate] inModel:self]);
}

- (void)moveFallingBlockLeft
/*"
 Moves the current falling block's target position to the left. The
falling block will progressively move toward its target position on successive
updates creating smooth animation.

"*/
{
 [_myFallingBlock moveTargetPositionLeftInModel:self];
}

- (void)moveFallingBlockRight
/*"
 Moves the current falling block's target position to the right. The
falling block will progressively move toward its target position on
successive updates creating smooth animation.

"*/
{
 [_myFallingBlock moveTargetPositionRightInModel:self];
}

- (void)dropFallingBlock
/*"

 This method sets a flag that causes the falling block to fall as fast as
possible until it can not fall without leaving the game board or colliding
with an existing sub-block in the sub-block grid. This method also increases
the score by the height of the falling block when this method is called in
order to reward the player for dropping it. When the next falling block is
generated, the flag that causes blocks to fall as fast as possible is reset
so that the new block will fall as a more sedate rate.

"*/
{
 _myIsDropping = YES;

 // Increase score proportional to height at which drop starts
 _myScore += (int)[_myFallingBlock position].y;
}

- (void)rotateFallingBlockClockwise
/*"
 Moves the current falling block's target rotation angle 90 degrees
clockwise. The falling block will progressively rotate toward its target
rotation angle on successive updates creating smooth animation.

"*/
{
 [_myFallingBlock moveTargetRotationClockwiseInModel:self];
}

- (void)rotateFallingBlockCounterclockwise
/*"
 Moves the current falling block's target rotation angle 90 degrees
counterclockwise. The falling block will progressively rotate toward its
target rotation angle on successive updates creating smooth animation.

"*/
{
 [_myFallingBlock moveTargetRotationCounterclockwiseInModel:self];
}

The -dealloc method calls -reset to release the falling block and any subblocks in the grid. -reset is also
called from -init. Using a single method that sets an instance to a default state results in a single point of
maintenance in the code. The use of such a method in both -init and -dealloc can save lines of code when new
instance variables are added to the class. In this case, only the -reset method needs to be changed if new instance
variables are added.

- (void)dealloc
/*"
 Clean-up: Calls reset to release sub-blocks and falling block if any.

"*/
{
 // Release the falling block and all of the sub-blocks
 [self reset];

 // Always call super-class's dealloc

 [super dealloc];
}

@end

The MYBlockView class and the application's .nib file compose the view subsystem of TransparentTetris. The
purpose of the view subsystem is to present the data stored in the model subsystem to users and accept input from
users.

One traditional difficulty encountered when implementing the MVC architecture is that some classes seemingly need
to be in multiple subsystems. In this application, blocks and subblocks need to be drawn. The natural implementation
of drawing that maximizes opportunities for polymorphism is to include drawing methods in the MYBlock and
MYSubBlock classes. However, drawing is clearly a role of the view subsystem, and the MYBlock and
MYSubBlock classes are part of the model. Blocks and subblocks could be drawn any number of different ways. It
should be possible to have alternate view subsystems that draw the model in different ways. If drawing code is
implemented in the model, then each time the appearance of the game is changed the model will need to be changed.

Objective-C provides an elegant solution to the problem. The methods for drawing blocks and subblocks can be
added in categories from within the view subsystem. The added methods take full advantage of opportunities for
polymorphism, and the code is implemented in the most appropriate subsystem. The implementation of the classes
within the model is complete, self contained, and separately usable. The view subsystem adds methods to the model
classes to help implement the view. Other views could add different methods without conflict.

In this implementation, the -_myBlockViewDraw method is added to both the MYSubBlock and MYBlock
classes. These methods are only called from the MYBlockView class. The drawing code is kept together in one
subsystem. The interfaces for the two categories are private, and defined within the implementation of the
MYBlockView class. As a result, they are not readily accessible outside the MYBlockView class, and they are
maintained along with the MYBlockView class where they are used.

The implementation of this class and the application's .nib file directly or indirectly satisfy the following
requirements:

● The color and transparency used to draw subblocks can be set. A preferences panel with a color well and
access to the standard color panel are provided in the application's .nib file. [Requirement 20]

● This class is a subclass of NSView, and can be used in any Cocoa window. A window containing an instance
of this class is provided in the application's .nib file. [Requirement 21]

● Menu items to start/reset a game as well as pause and resume a game are provided in the application's .nib
file. [Requirement 22, 23, 24]

● A preferences panel with a toggle button to enable or disable sound play is provided in the application's .
nib file. [Requirement 26]

//
// MYBlockView.m
// TransparentTetris
//
#import "MYBlockView.h"
#import "MYGameModel.h"
#import "MYSubBlock.h"
#import "MYBlock.h"

@interface MYSubBlock (_MYBlockViewDrawingSupport)
/*" Private category for drawing sub-blocks in an instance of _MYBlockView "*/

/*" Base color configuration "*/

+ (void)reinitColorsWithBaseColor:(NSColor *)aColor;

/*" Drawing "*/
- (void)_myBlockViewDraw;

@end

@interface MYBlock (_MYBlockViewDrawingSupport)
/*" Private category for drawing blocks in an instance of _MYBlockView "*/

/*" Drawing "*/
- (void)_myBlockViewDraw;

@end

The use of private categories can be a very powerful technique. As with most powerful techniques, this one is prone
to abuse. To avoid spaghetti code and maintenance hassles, follow theses guidelines:

● The methods added via a private category in another class's implementation should not modify the state of the
extended class or have side effects on the extended class.

● The methods added via a private category in another class should only be used within the source file where
they are declared.

@implementation MYBlockView
/*"
In the MVC architecture, an instance of this class is the principal "view"
component. This class draws the game model so that the game grid fits the
view's bounds exactly. Within this file, specialized drawing methods for
sub-blocks and blocks are added to the relevant classes via categories. As a
result, all drawing code is implemented in this file. The MVC partitioning
is maintained. The model knows nothing about drawing. Another view could draw
the same model differently by implementing its own drawing methods in separate
categories. In fact, multiple different views of the same model could exist
simultaneously without conflict.

"*/

- (void)setBaseColor:(NSColor *)aColor
/*" Set the base color to use when drawing sub-blocks "*/
{
 [MYSubBlock reinitColorsWithBaseColor:aColor];
}

- (MYGameModel *)gameModel
/*" Returns the model that will be drawn by the receiver "*/
{
 return _myGameModel;
}

- (void)setGameModel:(MYGameModel *)aModel
/*" Sets the model that will be drawn by the receiver "*/
{
 [aModel retain];

 [_myGameModel release];
 _myGameModel = aModel;
}

The MYBlockView instance defined in the application's .nib file is configured to resize along with the window
that contains it. Scaling the coordinate system to represent one unit in the game grid as one unit when drawing,
simplifies drawing. The use of floating-point positions enables simple fractional offsets from grid positions. The
drawing of subblocks can be defined in terms of fractions of a unit square area.

- (void)drawRect:(NSRect)aRect
/*"
 This method is called automatically by the application whenever the view
should be drawn. This method is implemented to scale the current coordinate
system so that the game model's sub-block grid will fit exactly in the
receiver's bounds when drawn. Then the sub-blocks if any in the model's grid
are drawn. Finally the model's falling block if any is drawn.

"*/
{
 NSAffineTransform *translateTransform = [NSAffineTransform transform];
 int i, j;
 float xScaleFactor = [self bounds].size.width / MYGAME_GRID_WIDTH;
 float yScaleFactor = [self bounds].size.height /
MYGAME_GRID_HEIGHT;

 // scale coordinate system so that correct number of sub blocks will fit
 // regardless of the size of the bounds
 [translateTransform scaleXBy:xScaleFactor yBy:yScaleFactor];
 [translateTransform concat];

 // Draw all of the model's sub-blocks
 for(j = 0; j < MYGAME_GRID_HEIGHT; j++) {
 for(i = 0; i < MYGAME_GRID_WIDTH; i++) {
 [[[self gameModel] subBlockAtX:i y:j] _myBlockViewDraw];
 }
 }

 // Draw the model's falling block
 [[[self gameModel] fallingBlock] _myBlockViewDraw];
}

@end

The subblocks are drawn as five rectangles representing the center of a subblock and four bezels. The colors of the
five rectangles are derived from a color that can be set with the +reinitColorsWithBaseColor class method;
defined in the _MYBlockViewDrawingSupport category of the MYSubBlock class. A class method is used
because the color is shared by all instances of MYSubBlock.

@implementation MYSubBlock (_MYBlockViewDrawingSupport)
/*"
 Private category for drawing sub-blocks in an instance of_MYBlockView.
This code is part of the view in the MVC design. My extending the MYSubBlock
class with a category that is part of the view, the implementation of
MYSubBlock within the model can remain generic and not contain any code that
is view specific.
"*/

/*" The number of rectangles needed to draw a sub-block. "*/
#define _MYNUM_SUB_BLOCK_RECTS (5)

/*"
 The colors of the rectangles needed to draw a sub-block. Each sub-block
is represented by a central rectangle and four surrounding rectangles that
simulate bezels. These are the colors of the central rectangle and the bezels.

"*/
static NSColor *mySharedSubBlockColors[_MYNUM_SUB_BLOCK_RECTS] = {
 nil,
 nil,
 nil,
 nil,
 nil
};

/*"
 The rectangles needed to draw a sub-block (defined within an unit
square). Each sub-block is represented by a central rectangle and four
surrounding rectangles that simulate bezels

"*/
static NSRect mySharedSubBlockRects[_MYNUM_SUB_BLOCK_RECTS] = {
 {{0.0, 0.0}, {0.8, 0.8}}, // center
 {{0.0, 0.0}, {0.1, 1.0}}, // left
 {{0.1, 0.0}, {0.9, 0.1}}, // bottom
 {{0.9, 0.1}, {0.1, 0.9}}, // right
 {{0.1, 0.9}, {0.8, 0.1}} // top
};

Static variables can be used to store data shared by all instances of a class. This is a common idiom in Cocoa
applications. Class methods should be used to access the static data.

+ (void)reinitColorsWithBaseColor:(NSColor *)aColor
/*"
 Re-initializes the table of colors used to draw the rectangles that
represent a sub-block. aColor is used as the color of the center of the
sub-block. The other rectangles are drawn with either a highlighted variant
of aColor or a shadowed variant of aColor.
"*/
{
 NSColor *baseColor = [aColor copy];

 [mySharedSubBlockColors[0] release];
 mySharedSubBlockColors[0] = baseColor;
 [mySharedSubBlockColors[1] release];
 mySharedSubBlockColors[1] = [[baseColor highlightWithLevel:0.6] retain];
 [mySharedSubBlockColors[2] release];
 mySharedSubBlockColors[2] = [[baseColor shadowWithLevel:0.9] retain];
 [mySharedSubBlockColors[3] release];
 mySharedSubBlockColors[3] = [[baseColor shadowWithLevel:0.9] retain];
 [mySharedSubBlockColors[4] release];
 mySharedSubBlockColors[4] = [[baseColor highlightWithLevel:0.6] retain];
}

The MYBlockView class is implemented to draw by scaling its view coordinates to fit the size of the game grid.
Because this category of MYSubBlock is implemented in the same file, the implementation detail of
MYBlockView can safely be used to implement the -_myBlockViewDraw method in MYSubBlock. The
encapsulation (implementation hiding) of the MYBlockView class is preserved. No dependence on the
implementation of MYBlockView leaks into the model or even out of the file in which MYBlockView is
implemented. However, if the implementation of the -drawRect: method in MYBlockView is changed, the -
_myBlockViewDraw method will also have to change. Note such dependencies in the method documentation.

- (void)_myBlockViewDraw
/*"
Saves the current coordinate system, translates the current coordinate system
so that the origin is coincident with the receiver's position, draws the
colored rectangles that represent the receiver within a unit square, and then
restores the previous coordinate system. Before calling this method, make sure
that the current coordinate system has been scaled so that a unit square is
the appropriate size on the display.

"*/
{
 NSAffineTransform *translateTransform = [NSAffineTransform transform];

 [NSGraphicsContext saveGraphicsState];
 [translateTransform translateXBy:_myXPosition yBy:_myYPosition]; // Assumes
 // current coordinate system scaled
 // to grid dimensions
 [translateTransform concat];
 NSRectFillListWithColorsUsingOperation(mySharedSubBlockRects,
 mySharedSubBlockColors, _MYNUM_SUB_BLOCK_RECTS, NSCompositeSourceOver);
 [NSGraphicsContext restoreGraphicsState];
}

@end

@implementation MYBlock (_MYBlockViewDrawingSupport)
/*"
 Private category for drawing blocks in an instance of _MYBlockView. This
code is part of the view in the MVC design. My extending the MYBlock class
with a category that is part of the view, the implementation of MYSubBlock
within the model can remain pure and not contain any code that is view
specific.

"*/

// Drawing
- (void)_myBlockViewDraw
/*"
Saves the current coordinate system, translates the current coordinate system
so that the origin is coincident with the receiver's position, draws the
colored sub-blocks that compose the receiver, and then restores the previous
coordinate system. Before calling this method, make sure that the current
coordinate system has been scaled so that a unit square is the appropriate
size on the display.

"*/

{
 int i;

 NSAffineTransform *translateTransform = [NSAffineTransform transform];

 // Save the state
 [NSGraphicsContext saveGraphicsState];
 // Create a coordinate system for drawing the block
 [translateTransform translateXBy:_myPosition.x yBy:_myPosition.y];
 // Translate to center of rotation
 [translateTransform rotateByDegrees:_myRotationDegrees]; // Rotate
 [translateTransform translateXBy:-MYBLOCK_PIVOT_X yBy:-MYBLOCK_PIVOT_Y];
 // Make center of block coincident with
 // block position
 [translateTransform concat];

 // Draw all of the sub-blocks in the grid
 for(i = 0; i < MYNUM_SUBBLOCKS_IN_BLOCK; i++) {
 [_mySubBlocks[i] _myBlockViewDraw];
 }

 // Restore the state
 [NSGraphicsContext restoreGraphicsState];
}

@end

MYGameController Class

An instance of this class acts as a bridge between the view of the game and the model of the game. Following the
MVC architecture, this class is the controller. Controllers should be kept as simple and small as possible. Most
importantly, controllers should store little or no program state information. Program state (other than purely display
state) belongs in the model. A common mistake is to make the controller portion of an application too big, too
complex, and too full of important state information. When that happens, the whole MVC architecture breaks down
because if either the model or view part of the system changes, the controller portion usually changes. If too much
code is implemented in the controller the benefits of keeping the portions separate are greatly diminished.

This class principally consists of outlets to view subsystem objects provided in the application's .nib file, and action
methods that are invoked from objects in the applications .nib file. The outlets are used to keep the user interface
objects consistent with the state of the model. The action methods are used to change the state of the model.

One crucial element of the TransparentTetris design that has been left for implementation in the class is the periodic
game update. As long as the game is not over and not paused, this class sends -update messages to the a
MYGameModel instance at regular time intervals.

This class stores the user's sound and color preferences in the his defaults database. Management of user preferences
can be part of the controller or the model in the MVC architecture. The color is saved and restored to satisfied
requirement 27.

//
// MYGameController.m
// TransparentTetris
//

#import "MYGameController.h"

#import "MYGameModel.h"
#import "MYBlockView.h"
#import "MYSubBlock.h"
#import "MYBlock.h"

#define _MYPAUSE_TITLE (@"Pause") /*" Title when game can be paused "*/
#define _MYRESUME_TITLE (@"Resume") /*" Title when game can be resumed "*/
#define _MYGAME_UPDATE_PERIOD (0.05)/*" Game update period: 50ms (1/20
seconds)
 -> 20 Hz "*/

@implementation MYGameController
/*"
 An instance of this class acts as a bridge between the view of the game
and the model of the game. Following the model/view/controller (MVC)
architecture, this class is the controller. There may be any number of
different ways to view the game such as where the score is displayed, if there
is a background, the size of the window in which the game is played, how the
"game over" message is displayed, how user input is collected, etc. None of
the different ways to view the game have any impact on the game data in the
model. Similarly, there may be many different models with different ways to
represent the game data itself. This class, the controller, ties the model and
the view together. The view should know as little as possible about the model
or else the view will have to be changed every time the model changes. The
model should know absolutely nothing about the view or else the model will
have to change every time the view changes. (In most applications, the model
stabilizes, but the views continually evolve) This class knows about both the
model and the view, and as a result any significant changes to the model or
the view will require changes to this class.
Observed Notifications:

 MYROW_WAS_REMOVED_NOTIFICATION

 MYSBLOCK_WAS_PLACED_IN_GRID_NOTIFICATION

 MYBLOCK_DID_SLIDE_NOTIFICATION

 MYBLOCK_DID_ROTATE_NOTIFICATION

"*/

The Game Over view is a simple noneditable text field configured in the application's .nib file. The view is added
and removed from the window that contains the MYBlockView instance to show or hide the Game Over text. The
Game Over view is referenced by the _myGameOverField instance variable, and retained so that it is not
deallocated when it is removed from the view hierarchy.

- (void)_myShowGameOver
/*"
 This method inserts the "game over" field into the view hierarchy (thus
making it visible) if it is not already in the view hierarchy.

"*/
{
 if(nil == [_myGameOverField superview]) {
 // _myGameOverField is NOT already in the view hierarchy

 [_myGameOverField setFrame:[_myBackgroundView bounds]];
 // size "game over" to fill the game area
 [_myBackgroundView addSubview:_myGameOverField];
 // add it to the view hierarchy
 // (make it visible)

 // Display the background view and indirectly the "game over" view also
 [_myBackgroundView displayIfNeeded];
 }
}

- (void)_myHideGameOver
/*"
 This method removes the "game over" field from the view hierarchy
(thus making it invisible) if it is in the view hierarchy

"*/
{
 if(nil != [_myGameOverField superview]) {
 // _myGameOverField IS in the view hierarchy
 // Remove _myGameOverField from the view hierarchy
 // _myGameOverField will NOT be deallocated NOW because we retained it in
 // -applicationDidFinishLanching:
 [_myGameOverField removeFromSuperview];

 // Display the background view and indirectly erase the "game over"
 // view also
 [_myBackgroundView displayIfNeeded];
 }
}

The -_myRunStep: method is called by the -togglePause: method and the -reset method to start the
periodic update of the game. This is one technique for implementing periodic update and animation. Each time -
_myRunStep: is called, any previously scheduled calls to -_myRunStep: are canceled. If the game is still
running, another call to -_myRunStep: is scheduled after a delay, via the -performSelector:withObject:
afterDelay: method declared in a category of NSObject within NSRunLoop.h. The facility to call an
arbitrary method after an arbitrary delay is very handy. For another way to schedule periodic messages to an object,
see the NSTimer class.

Each time -_myRunStep: is called, the game model is updated via a call to MYGameModel's -update method.
Then, -setNeedsDisplayInRect: is sent to the view that displays the game grid and falling block. The integer
value of the field that displays the score is set, causing the field to redraw if necessary. Finally, if the game is over,
the -_myShowGameOver method is called.

A small optimization of display update is used in -myRunStep:. The -setNeedsDisplayInRect: method is
used rather than -setNeedsDisplay: so that only the area that actually needs display will be redrawn. Only the
rectangle that encloses the falling block and a little margin above and to the sides changes during a single update. The
extra margin is needed to erase the space where the falling block might have been drawn on the last update. If -
setNeedsDisplay: was used, the entire view would be redrawn after every update of the game model.

Use the -setNeedsDisplay and -setNeedsDisplayInRect: methods rather than -display or -
displayInRect:. This will enable the ApplicationKit to better queue drawing and minimize unnecessary
drawing. The -setNeedsDisplay and -setNeedsDisplayInRect: methods take advantage of the
ApplicationKit's autodisplay features. No matter how many times you call -setNeedsDisplay for a view, it will

only be redrawn at most once per user event. Calling -display forces the view to immediately redraw. Using the
application kit to optimize drawing can simplify your code. Use the QuartzDebug.app in /Developer/
Applications to see how the TransparentTetris game redraws.

// Periodic action
- (void)_myRunStep:(id)sender
/*"
 Call this method to execute one update of the game. If the game is not
paused and the game is not over, this method automatically schedules another
call to this method after a short delay. As a result, once this method is
called, the game will continue to "play" until it is paused or over.

"*/
{
 NSPoint fallingBlockOrigin;
 float xScaleFactor = [_myBlockView bounds].size.width / MYGAME_GRID_WIDTH;
 float yScaleFactor = [_myBlockView bounds].size.height /
MYGAME_GRID_HEIGHT;

 // Cancel any previously scheduled calls to this method so that we do not
 // inadvertently get called too often
 [[self class] cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(_myRunStep:) object:nil];

 if([_myGameModel isRunning] && ![_myGameModel isGameOver]) {
 // Schedule another call to this method
 [self performSelector:@selector(_myRunStep:) withObject:nil
 afterDelay:_MYGAME_UPDATE_PERIOD];
 }

 // Update the game model. The update may result in the game being over
 [_myGameModel update];

 // Tell the game view that it must refresh the rectangle that encloses the
 // falling block plus a little margin above and to the sides to erase the
 // space where the falling block may have been drawn on the last update.
 // This block of code could be replaced by a simple [_myBlockView
 // setNeedsDisplay:YES], but that would cause the entire view to redraw when
 // only the rectangle around the falling block really needs to be redrawn.
 fallingBlockOrigin = [[_myGameModel fallingBlock] position];
 [_myBlockView setNeedsDisplayInRect:NSMakeRect(((fallingBlockOrigin.x -
 (MYNUM_SUBBLOCKS_IN_BLOCK / 2)) - 1) * xScaleFactor,
 (fallingBlockOrigin.y - (MYNUM_SUBBLOCKS_IN_BLOCK / 2)) * yScaleFactor,
 (MYNUM_SUBBLOCKS_IN_BLOCK + 2) * xScaleFactor,
 (MYNUM_SUBBLOCKS_IN_BLOCK + 1) * yScaleFactor)];

 // Refresh the score
 [_myScoreField setIntValue:[_myGameModel score]];

 if([_myGameModel isGameOver]) {
 // The game is now over so show the "game over" indication
 [self _myShowGameOver];
 }
}

Before playing any sounds, this class checks the user's preference for sound playing. In this implementation, the

user's preference is stored in the user's defaults database. There is no need to maintain an instance variable for the
user's preference. It can be found in the defaults database each time it is needed. The first time the default values are
accessed, an NSDictionary containing the user's preferences is loaded into memory. Subsequent queries about a
default value are fast.

- (void)_myModelRowWasRemoved:(NSNotification *)aNotification
/*"
 This method is called when a MYROW_WAS_REMOVED_NOTIFICATION notification
is received. This method plays a sound effect and updates the display.

"*/
{
 if([[NSUserDefaults standardUserDefaults] boolForKey:@"isSoundEnabled"]) {
 NSSound *submarine = [NSSound soundNamed:@"Submarine"];

 [submarine play];
 }

 // Display immediatly so that user sees each row removed
 [_myBlockView setNeedsDisplay:YES];
}

- (void)_myModelBlockWasPlacedInGrid:(NSNotification *)aNotification
/*"
 This method is called when a MYSBLOCK_WAS_PLACED_IN_GRID_NOTIFICATION
notification is received. This method plays a sound effect and updates the
display.

"*/
{
 if([[NSUserDefaults standardUserDefaults] boolForKey:@"isSoundEnabled"]) {
 NSSound *funk = [NSSound soundNamed:@"Funk"];

 [funk play];
 }

 [_myBlockView setNeedsDisplay:YES];
}

- (void)_myModelBlockDidSlideInGrid:(NSNotification *)aNotification
/*"
 This method is called when a MYBLOCK_DID_SLIDE_NOTIFICATION notification
or a MYBLOCK_DID_ROTATE_NOTIFICATION notification is received. This method
plays a sound effect and updates the display.

"*/
{
 if([[NSUserDefaults standardUserDefaults] boolForKey:@"isSoundEnabled"]) {
 NSSound *tink = [NSSound soundNamed:@"Tink"];

 [tink play];
 }
}

- (IBAction)rotateCounterclockwise:(id)sender
/*" Asks the model to rotate the falling block counterclockwise "*/
{
 [_myGameModel rotateFallingBlockCounterclockwise];
}

- (IBAction)rotateClockwise:(id)sender
/*" Asks the model to rotate the falling block clockwise "*/
{
 [_myGameModel rotateFallingBlockClockwise];
}

- (IBAction)moveLeft:(id)sender
/*" Asks the model to move the falling block left "*/
{
 [_myGameModel moveFallingBlockLeft];
}

- (IBAction)moveRight:(id)sender
/*" Asks the model to move the falling block right "*/
{
 [_myGameModel moveFallingBlockRight];
}

- (IBAction)drop:(id)sender
/*" Asks the model to drop the falling block. (make it fall faster) "*/
{
 [_myGameModel dropFallingBlock];
}

- (IBAction)togglePause:(id)sender
/*"
 If the model is not paused then this method asks the model to pause.
Otherwise, this method asks the model to resume and then starts the periodic
update of the model and the view.

"*/
{
 if([_myGameModel isRunning]) {
 [_myGameModel pause]; // Pause the model
 } else {
 [_myGameModel resume]; // Resume the model
 [self _myRunStep:nil]; // start the periodic update
 }
}

- (IBAction)reset:(id)sender
/*"
 Resets the game model, hides the "game over" message if it is visible and
starts the periodic update of the game model and view.

"*/
{
 [self _myHideGameOver]; // Hide the "game over" (harmless if not visible)
 [_myGameModel reset]; // Reset the model
 [_myGameModel resume]; // Make sure the model is not paused
 [self _myRunStep:nil]; // start the periodic update
}

In addition to setting the color used to draw subblocks, the -takeSubBlockBaseColorFrom: method saves the
color in the user's defaults database. When a Cocoa application is quit, any changes made to the default's database are
automatically saved in a file in the user's home directory. In this application, the user's preferences are reloaded from
the defaults database in the -_myUpdateUIWithDefaults method, which is called from -
applicationDidFinishLaunching:.

- (IBAction)takeSubBlockBaseColorFrom:(id)sender
/*"
 sender must respond to the -color message and return a color. This method
sets the base color used by the model to represent sub-blocks and stores the
color as a user default so that the same color will be used the next time the
game is launched by the same user.

"*/
{
 NSData *encodedColorData;

 NSAssert([sender respondsToSelector:@selector(color)],
 @"Attempt to take a color value from a sender that can not provide
one");

 // The the model what color to use
 [_myBlockView setBaseColor:[sender color]];

 // Tell the view that it needs to refresh
 [_myBlockView setNeedsDisplay:YES];

 // Set user sub-block base color preference
 // This trick of encoding the color simplifies storing colors in the
defaults
 // database
 encodedColorData = [NSArchiver archivedDataWithRootObject:[sender color]];
 if(nil != encodedColorData) {
 [[NSUserDefaults standardUserDefaults] setObject:encodedColorData
 forKey:@"subBlockBaseColorData"];
 }
}

- (IBAction)takeSoundEnabledFrom:(id)sender
/*"
 sender must respond to the -intValue message and return an int. This
method stores the boolean representation of the int value as a user default
so that the preference for enabling sound will be used the next time the
game is launched by the same user.

"*/

{
 NSAssert([sender respondsToSelector:@selector(intValue)],
 @"Attempt to take an int value from a sender that can not provide one");

 // Set user sound enabled preference
 [[NSUserDefaults standardUserDefaults] setBool:(BOOL)[sender intValue]
 forKey:@"isSoundEnabled"];
}

The -validateMenuItem: method is called automatically by the Cocoa-menu handling classes unless automatic
menu validation has been disabled by sending setAutoenablesItems:NO to the NSMenu object.

In this implementation, if the action of the anItem argument is -togglePause:, then anItem's title is set to
reflect the action that will be performed if the user selects anItem. If the game is running the title is set to Pause
because selecting the menu item will pause the game. If the game is already paused, the title is set to Resume because
selecting the menu will resume the game. This method disables anItem if the game is over.

- (BOOL)validateMenuItem:(NSMenuItem *)anItem
/*"
 If an instance of this class in the responder chain and automatic menu
validation is enabled (it is enabled unless programmatically disabled) then
this method is called automatically when a menu item is exposed. If anItem's
action is -togglePause: then this method sets anItem's title to "Pause" or
"Resume" as appropriate based on the model's state and disables anItem if
the game is over. If the game is not over and/or anItem's action is not
-togglePause: then this method returns YES which enables anItem by default.

"*/
{
 BOOL result = YES; // Default return value to enable anItem

 if([anItem action] == @selector(togglePause:)) {
 // anItem toggles the game's running status
 NSAssert([anItem respondsToSelector:@selector(setTitle:)],
 @"Invalid sender: does not respond to -setTitle:");

 if([_myGameModel isGameOver]) {
 // The game is over so disable anItem and set its title to "Pause"
 result = NO;
 [anItem setTitle:_MYPAUSE_TITLE];
 } else {
 // The game is not over
 if([_myGameModel isRunning]) {
 // Game is running therefore pressing anItem will pause the game so
set
 // the title to "Pause"
 [anItem setTitle:_MYPAUSE_TITLE];
 } else {
 // Game is paused therefore pressing anItem will resume the game so
set
 // the title to "Resume"
 [anItem setTitle:_MYRESUME_TITLE];
 }
 }
 }

 // Returns YES if anItem should be enabled
 return result;
}

- (void)_myUpdateUIWithDefaults
/*"
 Updates the relevant user interface elements so that they reflect the
user's preference values.

"*/
{
 NSData *encodedColorData;

 // Get user sound preference
 [_myEnableSoundButton setIntValue:[[NSUserDefaults standardUserDefaults]
 boolForKey:@"isSoundEnabled"]];

 // Get user tile color preference
 encodedColorData = [[NSUserDefaults standardUserDefaults]
 objectForKey:@"subBlockBaseColorData"];

 if(nil != encodedColorData) {
 NSColor *encodedColor = [NSUnarchiver
 unarchiveObjectWithData:encodedColorData];

 [_mySubBlockColorWell setColor:encodedColor];
 [_myBlockView setBaseColor:encodedColor];

 } else {
 // No previous default has been set
 NSColor *defaultColor = [NSColor colorWithCalibratedRed:0.7 green:1.0
blue:0.7
 alpha:0.2];

 [_mySubBlockColorWell setColor:defaultColor];
 [_myBlockView setBaseColor:defaultColor];
 }
}

// Application delegate methods
- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
/*"
This method is called automatically once after the application has fully
launched if an instance of this class is the delegate of the application's
application object. This method is implemented to seed the random number
generator with a time value so that the sequence of blocks will be different
in every game. The shared color panel is configured to allow the user to
select transparent colors. Without transparent colors this would not be
"TransparentTetris". The user's default preferences are loaded if any.
The game model is created and the game view is given access to the game model.
NOTE: It is usually a bad idea for a "view" object to have direct access to
a "model" object. However, this is a simple application and the "view" will
not modify the model. In this case the simplest design enables the view to
directly represent the model since the controller can not contribute any
value by interceding and we know that the view does not modify the model

behind the controllers back.

"*/
{
 // Initialize the random number generator so that the same sequence
 // is not repeated each time the game starts
 srandom([NSDate timeIntervalSinceReferenceDate]);

 // Configure shared color panel to allow transparency
 [[NSColorPanel sharedColorPanel] setShowsAlpha:YES];

 // Read user preferences and update UI
 [self _myUpdateUIWithDefaults];

 // Create the game model
 _myGameModel = [[MYGameModel alloc] init];

 // Configure view of model & background
 [_myBlockView setGameModel:_myGameModel];
 [_myBackgroundView setImage:[NSImage imageNamed:@"DefaultBackground"]];

 // Retain _myGameOverField so this it will not be deallocated if/when
removed
from
 // the view hierarchy
 [_myGameOverField retain];

 // Register for notification of interesting events in the model
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(_myModelRowWasRemoved:)
 name:MYROW_WAS_REMOVED_NOTIFICATION object:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(_myModelBlockWasPlacedInGrid:)
 name:MYSBLOCK_WAS_PLACED_IN_GRID_NOTIFICATION object:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(_myModelBlockDidSlideInGrid:)
 name:MYBLOCK_DID_SLIDE_NOTIFICATION object:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(_myModelBlockDidSlideInGrid:)
 name:MYBLOCK_DID_ROTATE_NOTIFICATION object:nil];

 // Start playing
 [self reset:nil];
}

- (void)applicationDidBecomeActive:(NSNotification *)aNotification
/*"
 This method is called automatically once after the application becomes
active if an instance of this class is the delegate of the application's
application object. This method is implemented to resume the game if it is
paused and start the periodic update of the game.

"*/
{
 [_myGameModel resume];
 [self _myRunStep:nil]; // start the periodic update

}

- (void)applicationDidResignActive:(NSNotification *)aNotification
/*"
 This method is called automatically once after the application resigns
being active if an instance of this class is the delegate of the application's
application object. This method is implemented to pause the game so that it
does not continue while the user is not paying attention.

"*/
{
 [_myGameModel pause];
}

- (void)dealloc
/*" Clean-up: Releases objects allocated or retained by the receiver "*/
{
 // Remove observer from from association with the notification center so
that
 // there is no chance that a notification will be sent after the instance is
 // deallocated
 [[NSNotificationCenter defaultCenter] removeObserver:self];

 // Release model that was allocated in -applicationDidFinishLaunching:
 [_myGameModel release];
 _myGameModel = nil;

 // We retained _myGameOverField in -applicationDidFinishLaunching: so we
must
 // release it now
 [_myGameOverField release];
 _myGameOverField = nil;

 [super dealloc];
}

@end

Book: Cocoa® Programming
Section: Chapter 26. Application Requirements, Design, and Documentation

Using AutoDoc

The code in this application is annotated with specially formatted comments that are
extracted by a tool called AutoDoc. AutoDoc can be freely obtained from www.misckit.
com. Examples of the output from AutoDoc are available along with this example at www.
cocoaprogramming.net.

AutoDoc is an open-source utility to generate documentation for Objective-C classes,
categories, and protocols by extracting comments imbedded in source-code files. AutoDoc
will also produce documentation for functions, static inline functions, definitions, macros,
typedefs, and global variables. AutoDoc can be used to generate documentation for just one
file at a time or for all files in a project. Documentation can be generated in either RTF,
HTML, or [PDF]LaTeX format.

Most of the documentation formatting is done using template files that enable a large
degree of flexibility in what the generated documentation looks like. AutoDoc comes with
three default templates, one each for RTF, HTML, and [PDF]LaTeX. The RTF template
file generates NeXTSTEP-style documentation. The HTML template generates
documentation similar to Apple's current Cocoa class documentation. The LaTeX template
generates a file meant to be further processed by 'pdflatex' to produce PDF documentation.
'pdflatex' can be found at http://www.tug.org/teTeX/. If pure LaTeX is needed, then the
template needs to be modified slightly to remove the hyperlink commands.

If desired, alternate templates can be specified. Support for other (text-based) document
formats should be relatively easy to add, but it cannot be done purely externally. Much of
the work is simply writing the template file, but a small amount of programmatic support is
necessary as well. The open-source nature of AutoDoc ensures that changes can be made to
support other output formats as they arise.

http://www.misckit.com/
http://www.misckit.com/
http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/
http://www.tug.org/teTeX/

Book: Cocoa® Programming
Section: Chapter 26. Application Requirements, Design, and Documentation

Summary

TransparentTetris is a small application that is just large enough to include most of the
design elements of large Cocoa applications. In this chapter, a technique for deriving
requirements from a description of the goal was employed without imposing a burdensome
process. The rationale for selecting a software architecture was explored. Although
TransparentTetris is not a traditional productivity application, it nevertheless benefited
from the Model/View/Controller architecture that is commonly, and successfully, used for
traditional applications with graphical user interfaces. Within the architecture, classes were
designed and implemented to satisfy the requirements. Finally, class documentation was
extracted from the code. One iteration of the software development cycle was completed,
and resulted in a small but useful application.

As with most applications, the first version of TransparentTetris lacks some features that
users might want. The natural next step in the development cycle is to use the application
(play the game), gather feedback, revise the requirements based on the feedback, revise the
design to meet the new requirements, and implement the new design.

TransparentTetris is a standalone application that is built upon the Cocoa frameworks
provided by Apple. In larger projects, and any time you want to simplify the reuse of code
by other programmers, consider creating new frameworks to contain the functions, classes,
and resources that you create. A framework packages all the related code and data into one
convenient unit of reuse. Chapter 27, "Create Your Own Frameworks," describes the
process of creating your own frameworks for use by others.

Book: Cocoa® Programming
Section: Part III: Cocoa Techniques

Chapter 27. Creating Custom Frameworks

IN THIS CHAPTER

● Creating and Using a Framework
● Header Files
● Providing Backward Compatibility
● Debugging Frameworks

As a developer uses Cocoa, it is common to build up a library of objects that are reused by
several applications. If there are very few modifications to the code from one application to
the next, it might be worth putting that code into a custom framework. A framework is a
special kind of bundle that packages a dynamic shared library with localizable image,
string, sound, and interface resources required by the library.

By placing reusable objects into frameworks, it is easier to include that code in new
projects. It is also easier to maintain the code because the reused source code is in the
framework project itself and not copied into every project. Project Builder is able to build
applications faster if much of the code has already been compiled and is included in a
framework. A framework can be used by multiple applications simultaneously. Sharing
code can save virtual memory and hard drive space.

The main downsides are that framework projects are a little bit more difficult to set up than
application projects. Frameworks are harder to debug than application projects, and writing
objects that are truly reusable takes longer and is harder than writing objects that aren't.
The setup complexities of framework projects aren't terrible, and they only have to be dealt
with once per framework. This chapter guides you through the process. The debugging and
other issues involved in designing generic, reusable objects could easily take up a whole
other book, so they'll only be briefly discussed in this chapter.

Book: Cocoa® Programming
Section: Chapter 27. Creating Custom Frameworks

Creating and Using a Framework

To start a new framework project, choose the New Project item (Cmd-Shift-N) from
Project Builder's File menu. This opens the New Project assistant. Choose Cocoa
Framework under the "Frameworks" heading. Click the Next button to advance to the next
page in the assistant. Enter the new framework's name in the Project Name field and click
the Finish button. After clicking the Finish button, a new framework project is created and
opened.

Objective-C classes, C++ classes, and C source files can all be added to the new project in
the same ways they would be added to an application project. Resources such as nib files,
strings files, images, and sounds can all be added in the usual way as well. After the
framework's elements are all present, the build settings should be configured.

Install Location

Apple recommends that applications be installable by drag and drop. In order for this to be
possible for an application that uses custom frameworks, the frameworks need to be
packaged inside the application bundle. A framework can only be used from the install
location. A framework built for embedding inside an application will not work when
installed in /Library/Frameworks. A framework built to be installed at /Library/
Frameworks cannot be embedded inside an application.

To build a framework that is embeddable, which is the preferred approach, the framework
needs to be told that it will be used from within an application bundle. This is done by
setting the framework's install location. To do this, select the framework's target in the
project's Targets tab, and then select the Build Settings tab. The Path field of the Install
Location section should be set to @executable_path/../ Frameworks. Figure
27.1 shows a project with this setting in place.

Figure 27.1. Setting a framework's install location.

If the framework will not be packaged inside an application bundle, set the install location
to where it is supposed to be installed. Paths such as /Library/Frameworks or /
Local/Library/Frameworks might make sense. To gain the benefits of sharing a
single framework between multiple applications, the framework must be installed external
to the applications. Doing this, however, makes an application more difficult for users to
install and uninstall because the frameworks aren't packaged with the application anymore.
This should generally be avoided unless the frameworks are so large that the extra hassle
for the user is far outweighed by the savings in hard drive space.

Prebinding

When an application launches, it needs to be linked with any dynamic frameworks it uses.
Part of this process includes assigning memory addresses to all the code segments of each
framework used by the application-this is called binding. Binding can be time consuming,
so Apple uses a technique called prebinding to speed it up. A prebound framework has
already been assigned a specific range of memory addresses. When an application using a
prebound framework launches, that framework's addresses are already assigned so that the
address assignment, or binding, step can be skipped.

The downside to prebinding is that if two frameworks are prebound to the same address
area, the application will ignore the prebinding when it launches. It is important, therefore,
to attempt to choose addresses that will not conflict with any other frameworks. Because of
the difficulties and limitations involved with prebinding, some developers will choose to
not bother with it. For smaller frameworks, the speed penalty for using a framework that

isn't prebound is minimal. For the large frameworks that Cocoa uses, it is significant and
worth the trouble.

NOTE

When an application is built, warnings will be generated if any of the
frameworks it uses are not prebound. This can be fixed by prebinding the
frameworks and rebuilding the framework. Warnings are also generated if
two prebound frameworks have conflicting memory address assignments. To
fix this, one of the conflicting frameworks needs to be rebuilt using a
different address.

To enable prebinding, a setting needs to be added to the Build Settings table at the bottom
of the Build Settings tab. In the OTHER_LDFLAGS row of the table, add the flag -
seg1addr <address> . The address is an eight digit hexadecimal number such as
0x3fff000. Figure 27.2 shows a project with this setting in place.

Figure 27.2. Setting a framework's install location.

When choosing an address for prebinding, there are two things to know. First, Apple has
reserved the addresses 0x40000000 and higher. Never pick an address in that range.
Second, the application's code is prebound starting at address 0x00000000. An address

higher than that should be selected. A good process to try is to choose an address as high as
possible while being sure that the framework doesn't overlap into the 0x40000000 range.
When a framework builds, the build log will provide the framework's built size, so it is
possible to calculate a good address range with a little hexadecimal math.

When multiple custom frameworks are used, it is best to use the same address selection
process, but start by putting the most often used frameworks at the highest address. The
next framework should be at a lower address, and so on, working the way down. If two
frameworks will never be used together, they can be assigned the same address. This
approach will leave more space for the program's code, which starts at 0x00000000 and
works its way up. If third-party frameworks are used, they might already have claimed
some addresses, so care should be taken to take that into account.

Because the addresses are statically assigned at build time, selecting the right address for
prebinding can be a painful process. Each developer has to decide whether it is worth the
trouble. There are several other issues with prebinding that are described in the Mac OS X
developer documentation. Start with the file /Developer/Documentation/
ReleaseNotes/Prebinding.html.

Building a Custom Framework

With install location and prebinding set up, a framework can be built. Frameworks that are
used external to an application can be built, and then be installed with a pbxbuild
install DSTROOT=/ from the command line. Frameworks to be embedded inside of
an application should not be built with an install build. They should be built with a normal
build only. In this case, the built framework is located in the project's build directory by
default.

Using a Custom Framework

To use a framework from within an application, add the framework as would be done for
any built-in Mac OS X framework. In Project Builder's Project menu, select the Add
Frameworks item (Option-Cmd-F). Select the framework in the open sheet, and add the
framework to the project by clicking the Open button.

The framework search path probably needs to be updated. This is the case if the framework
can't be found when building the application. Select the application's target in the projects
Targets tab, and then select the Build Settings tab. Near the bottom of the options is an area
labeled Search Paths. Add the path to the framework, excluding the framework's name to
the Frameworks path. For example, the path /Local/Library/Frameworks would
be added so that the build process could find /Local/Library/Frameworks/
Myframework.framework.

For frameworks that are embedded inside of an application's bundle, there is more to do.

Project Builder won't automatically copy the framework into the built application. Instead,
a copy files build phase needs to be added to the project. Go to the Project menu and New
Build Phase submenu. Select New Copy Files Build Phase.

NOTE

The menu item might not be enabled. If not, go to the Files and Build Phases
tab of the application target and select one of the build phases. Selecting a
build phase should enable the menu item to add a new copy phase.

If necessary, drag the newly added copy files build phase so that it is right before the
Frameworks & Libraries build phase. Select Frameworks from the pop-up. Drag the
custom frameworks into the Files area. All the frameworks that need to be copied into the
application bundle should appear in the Files list. Figure 27.3 shows what this build phase
looks like in Project Builder.

Figure 27.3. A new copy files phase added to the Project Builder framework target.

After the project is set up to find and include the frameworks, it should be possible to build
and run the application like normal.

Book: Cocoa® Programming
Section: Chapter 27. Creating Custom Frameworks

Header Files

A framework's files are its public interface. All code that wants to use the framework must
include one or more of its headers. Project Builder offers a few options for dealing with
header files that are of interest to framework builders. The first, precompiling, makes for
faster compiles. The second, private headers, makes it possible to separate internal and
external interfaces.

Precompiled Headers

To make compiles run faster when using a framework, it is possible to precompile the
framework's headers. Precompiling avoids the time that would be spent by the compiler to
parse the headers. To do this in a framework project, create a master header file that
imports all the public headers files in the project. (Look at a header such as the AppKit.h
header inside of AppKit.framework for an example.)

Add the master header to the Prefix Header section of the framework target's Build Settings
tab. There is a check box to the left of the header name. If the check box is on,
ProjectBuilder will precompile the header. Designating a header as a prefix header causes
it to be included as part of every source file in the project. Therefore, every source file in
the framework project will be compiled as if it started with an #import statement that
includes the precompiled header.

Figure 27.4. Precompiling a prefix header.

Public Versus Private API

When a framework is built, the headers are copied into the build product. It is possible to
control which headers are copied into the framework bundle. This is desirable because
functionality that is a private, internal implementation detail of a framework should not be
published. Publishing a private interface tempts users to use it.

When designing objects for a framework, it should be decided which methods are public
and should be in the public headers files. The remaining methods are private, and should be
placed in a separate header file that won't be copied into the framework when it is built.

All headers, whether public or private, are listed in the Headers build phase on the
framework target's Files & Build Phases tab. If a header is public, the Public switch should
be checked. By checking the public switch, the build process will know to copy the header
into the Headers folder inside the framework bundle. Figure 27.5 shows the public and
private switches.

Figure 27.5. Public and private header settings.

NOTE

It is tempting to check the Private switch for private headers-don't. Checking
the Private switch will cause the header to be copied into the
PrivateHeaders folder inside the framework. This is usually not
desirable. By checking nothing, the header will not be copied anywhere,
which is usually the desired result.

The headers are strictly necessary for building products that link to the framework. When a
framework is distributed for use as a runtime library, it is safe to delete the Headers
folder inside the framework bundle. This applies especially to frameworks that are
embedded inside of applications. Such frameworks don't need to waste disk space for
headers when installed at their final locations. When building an application that embeds
frameworks, it is often convenient to add a shell script build phase after the copy files
phase that copies the framework into the .app wrapper. The shell script simply deletes the
header files from the installed frameworks. A script used by one of the authors in his
projects looks like this:

echo "Remove the framework headers...."
cd $BUILD_PATH/../<Application Name>.app/Contents/Frameworks
rm -rf */Headers
rm -rf */Versions/*/Headers

rm -rf */Versions/*/PrivateHeaders
rm -rf */Versions/*/Resources/*/Contents/Headers
exit 0

This deletes the header files from any and all installed frameworks. To work correctly, this
script's build phase must be placed after the copy files phase, which copies the frameworks
into the application.

Book: Cocoa® Programming
Section: Chapter 27. Creating Custom Frameworks

Providing Backward Compatibility

The dynamic nature of Objective-C partially solves a problem known as the "fragile base
class problem," but it doesn't solve it completely. The main issue in the fragile base class
problem is that whenever an object's interface changes, all objects that interact with the
changed object need to be recompiled. With Objective-C, a recompile is only needed if the
number or order of instance variables change, and usually only subclasses of the changed
object need to be recompiled.

NOTE

More experienced programmers will recognize that this is an
oversimplification of the issues and solutions involving the fragile base class
problem. Many good articles are scattered across the Web that discuss this
problem. Those interested in learning the precise details should look a few of
them up. Good starting points are "The Fragile Base Class Problem and Its
Solution" by Mikhajlov and Sekerinski at http://www.tucs.fi/Publications/
techreports/tMiSe97.php and "What's the Fragile Base Class (FBC)
Problem?" by Peter Potrebic at http://2f.ru/holy-wars/fbc.html.

The main thing to know about the fragile base class problem is that changes to Objective-C
objects cause fewer repercussions to collaborating classes, which is good news for
framework designers. On the other hand, changing the number or order of instance
variables in an object does cause problems, which is bad news. It means that care must still
be taken from one version of a framework to the next to ensure compatibility.

One way to avoid incompatibilities between framework versions is to reserve an extra
instance variable in each object. It can be given a name such as _myPrivateIvars.
This variable should be listed in the public headers as a void pointer. In the first version
of a class, it would be empty and unused. In later versions, it would contain an
NSMutableDictionary to store added instance variables by name. Instance variables
stored this way are slower to access than those stored as part of the object's structure, but at
least new variables can be added as needed without forcing recompiles as the framework is
enhanced.

NOTE

The technique of using a dictionary to add instance variables to a class is
common in the implementation of Cocoa. Look carefully at a few of the

http://www.tucs.fi/Publications/techreports/tMiSe97.php
http://www.tucs.fi/Publications/techreports/tMiSe97.php
http://2f.ru/holy-wars/fbc.html

Cocoa objects' headers to see evidence.

Sometimes incompatibility between framework versions is unavoidable. When this
happens, it is important to change the framework's version. This isn't the public version
number, but a special identifier that is used by the linker to keep different incompatible
revisions of a framework from interfering with each other.

The framework version is found in the Build Settings tab of the framework's target. In the
Build Settings area near the bottom of the Build Settings tab is a key named
FRAMEWORK_VERSION. The default value for this key is A. When an incompatible
change is made in the framework, it is customary to change this to B, then C, and so on
each time a new, incompatible version is built for distribution. Some developers prefer to
use the year or some other, longer string as the identifier. Any string that is a valid
filename, such as 2002D is fine. Figure 27.6 shows a framework set to the default version
A.

Figure 27.6. Setting a framework's version.

Book: Cocoa® Programming
Section: Chapter 27. Creating Custom Frameworks

Debugging Frameworks

Debugging frameworks is an extremely difficult task. The integration between the gdb
debugger and Project Builder's capability to display a breakpoint's source code doesn't
work as seamlessly with frameworks. The best advice that can be given regarding
debugging frameworks is to come up with a workflow that removes the need for it.

An old programming adage says that the code that doesn't need to be debugged is the
easiest code to debug. Because using the debugger with frameworks can be tricky at best, it
is better to fully debug code before adding it to a framework. It is common practice to
create a test application to use as a debugging harness. The test application makes it easy to
exercise all the features of an object. Because debugging an application is generally easier
than debugging a framework, it gives a good setting for any debugging sessions. When the
object works as it should, it can then be added to the framework.

Following this workflow should reduce the need for debugging the framework itself.
Features are simply never put into the framework until they work.

Book: Cocoa® Programming
Section: Chapter 27. Creating Custom Frameworks

Summary

Building frameworks can be a helpful means of packaging code that is meant to be reused
between multiple applications. There are a few wrinkles to the process, but on the whole it
is not difficult to create multiple frameworks. Frameworks can be packaged inside an
application's bundle. When frameworks are embedded inside an application, they become a
programmer convenience that doesn't impact users. The end user never needs to know
about what, if any, frameworks are needed to make an application run.

The next chapter discusses packaging applications for distribution and installing
applications. The various options available for packaging are covered. Multiple installation
approaches are explained in detail, including a technique that enables users to simply drag
and drop an application to install it.

Book: Cocoa® Programming
Section: Part III: Cocoa Techniques

Chapter 28. Distributing Applications

IN THIS CHAPTER

● Package Directories
● Using Disk Images
● Application Installation

After an application is developed using the Cocoa frameworks, the application still needs
to be prepared for installation by users. Applications consist of many files. For example,
each resource used by the application is in its own file. An application that supports
multiple languages and cultures might have many different versions of each resource file.
The application executable itself is a file, and the application might depend on dynamically
loaded library files. When an application is installed on a user's computer, all the files must
be correctly copied. Furthermore, users might move the application, copy it to a different
computer, or delete the application. All files associated with the application need to be
moved or deleted as a unit in such cases. This chapter explains how to prepare a Cocoa
application for distribution to users.

Two general techniques are available for installing Cocoa applications on user's computers.
The simplest and usually the best way to install applications is to enable users to copy the
application's package directory from a CD-ROM or other media into the preferred location
on the user's own hard disk. The other general technique is to use a dedicated installer
application. Installer applications can copy files to multiple locations on the user's hard
disk and modify the user's system configuration, if necessary.

Book: Cocoa® Programming
Section: Chapter 28. Distributing Applications

Package Directories

A Cocoa application's executable and all associated files are stored in a single directory
called a package. Apple's Finder application identifies package directories and displays
them just like single files. From the user's perspective, applications seem to consist of only
one file that can be easily moved or dragged into the desktop's trash can. The complexity
and multitude of files that a developer uses to create an application are hidden from end
users. Cocoa's NSFileWrapper and NSBundle classes for interacting with package
directories are described in Chapter 7 and Chapter 8.

NOTE

Apple's Finder provides a contextual menu accessible by Ctrl-clicking a
package. Select Show Package Contents from the menu and Finder will show
the hidden files inside the package directory. In most cases, a folder called
Contents within the package directory actually contains all of the
application's files.

Apple's Project Builder application automatically creates package directories when Cocoa
applications are built. Installing a Cocoa application on a developer's machine is often as
easy as copying the package directory created by Project Builder into another folder on the
same hard disk. However, special precautions and extra steps are needed to ensure that the
installation process is as easy as possible for other users of the application.

NOTE

The terms package and wrapper are sometimes used interchangeably in
Apple's documentation. Package is the preferred term for directories that
appear to users as single files in Finder. However, Apple's Cocoa
documentation often uses the term wrapper interchangeably with package. In
addition, the term package can cause confusion because the same term is used
to describe directories of files installed by Apple's Installer application.

Book: Cocoa® Programming
Section: Chapter 28. Distributing Applications

Using Disk Images

If a Cocoa application is distributed on a CD-ROM, installation of the application can often be simple. Users just drag a
package directory from the CD-ROM to a location on the local hard disk. Even if a special installer application is needed, users
can simply double-click the icon for a file on the CD-ROM to start the installation. Apple's Finder application ensures that the
application's package directory appears to be a single file on both the CD-ROM and the hard disk. Users do not see the
multitude of files that actually compose the application, so there is no chance of confusing users. Users cannot accidentally
copy only some of the needed files or change the organization of the files. However, many applications are distributed
electronically via the Internet. Special precautions are needed to ensure that installation of Cocoa applications from the Internet
is as simple as possible.

For Internet distribution, the Cocoa application must be stored in archive files containing the various files that make up the
applications. There are several reasons for this. Operating systems other than Max OS X do not conceal the files within
application package directories. Users might be confused by the many files exposed when attempting to download an
application's package directory via an FTP client or a web browser. Other operating systems do not necessarily preserve Mac
OS X specific file information. A specially constructed archive is needed to preserve that information on many systems.
Finally, application files should be compressed to reduce download times. A single compressed archive containing all of the
application's files minimizes download times.

Apple recommends the use of the Disk Image format (commonly referred to as DMG) as the archive format for Mac OS X
applications. Standard Unix tools, such as gnutar and gzip, can also be used. Tools for creating and using DMG files are
included with Mac OS X. When a user downloads a DMG file, it appears on their desktop like another hard disk. Double-
clicking a DMG archive launches Apple's Disk Copy application. The user can then install the application from the DMG or
even run the application directly from the DMG with an experience similar to installing from a CD-ROM.

DMG files are simple archives that eliminate the need to use a secondary encoding, such as MacBinary or BINHEX, to
preserve traditional Mac resource forks and file type and creator information. DMG archives include support for compression
and reduce the need for additional compression tools.

There are two methods of creating DMG archives: Use Apple's Disk Copy application which provides a graphical user
interface for managing DMG archives, or use the command-line hdiutil tool to manage the archives. Both have their place
in the development process. Regardless of the method used, the general steps are as follows:

1. Create an empty, writable DMG archive of the appropriate size, and mount it in the Finder.

2. Copy the files to the DMG archive, and then unmount the DMG.

3. Make a read-only, compressed version of the DMG archive.

Creating a DMG Using Disk Copy

Disk Copy is an application included with Mac OS X and installed at /Applications/Utilities/Disk Copy.

For this example, create a 10Mb DMG archive called Our Cocoa Application, and save it as CocoaApplication-
Writable.dmg. Figure 28.1 shows Disk Copy's New Blank Image panel that is used to create an empty DMG archive.

Figure 28.1. Disk Copy's New Blank Image panel is displayed with the data that will be entered in steps 3 and 4.

1. Launch Disk Copy.

2. Select Image, New Blank Image... to open the New Blank Image panel, as shown in Figure 28.1.

3. In the New Blank Image panel, set Size to 10MB, Format to Mac OS Extended, and Encryption to none.

4. Enter Our Cocoa Application in the Volume Name field, and CocoaApplication-Writable.dmg in the
Save as field.

5. Click Create.

Disk Copy creates the new empty archive and mounts it as a volume in the Finder, as shown in Figure 28.2. Mac OS X uses the
term volume to refer to any file system that can be viewed in Finder. Depending on the user's preferences, the new DMG
volume can also be shown on the user's desktop. Use Finder to copy the application, documentation, and any other files to be
distributed with the application to the Our Cocoa Application volume.

Figure 28.2. The new empty DMG archive is displayed as a volume in Finder.

The copied application files in the DMG are shown in Figure 28.3.

Figure 28.3. Finder shows the copied application files in the DMG.

Next, unmount the DMG by dragging it to the trash, or by selecting the DMG in the Finder, Ctrl-click on the volume to bring
up the context menu, and select Eject.

The final step is to make a read-only version of the DMG archive.

1. Launch Disk Copy.

2. Select the Image, Convert Image menu item to open Disk Copy's Convert Image panel shown in Figure 28.4.

Figure 28.4. Disk Copy's Convert Image panel is used to convert a writable DMG archive into a read-only
compressed archive.

3. Select the CocoaApplication-Writable.dmg file when prompted for the image to convert.

4. When the panel appears, select the Compressed option of the Image Format pop-up button.

5. Enter a filename into the Save as: field to use when saving the converted and compressed DMG. A good practice is to
use the application's name and version number as the name of the read-only compressed DMG archive.

6. Click Convert.

When the read-only compressed DMG archive is saved, it is ready for distribution. Be sure to test the DMG and ensure that it is
read-only.

Creating a DMG File from the Command Line

DMG archives can be created from the command line instead of using the Disk Copy application. As a result, creation of DMG
archives can be integrated and automated with the application build process.

Use the following command line to create a writable DMG archive:

[View full width]

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/&r=noccc&xmlid=0-672-32230-7/ch28lev1sec2#PLID0

hdiutil create -megabytes 10 CocoaApplication-Writable.dmg -layout NONE -
partitionType

Apple_HFS

Next, mount the DMG image without the notifying Finder with the following command:

hdid -nomount CocoaApplication-Writable.dmg

The hdid command will return the disk device that the volume is mounted as in the format /dev/disk<somenumber>
where <somenumber> is chosen by the operating system. This disk volume device returned is used in some of the following
steps. In each case, replace the text disk<somenumber> in the commands with the actual name assigned by the operating
system.

The mounted DMG image needs to be formatted as an HFS+ volume and given a name that will be shown when the DMG is
seen in Finder. Formatting requires authenticating as an administrator. Use the following command to format the DMG and set
its name to "Our Cocoa Application":

sudo newfs_hfs -v "Our Cocoa Application" /dev/disk<somenumber>

The newfs command requires authentication via sudo, and will request the user password.

Unmount the newly formatted archive with the following command:

hdiutil eject /dev/disk<somenumber>

The writable DMG is now ready for use. Mount it again, but this time, provide notification to the Finder.

hdid CocoaApplication-Writable.dmg

Finder now shows Our Cocoa Application as an available disk drive. The hdid command creates a file named /dev/
disk<somenumber> , which is the file shown in Finder. If the DMG will be unmounted from the command line, it is
necessary to keep track of the file created by hdid.

Copy the application and other files to the DMG archive. This can be done in the Finder or by using command-line tools. Figure
28.3 shows the copied files in Finder.

Unmount the Our Cocoa Application DMG by dragging it to the trash, or by selecting the DMG in the Finder, Ctrl-clicking it to
bring up the context menu, and selecting Eject. This can also be done using the following command:

hdiutil eject /dev/disk<somenumber>

Note that in this case, <somenumber> is the value returned when the volume was mounted hdid.

Finally, to convert the writable DMG file into a read-only compressed version, use the following command:

[View full width]

hdiutil convert -format UDZO CocoaApplication-Writable.dmg -o CocoaApplication-1.0.
dmg

-noext

This will create a new file called CocoaApplication-1.0.dmg, which is ready to be distributed.

One advantage of creating DMG archives using the command-line method is that it can be automated with Unix shell scripts
and integrated into the application build process. Shell scripts can be included as ProjectBuilder targets and executed by Project
Builder. A Stepwise article at http://www.stepwise.com/Articles/Technical/2001-05-28.01.html explains how to integrate DMG
archive creation with Project Builder.

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/&r=noccc&xmlid=0-672-32230-7/ch28lev1sec2#PLID6
http://www.stepwise.com/Articles/Technical/2001-05-28.01.html

Customizing DMG Archives

DMG archives can be configured via Disk Copy to open in Finder with a particular default view. For example, by setting a
DMG's default view to as Icon and enlarging the icon size using Finder's View, Show View Options menu, large icons are
centered in the window, as shown in Figure 28.3.

Another bit of customization that is possible is to set a background image that will frame the application icons. This is
accomplished by copying an image to the DMG volume; then setting the background image using the Finder's View, Show
View Options menu, and specifying the copied image file. Unmount the DMG archive, remount it, and delete the copied image
file. The background image is retained. This can be used to great effect, as shown in the DMG file for Omni Group's
OmniGraffle application in Figure 28.5.

Figure 28.5. The Omni Group's OmniGraffle application is distributed in a DMG archive with a background image.

Book: Cocoa® Programming
Section: Chapter 28. Distributing Applications

Application Installation

Using DMG archives simplifies the process of downloading applications. When a user has
a DMG containing an application displayed in Finder, there are two common ways of
installing the application. The easiest way is to just drag the application from the DMG
archive into a folder on the local hard disk, but sometimes a more complex installation
process using a dedicated installer application is needed.

A dedicated installer application might be required if the application being installed has
any of the following characteristics:

● The application shares frameworks or resources with other applications.
● The application is made up of multiple components that must be installed in

different locations.
● The application requires that specific software be started upon rebooting the

computer.
● The application requires specific system permissions or ownership (commonly only

Unix applications).

Drag in the File System

The vast majority of user applications for Mac OS X should be installed by dragging an
application wrapper icon from a disk image and dropping it into the Applications folder on
a local hard disk.

Applications that require multiple components installed in different locations can still be
installed via drag and drop. The application itself can adjust components as needed (create
file system links or copy files) when it is run and finds some aspect of its installation
missing. This approach's advantage is that the application is self-repairing in the event that
a user has deleted a needed file or inappropriately changed the file system. The
disadvantage is that special logic must be implemented in the application to support self-
repair. As long as the advantages outweigh the disadvantages, the drag and drop style of
installation should be used.

In some cases, the temptation to install multiple components of an application in different
locations is great, but it should be avoided. A common situation is that an application uses
custom frameworks. It might be tempting to use an installation process in which the
frameworks are copied into the standard /Library/Frameworks directory or some
other location outside the application's wrapper. A much better solution is to have the
application look for custom frameworks within its own application wrapper. Multiple
copies of the frameworks might waste disk space when several installed applications use

the same frameworks, but it provides a much more friendly installation for the user. It also
enables the user to simply copy the application to another machine without the need to
identify and copy separate frameworks.

Installer

There are some applications that require a dedicated installer application and a complex
installation process. Apple provides one dedicated installer option called Installer with Mac
OS X. Installer uses special package directories with the .pkg extension that are created
by another application called PackageMaker. Finder shows .pkg package directories as
single files even though they are actually directories that contain many files. Finder also
hides the extension on .pkg package directories under certain circumstances. The .pkg
package directories contain application files as well as scripts that are run at various stages
of the installation process.

NOTE

The .pkg package directories can be stored in DMG archives to avoid
revealing the fact that multiple files are present during a download.

To build a .pkg package directory, create the directory hierarchy that the application
being installed needs to have after installation. Copy the application files into the
directories. Use the PackageMaker application included with Apple's Developer tools in
the /Developer/Applications/PackageMaker folder to specify the directory
that will be stored in a .pkg package directory. Any preinstall or postinstall scripts that
must be run as well as any basic information about the package such as its name,
description, and owner are specified with PackageMaker. PackageMaker then creates the .
pkg package directory.

Multiple .pkg package directories can be combined into a single metapackage package
directory with the .mpkg extension. Users can select which .pkg package directories
within a larger .mpkg package directory to install and which to skip. Documentation for
the PackageMaker and Installer applications is available from the respective application's
Help menu.

PackageMaker makes constructing packages deceptively simple. Unless great care is taken
in the creation of packages, an installation can seriously damage the user's installed copy of
Mac OS X. The PackageMaker documentation describes some of the pitfalls. Be careful to
avoid these problems when using PackageMaker and Installer. This is especially important
if the package being installed requires the user to authenticate as an administrator.

Many of the problems with Mac OS X software installation are described in articles on
Stepwise. A tutorial for making PackageMaker .pkg package directories is available at

http://www.stepwise.com/Articles/Technical/Packages/BuildingAPackage.html. An article
titled, "Beware of Installers bearing packages (Part II)" is available at http://www.stepwise.
com/Articles/Technical/Packages/InstallerOnX.html. Another article titled "Packaging and
Distributing Your Software on Mac OS X" is available at http://www.stepwise.com/
Articles/Technical/2001-05-11.01.html.

File Ownership and Permissions

PackageMaker and Installer can corrupt file ownership and permission data. This is only a
serious problem when authentication is required for installation. Ensure that all the files
and directories in the .pkg package directory have the appropriate permissions. Any
permissions that are incorrect and any unusual file ownership will be carried over to the
user's installation. It's best to make the ownership of files be "root," if possible. By doing
this, users who install a package but are not root will have the file ownership set to an
appropriate value.

If an installation inadvertently changes the ownership or permissions on system directories
and files, it might not be possible to start Mac OS X when the machine is rebooted.

Symbolic Links

PackageMaker uses the Unix tool, PAX, for archiving. PAX is single-minded about file
types. If the .pkg package directory has a normal directory stored, but the operating
system installation has a symbolic link in that location (to perhaps allow storage of items
on another hard disk) PAX will replace the symbolic link with a normal directory. This can
be disastrous in some cases. For example, if during the construction of the directory
hierarchy for a .pkg package directory, a directory called /etc is created, installing the
resulting .pkg might make the Mac OS X machine unable to boot. On Mac OS X, a
directory called /etc already exists but is normally hidden from users by Finder. Actually,
the /etc directory is a file system link to another directory called /private/etc that
stores essential operating system configuration data. When a .pkg package directory
containing the /etc directory is installed, PAX overwrites the link from /etc to /
private/etc. The next time the user reboots, startup will fail.

Safety Rules for Using Installer

If a .pkg must be installed in a directory such as /usr/local/bin, it is better to create
a package with the contents of only the bin directory. Set the installation directory in
PackageMaker to /usr/local/bin. If the installation directory is the root directory, /,
and there are any symbolic links in the installation path, files will be destroyed. If a
package must install files into multiple locations such as /Library/StartupItems, /
Applications, and /usr/local/bin, it is better to create three packages that are
grouped in a .mpkg package directory than to have them all in a single .pkg that installs
at /.

http://www.stepwise.com/Articles/Technical/Packages/BuildingAPackage.html
http://www.stepwise.com/Articles/Technical/Packages/InstallerOnX.html
http://www.stepwise.com/Articles/Technical/Packages/InstallerOnX.html
http://www.stepwise.com/Articles/Technical/2001-05-11.01.html
http://www.stepwise.com/Articles/Technical/2001-05-11.01.html

Pre-install and post-install scripts should be space safe. It is imperative that the install
scripts that run before or after an installation handle paths that have space characters in
them. This requires some extra care during the authoring of these scripts. Failure to handle
spaces in filenames can lead to accidental file deletion or incomplete installs. Apple
released a version of their iTunes application that didn't handle spaces in filenames
correctly and users suffered badly (including massive data loss).

Third-Party Installers

Third-party installer applications are available with varying degrees of support for Mac OS
X. One or more of the following installers could be useful, but some might have
shortcomings when used with Mac OS X:

● StuffIt InstallerMaker from Aladdin Systems (http://www.aladdinsys.com)
● InstallerVise from MindVision Software, Inc. (http://www.mindvision.com)
● InstallAnywhere from Zero G (http://www.installanywhere.com/)

http://www.aladdinsys.com/
http://www.mindvision.com/
http://www.installanywhere.com/

Book: Cocoa® Programming
Section: Chapter 28. Distributing Applications

Summary

Installing Cocoa applications should be made as simple as possible for users. The best
technique is to let users copy the application's package directory to their local file system
with Finder. Apple provides the Installer application for use in the rare cases when a
dedicated installer application is needed. However, special care is needed to avoid
damaging a user's file system when applications are installed with Installer. Apple's DMG
archives or other archive file formats can be used to simplify the process of downloading
Cocoa applications over the Internet.

Book: Cocoa® Programming

Part IV: Appendixes

IN THIS PART

 A Unleashing the Objective-C Runtime

 B Optimizing and Finding Memory Leaks

 C Finding Third-Party Resouces

 D Cocoa Additions in Mac OS X Version 10.2

Book: Cocoa® Programming
Section: Part IV: Appendixes

Appendix A. Unleashing the Objective-C Runtime

IN THIS APPENDIX

● Objective-C Objects
● Messaging with IMPs and Selectors
● Common Runtime Functions
● Forwarding, Distributed Objects, and Proxies
● Examples

Apple's Objective-C runtime consists of a few key data structures and functions that
implement Objective-C's message sending semantics. This appendix describes Apple's
runtime, and most of the information here applies to the Gnu runtime. This appendix
provides information about the implementation of Objective-C, which is not required to use
the language. Most languages do not provide any programmer access to internal
implementation details.

Directly manipulating the runtime enables many powerful uses of Objective-C including
the integration of Objective-C with scripting languages, performance optimizations, and a
high degree of introspection. Using the runtime, it is possible to find information about
every class in an application or library. Information about every method implemented by
an object can be discovered including the method name, the number and type of arguments,
and the return type. Most language compilers discard this information, but Objective-C
preserves it for possible use in running applications.

The Objective-C runtime can even be used to implement different languages. Apple sells a
version of its WebObjects product that includes support for the WebScript language.
WebScript is essentially an interpreted version of Objective-C that is implemented with the
Objective-C runtime and can, therefore, interoperate with compiled objects.

Book: Cocoa® Programming
Section: Appendix A. Unleashing the Objective-C Runtime

Objective-C Objects

From a C programmer's point of view, Objective-C objects are just C structures with the following layout defined in objc.
h:

typedef struct objc_object {
 Class isa;
} *id;

The objc.h file, and the others that implement Apple's Objective-C runtime, are available as part of Apple's Darwin open-
source project at http://www.opensource.apple.com/projects/darwin/.

The objc_object structure declaration shows that the only requirement for memory to be used as an object is the
presence of the isa element, and any such memory can be referenced by the type id.

The isa Element

The essential element in every Objective-C object is the isa element with the type Class. The type Class is described
in its own section in this appendix. For now, it is enough to note that the isa element is a pointer to memory that
represents a class object, and the class object stores all the methods understood by instances of the class. In Chapter 4,
"Objective-C," objects are loosely defined as anything that can receive messages. The presence of the isa element is the
key that enables the runtime to find a method to invoke when a message is received.

Extra Bytes

A rarely used feature of Objective-C is the capability to allocate an arbitrary number of extra bytes when the memory for
an object is allocated. The only requirement for memory to be used as an object is the presence of the isa element;
therefore, bytes after the isa element have no impact and are usually ignored by the runtime.

Extra bytes can be used for any purpose. For example, the extra bytes can store an ASCII string or an array of integers.
Because Cocoa does not use the extra bytes, programmers are free to use the feature in any way desired.

It is not possible to allocate extra bytes using Cocoa directly, but Apple's Objective-C runtime includes a function that can
allocate extra bytes.

id class_createInstance(Class aClass, unsigned idxIvars);

The class_createInstance(Class, unsigned idxIvars) function and the other functions of the Objective-
C runtime do not conform to the Cocoa naming conven-tions and are not technically part of Cocoa. However, they can be
used in Cocoa applications. The class_createInstance(Class, unsigned idxIvars) function returns a
pointer to enough newly allocated memory to store an instance of the class aClass as well as extra bytes specified by
idxIvars. The following function serves the same purpose and enables the specification of a memory zone to use when
allocating memory:

id class_createInstanceFromZone(Class, unsigned idxIvars, void *z);

Memory zones are described in the "Using Memory Zones" section of Chapter 5, "Cocoa Conventions."

Class

Each object's isa element points to objects defined by the following structure:

http://www.opensource.apple.com/projects/darwin/

typedef struct objc_class {
 struct objc_class *isa;
 struct objc_class *super_class;
 const char *name;
 long version;
 long info;
 long instance_size;
 struct objc_ivar_list *ivars;
 struct objc_method_list **methodLists;
 struct objc_cache *cache;
 struct objc_protocol_list *protocols;
} *Class;

The key to the definition of the Class structure is that it contains an isa element just like the objc_object structure. The
first bytes of an objc_class structure have the same meaning as an objc_object structure. As a result, Objective-C
classes are objects that can receive messages and can be used in any situation that any other object can be used.

After the isa element, the elements of the objc_class structure provide information used by the runtime to find
methods to invoke when messages are received. The information is also available for use with runtime object introspection.

The super_class Element

The super_class element is returned from the +superclass method implemented by the NSObject base class.
The NSObject class also provides the +class method, and it returns the class of the receiver.

NOTE

Almost all features of the NSObject base class are implemented with runtime-C functions and the
objc_class structure. The NSObject class and the runtime are closely coupled and cannot be easily used
separately.

The super_class element points to the class that is used by the runtime to find a method to invoke if the receiver of a
message does not provide such a method itself or when a message is sent to super. Details about the use of the
super_class element are presented in the "Messaging with IMPs and Selectors" section of this appendix.

The name Element

This element stores a pointer to the ACSII string name of the class. All class names used in a single application must be
unique, and the runtime guarantees that. Any attempt to load a class into a program that already contains a class with the
same name fails and an error is generated.

The name is used by runtime functions such as objc_lookUpClass(const char *name) that return a pointer to
the class with the specified name. The name is also returned by the -className method implemented by NSObject.

The version Element

The version is returned by NSObject's +version method. The version is used to detect old versions of a class when
initializing objects previously encoded. The initialization code can use the version number to convert between versions as
necessary. If the version of a class has never been explicitly set, it defaults to zero.

The NSCoder class's -versionForClassName: method and the runtime's class_getVersion(Class
class) function also use the version element.

The info Element

The info element is reserved for use by Apple's particular implementation of the runtime. No functions or methods are
provided to access this element. Currently, the runtime uses it to identify the purpose of each class and determine whether
the class is fully initialized.

The instance_size Element

The instance_size element specifies the number of bytes needed to store an instance of the class. The minimum
instance size on Mac OS X is the 4 bytes needed to store the isa element. Each element beyond the isa element requires
additional storage and increases the instance size.

The class_createInstance(Class, unsigned idxIvars) and class_createInstanceFromZone
(Class, unsigned idxIvars, void *z) runtime functions reference a class's instance_size element to
allocate the correct amount of memory.

The ivars Element

The ivars element stores a pointer to a dynamically allocated array of structures containing the name and type of each
instance variable.

The following runtime functions are provided to directly access instance variables:

Ivar object_setInstanceVariable(id, const char *name, void *);
Ivar object_getInstanceVariable(id, const char *name, void **);
Ivar class_getInstanceVariable(Class, const char *);

The Ivar type is a structure containing the following elements that provide the name, type, and offset of an instance
variable within the bytes that represent an object instance:

typedef struct objc_ivar {
 char *ivar_name;
 char *ivar_type;
 int ivar_offset;
} *Ivar;

The ivar_type element of the objc_ivar structure stores a type encoding string produced by the @encode()
compiler directive introduced in Chapter 4. Details about type encoding are provided in Apple's online document at http://
developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/4MoreObjC/index.html.

An objc_ivar_list structure provides storage for a variable number of objc_ivar structures.

struct objc_ivar_list {
 int ivar_count;
 struct objc_ivar ivar_list[1]; /* variable length */
};

NOTE

The technique of defining a structure with a count variable followed by an array with only one element is
used to create variable length arrays. Memory is dynamically allocated to store the number of values specified
by the count variable. The pointer to the allocated memory is cast to the structure to enable array index
semantics without C compiler warnings.

http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/4MoreObjC/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/4MoreObjC/index.html

The methodLists Element

The methodLists element stores a pointer to a dynamically allocated array of arrays of structures containing the name,
return type, argument types, and implementation of each instance method implemented by the class.

The following runtime functions use the instance_methods element:

void class_addMethods(Class, struct objc_method_list *);
void class_removeMethods(Class, struct objc_method_list *);
unsigned method_getNumberOfArguments(Method);
unsigned method_getSizeOfArguments(Method);
unsigned method_getArgumentInfo(Method m, int arg, const char **type, int
*offset);
struct objc_method_list *class_nextMethodList(Class, void **);

Methods can be added and removed from classes, and information about existing methods can be obtained from the
runtime. These features provided by the runtime enable a high degree of dynamism.

The methodLists element is declared as objc_method_list **methodLists. The double pointer is used
because multiple arrays of methods are stored. At a minimum, instance methods and class methods are stored in separate
arrays.

The objc_method structure stores the following information about each method:

Typedef struct objc_method {
 SEL method_name;
 char *method_types;
 IMP method_imp;
} *Method;

The SEL and IMP types have already been introduced in Chapter 4 and are covered again with more detail in the
"Messaging with IMPs and Selectors" section of this appendix. The method_types variable stores a sequence of type
encoding characters produced by the @encode() compiler directive.

An objc_method_list structure uses the same technique for implementing a variable length array that was used for
instance variable lists.

struct objc_method_list {
 int method_count;
 struct objc_method method_list[1]; /* variable length */
};

The cache Element

Each class stores a cache of information about recently received messages and the methods that implement them. The
cache is an optimization that works on the assumption that any message recently received is likely to be received again
soon. Using the cache to lookup the method to invoke when a message is received is much faster than using other
techniques.

Details about how the cache is used are provided as part of the explanation of messaging in the "Messaging with IMPs and
Selectors" section of this appendix. The cache is implemented with the following hash table data structure:

typedef struct objc_cache {
 unsigned int mask; /* total = mask + 1 */
 unsigned int occupied;
 Method buckets[1];

} *Cache;

The performance improvements provided by the cache are the result of the hashing function used to map message selectors
to method implementations. Hashing functions and hash tables are common programming tools that are explained in almost
every introductory data structures textbook. An excellent introduction is available at http://ciips.ee.uwa.edu.au/~morris/
Year2/PLDS210/hash_tables.html. An advanced description of hashing functions is available at http://www.cris.com/
~Ttwang/tech/inthash.htm.

The protocols Element

Each class can conform to any number of protocols. The protocols are stored in a linked list of arrays. The unusual
combination of data structures used to store protocols is a remnant of the earliest implementation of distributed objects.
Protocols are used to aid static typing, enable multiple-interface inheritance, and optimize distributed messaging.

The Objective-C runtime declares a class called Protocol. The following structure defines a variable length list of
Protocol instances:

@class Protocol;

struct objc_protocol_list {
 struct objc_protocol_list *next;
 int count;
 Protocol *list[1];
};

Categories

Categories are not stored in the objc_class structure. The methods added to a class by a category are added to the
method lists already stored for the class. Nevertheless, the Objective-C runtime defines a structure for categories.

typedef struct objc_category {
 char *category_name;
 char *class_name;
 struct objc_method_list *instance_methods;
 struct objc_method_list *class_methods;
 struct objc_protocol_list *protocols;
} *Category;

The category name and the name of the class extended are stored as well as the instance methods, class methods, and
protocols implemented by the category. Apple's compiler embeds one or more objc_category structures in the .o files
generated for modules that contain category implementations. When an .o file is loaded into a running application, the
runtime is notified so that it can read the embedded objc_category structures and copy the methods and protocols
from the categories into the extended classes. When the methods and protocols are copied, the objc_category
structures are no longer needed.

http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210/hash_tables.html
http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210/hash_tables.html
http://www.cris.com/~Ttwang/tech/inthash.htm
http://www.cris.com/~Ttwang/tech/inthash.htm

Book: Cocoa® Programming
Section: Appendix A. Unleashing the Objective-C Runtime

Messaging with IMPs and Selectors

The Objective-C runtime contains two functions that implement messaging:

id objc_msgSend(id self, SEL op, ...);
id objc_msgSendSuper(struct objc_super *super, SEL op, ...);

The objc_msgSend(id self, SEL op, ...) function is the key to the
dynamism and flexibility of Objective-C. All the runtime's data structures exist either to
make the implementation of objc_msgSend(id self, SEL op, ...) possible or
to optimize the implementation. The capability to add methods to an existing class, have
one class pose as another, implement distributed messaging, and implement polymorphism
results from the existence of objc_msgSend(id self, SEL op, ...).

When the Objective-C compiler encounters a messaging expression such as [receiver
someMessageSelector], it replaces that expression with code to call
objc_msgSend(receiver, @selector(someMessageSelector)) in the
output binary file.

The objc_msgSend(id self, SEL op, ...) function finds a method
implemented by the receiver that corresponds to the specified selector and invokes that
method. To find a suitable method, objc_msgSend(id self, SEL op, ...) first
finds the class that describes the receiver by referencing the receiver's isa variable. It then
looks in the cache and method lists of the receiver's class for a method that corresponds to
the selector. If one isn't found, objc_msgSend(id self, SEL op, ...) looks in
the receiver class's super_class variable and so on until a method is found or there are
no more superclasses. More details about the search for a method that corresponds to a
selector are provided in the "Searching for a Method" section of this appendix.

Apple includes a diagram in the "How Messaging Works" section of http://developer.apple.
com/techpubs/macosx/Cocoa/XObjC/XObjC.pdf that shows how objc_msgSend(id
self, SEL op, ...) searches for an IMP.

If no suitable method is found by objc_msgSend(id self, SEL op, ...), code is called to
forward the message represented by the selector to another object. Forwarding is described
in the section on "Forwarding, Distributed Objects, and Proxies" in this appendix.

If a suitable method is found by objc_msgSend(id self, SEL op, ...), the
function that implements the method is called. The function called is referenced by the
method_imp element of the objc_method structure that describes the method. The
method_imp variable stores an IMP, and an IMP is just a pointer to a C function with the

http://developer.apple.com/techpubs/macosx/Cocoa/XObjC/XObjC.pdf
http://developer.apple.com/techpubs/macosx/Cocoa/XObjC/XObjC.pdf

following type:

typedef id (*IMP)(id self, SEL _cmd, ...);

The first two arguments to the function referenced by an IMP are the receiver and selector
passed as arguments to objc_msgSend(id self, SEL op, ...). Within the
method implemented by the IMP, the receiver argument to objc_msgSend(id self, SEL
op, ...) is the self variable used by the method. Additional arguments to a method are
passed from the stack to the function referenced by the IMP. Apple's Objective-C runtime
uses assembly language to change the CPU's stack pointer so that the additional arguments
are available to the function called. The GNU Objective-C runtime uses portable C code to
adjust the stack and as a result suffers a small performance penalty when used with some
CPU families.

The objc_msgSendSuper(struct objc_super *super, SEL op, ...)
function works exactly the same way as objc_msgSend(id self, SEL op, ...)
except that objc_msgSendSuper(struct objc_super *super, SEL
op, ...) begins the search for a method with the receiver's superclass and does not
consider any methods implemented by the receiver itself. The Objective-C compiler
generates a call to objc_msgSendSuper(struct objc_super *super, SEL
op, ...) when it encounters a messaging expression containing the super keyword
such as [super someMessageSelector].

Searching for a Method

Searching for a method to invoke can be time consuming. Apple's Objective-C runtime
avoids the search in most cases by caching the IMP for each selector within the class itself.
The cache has already been described as part of the objc_class data structure. When
objc_msgSend(id self, SEL op, ...) is called, it checks the cache for an IMP
that corresponds to the specified selector. If an IMP is found in the cache, no search takes
place. The IMP is called immediately. If the correct IMP is not found in the cache, the
search for a method IMP is performed. When the IMP is found, it is placed in the cache to
avoid future searches.

NOTE

Apple's Objective-C runtime finds the correct IMP in the cache 85% to 90%
of the time in tested applications. Calling an IMP that was found in the cache
requires a pointer dereference followed by a jump instruction. In such cases,
the performance of Objective-C message dispatch is roughly equivalent to the
performance of calling a C++ virtual member function.

Selectors identify messages and are used to find corresponding method IMPs. The
important attributes of selectors are that every different message has a different selector
and selectors can be efficiently used as an index into a class's method cache. Pointers to
global variables make ideal selectors because the existing C linkers can be used to
guarantee that every selector is unique. Pointers are also easily converted to indexes into
the cache.

The selector type is declared in obcj.h as follows:

typedef struct objc_selector *SEL;

The most important thing about the SEL type is that it is a pointer. It doesn't matter what it
points to. When Apple's Objective-C compiler encounters an @selector() compiler
directive, it generates object code for a pointer to a global variable corresponding to the
selector. Each unique selector in a program must have a corresponding global variable.
When Objective-C programs are linked, the linker resolves all the references to global
variables. A similar process takes place when Objective-C objects are dynamically loaded.

Because C allows the conversion of pointers to integers, many programmers use the SEL
type interchangeably with integers. Because the selectors are guaranteed by the linker to be
unique, two selectors can be compared using simple pointer comparison. For example, the
following function returns a nonzero value if the two selector arguments are equal:

BOOL MYSelectorCompare(SEL selector1, SEL selector2)
{
 return (selector1 == selector2);
}

Apple provides information about messaging with selectors and IMPs at http://developer.
apple.com/techpubs/macosx/Cocoa/ObjectiveC/3CoreObjC/iHow_Messaging_Works.html.

http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/3CoreObjC/iHow_Messaging_Works.html
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/3CoreObjC/iHow_Messaging_Works.html

Book: Cocoa® Programming
Section: Appendix A. Unleashing the Objective-C Runtime

Common Runtime Functions

Several runtime functions are commonly used in Cocoa applications. The NSStringFromSelector
(SEL) function converts selectors into strings. The following line of code can be placed in any method
implementation to output the name of the method:

NSLog(@"%@", NSStringForSelector(_cmd));

The NSSelectorFromString(NSString *) function returns the selector if any that corresponds to
a string.

The NSClassFromString(NSString *) function returns the class identified by a string name. The
following lines of code can be used to send a user specified message to a user specified class object:

void MYSendMessageToAClass(NSString *className, NSString *messageName)
{
 [NSClassFromString(className) performSelector:
 NSSelectorFromString(messageName)];
}

The capability to implement a function such as MYSendMessageToAClass(NSString
*className, NSString *messageName) that can translate user input strings into messages to
objects is one of the advantages of Objective-C.

NOTE

When the runtime tries to find a named class and fails, it calls a function that raises an
exception. Users can replace the default function with an alternative implementation by
calling void objc_setClassHandler(int (*)(const char *)). A function
set this way can be implemented to dynamically load more code in an attempt to find the
named class.

Chapter 4 described a technique for optimizing Objective-C by using the following methods implemented
by the NSObject class:

- (IMP)methodForSelector:(SEL)aSelector;
+ (IMP)instanceMethodForSelector:(SEL)aSelector;

The basic technique is to look up the IMP for a particular receiver and selector pair once, and then call the
IMP multiple times without incurring the lookup cost each time. These methods use the following runtime
functions in their implementation:

IMP class_lookupMethod(Class, SEL);

IMP class_lookupMethodInMethodList(struct objc_method_list *mlist,
SEL);
IMP class_lookupNamedMethodInMethodList(struct objc_method_list *mlist,
 const char *meth_name);
IMP _class_lookupMethodAndLoadCache(Class, SEL);

In almost all cases, the methods provided by NSObject should be used, but the C functions are available
for special cases. For example, the runtime's C functions can be used to optimize code compiled with an
ANSI C compiler rather than an Objective-C compiler.

Book: Cocoa® Programming
Section: Appendix A. Unleashing the Objective-C Runtime

Forwarding, Distributed Objects, and Proxies

When objc_msgSend(id self, SEL op, ...) and objc_msgSendSuper
(struct objc_super *super, SEL op, ...) fail to find a method that
corresponds to the selector of a received message, the -forwardInvocation: method
implemented by the NSObject class is called. The argument to -
forwardInvocation: is an instance of the NSInvocation class initialized with
information about the message that could not be handled including the selector and any
arguments.

The default implementation of -forwardInvocation: calls [self
doesNotRecognizeSelector:aSelector]. The -
doesNotRecognizeSelector: method raises an exception. If -
forwardInvocation: is overloaded, it can be implemented to find another receiver
for the message that could not be handled. The online NSObject class documentation
describes techniques for implementing -forwardInvocation: in a variety of ways.
The forwarding topic at http://developer.apple.com/techpubs/macosx/Cocoa/
ObjectiveC/5RunTime/Forwarding.html describes a technique for simulating multiple
inheritance in Objective-C with forwarding.

Some Cocoa technologies that use -forwardInvocation: include the Application
Kit's built-in undo and redo support as well as Apple's implementation of distributed
objects. Proxy objects in the application that sends distributed messages represent
distributed objects in other processes. A proxy object implemented by the NSProxy class
is a root class like NSObject. Unlike NSObject, the NSProxy class implements very
few methods. When the proxy object receives a message, it forwards the message over a
network connection to a receiver in a different process.

A full description of Apple's distributed objects technology is provided at http://developer.
apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/DistrObjects/
index.html. Apple's implementation is very good, but the same general approach can be
used for custom solutions as well. The -forwardInvocation: method can be
implemented to support cross-platform, standard CORBA distributed objects, and the
Gnustep project at http://www.gnustep.org/ provides its own implementation of distributed
objects for Objective-C.

http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/5RunTime/Forwarding.html
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/5RunTime/Forwarding.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/DistrObjects/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/DistrObjects/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/DistrObjects/index.html
http://www.gnustep.org/

Book: Cocoa® Programming
Section: Appendix A. Unleashing the Objective-C Runtime

Examples

This section contains examples that use the Objective-C runtime to obtain detailed information about the objects
in an application. None of the examples are complete. They each show just enough to illustrate how to perform a
certain task using the runtime. The examples need to be incorporated into larger Cocoa applications to be of any
practical use.

Get a List of All Classes

The MYShowAllClasses() function, in this example, prints the name of every class linked to a Cocoa
application. Call this function from within a Cocoa application that is run in Project Builder or from a Terminal to
see the output. This function can be trivially modified to return an NSArray containing the NSString names of
all classes linked into an application. The NSArray version of this function is available at www.
cocoaprogramming.net.

#import <objc/objc-runtime.h>

void MYShowAllClasses()
/*"
Print to stdout the names of all classes known to the
Objective-C runtime.

"*/
{
 Class *classes;
 Class *currentClass;
 int numberOfClasses;
 int i;

 // Get the number of classes known by the runtime
 numberOfClasses = objc_getClassList(NULL, 0);

 // Allocate storage for the correct number of classes
 classes = (Class *)malloc(sizeof(Class) * numberOfClasses);

 // Fill the storage with classes know by the runtime
 objc_getClassList(classes, numberOfClasses);

 // Print the name of each class
 currentClass = classes;
 for(i = 0; i < numberOfClasses; i++) {
 NSLog("%s", (*currentClass)->name);
 currentClass++;
 }

 // Free the allocated storage
 free(classes);
}

Get a List of All Instance Variables

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

The MYShowAllInstanceVariables(Class) function prints a list of all instance variables defined for
instances of a specified class.

void MYListAllInstanceVariables(Class aClass)
{
 struct objc_ivar_list *ilist = aClass->ivars;
 const int numInstanceVariables = ilist->ivar_count;
 int i;

 for(i = 0; i < numInstanceVariables; i++)
 {
 Ivar currentInstanceVariable = &ilist->ivar_list[i];

 NSLog(@"%s %s %d", currentInstanceVariable->ivar_name,
 currentInstanceVariable->ivar_type,
 currentInstanceVariable->ivar_offset);
 }
}

Get a List of All Methods

In this example, the MYShowAllMethods(Class) function prints a list of all methods implemented by a class
and the address of each implementation.

void MYShowAllMethods(Class aClass)
{
 void *iterator = NULL;
 struct objc_method_list *mlist;

 while(mlist = class_nextMethodList(aClass, &iterator))
 {
 const int numMethods = mlist->method_count;
 int i;

 for(i = 0; i < numMethods; i++)
 {
 Method currentMethod = &mlist->method_list[i];

 NSLog(@"%@ %p", NSStringFromSelector(currentMethod->method_name),
 currentMethod->method_imp);
 }
 }
}

Store the IMP for a Replaced Method

Categories are one of Objective-C's most powerful features. With categories, individual methods of a class can be
replaced with alternate implementations even without source code to the methods being replaced. One limitation
of categories is that there is no convenient way to call the original implementation of a method from the version
that replaces it. The following example shows one technique for calling the replaced implementation of a method.
The MYTest class implements the -testMethod method. A category of the MYTest class replaces the
original implementation of the -testMethod method, but is still able to call the original implementation.

File MYTest.h:

#import <Foundation/Foundation.h>

@interface MYTest : NSObject
{
}
- (void)testMethod;

@end

Each of the +load, +initialize, and -testMethod methods implemented by the MYTest class outputs
text indicating that it was called.

File MYTest.m:

#import "MYTest.h"

@implementation MYTest

+ (void)load
{
 NSLog(@"Original load");
}

+ (void)initialize
{
 NSLog(@"Original initialize");
}

- (void)testMethod
{
 NSLog(@"Original testMethod");
}

@end

The following category replaces methods of the MYTest class.

File MYTest_MYTest.m:

#import "MYTest.h"
#import <objc/objc-class.h>

@implementation MYTest (MYTest)

static IMP _myOriginalTestMethod = NULL;

+ (void)load
{
 Method originalMethod;
 NSLog(@"Category load");

 // Save original IMP
 originalMethod = class_getInstanceMethod(self, @selector(testMethod));
 if(NULL != originalMethod)
 {
 _myOriginalTestMethod = originalMethod->method_imp;
 }
}

+ (void)initialize
{
 NSLog(@"Category initialize");
}

- (void)testMethod
{
 if(NULL != _myOriginalTestMethod)
 {
 // Call original IMP
 (*_myOriginalTestMethod)(self, _cmd);
 }

 NSLog(@"Category testMethod");
}

@end

Use the following main(int, const char *) function to call the -testMethod method.

File main.m:

#import <Foundation/Foundation.h>
#import "MYTest.h"

int main (int argc, const char * argv[])
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 MYTest *test = [[MYTest alloc] init];

 [test testMethod];
 [test release];
 [pool release];
 return 0;
}

This is the output from the example:

2002-04-02 10:21:55.159 TestCachedIMP[359] Original load
2002-04-02 10:21:55.160 TestCachedIMP[359] Category load
2002-04-02 10:21:55.160 TestCachedIMP[359] Category initialize
2002-04-02 10:21:55.161 TestCachedIMP[359] Original testMethod
2002-04-02 10:21:55.161 TestCachedIMP[359] Category testMethod

TestCachedIMP has exited with status 0.

The output shows that the +load method is called separately for both the original implementation of MYTest
and the category. The +load method is a special case handled by the runtime. The runtime sends +load to each
class and category that implements it when the class or category is first loaded. The +load method is the only
method that is called in a class, even if a category that implements the same method is loaded at the same time.

The MYTest (MYTest) category implements +load to obtain the original implementation of the -
testMethod method. That original implementation is stored and used within the category's implementation of -
testMethod. As a result, the category is able to call the replaced method.

The output from the example shows first that the MYTest class's implementation of +load is called. Then, the
implementation of +load in the category is called. Only the category's implementation of +initialize is
called even though the MYTest class also implements +initialize. The category has already replaced the
original implementation by the time the runtime calls +initialize. When -testMethod is called from
main(), the category's implementation is used, but the category is able to call the original implementation that
was saved.

This technique can be used with any class, but there are several critical limitations. The runtime
class_getInstanceMethod(Class) function must be used rather than NSObject's
+instanceMethodForSelector: method because at the time +load is called, the NSObject class might
not be loaded yet. The +load method is seldom used in part because it is not safe to call any methods within it.
This example works with the implementation of the Objective-C runtime in Mac OS X version 10.1.3 and earlier.
The Objective-C runtime implementation always calls the category's version of +load after the original class's
implementation of +load. Apple does not guarantee that this behavior will be preserved in future versions.
Finally, this example produces unpredictable results if multiple categories replace the same method.

An alternate approach is to replace the IMP stored for an existing method with the IMP for a different method that
has the same arguments. In other words, rather than replacing an existing method directly with a category, add a
similar method that takes the same arguments. At runtime, switch the IMP stored for the original method with the
one for the added method. After that's done, selectors for the added method and the original method end up calling
the same IMP. The original IMP can be called from the added method.

File NSObject_MYReplaceIMP.m:

#import <Foundation/Foundation.h>
#import <objc/objc-class.h>
extern _objc_flush_caches(Class);

@implementation NSObject (MYReplaceIMP)

static IMP _myOriginalRelease = NULL;

+ (void)installCustomRelease
{
 Method originalMethod;

 if (originalMethod = class_getInstanceMethod(self, @selector(release)))
 {
 // Store original IMP
 _myOriginalRelease = originalMethod->method_imp;

 // Replace IMP
 originalMethod->method_imp = [self instanceMethodForSelector:
 @selector(_myRelease)];
 // The following is needed to keep NSObject's state consistent

 _objc_flush_caches(self); // Private: found in runtime source
 }
}

- (void)_myRelease
{
 NSLog(@"Released instance: %@ %p", [[self class] description], self);
 (*_myOriginalRelease)(self, @selector(release));
}

@end

The +installCustomRelease method added to NSObject must be called sometime early in the program's
execution. When +installCustomRelease is called, every time NSObject's -release method is called,
the code that implements -_myRelease is executed. The -_myRelease method calls the original
implementation.

Access Any Class From a Scripting Language

Several popular scripting languages have already been extended to use the Objective-C runtime and, therefore, can
access Cocoa objects. One recent example is the open source RubyCocoa project at http://sourceforge.net/projects/
rubycocoa/. Another example is F-Script at http://www.fscript.org/.

A scripting language must be extensible to be integrated with Cocoa. As long as it is possible to dynamically map
language elements of a scripting language to Objective-C selectors, almost any Cocoa object can be used from the
scripting language.

A simple example that makes Cocoa accessible from the popular TCL scripting language is available at www.
cocoaprogramming.net. In TCL, new commands can be added by calling the Tcl_CreateObjCommand()
function after creating a TCL interpreter with the Tcl_CreateInterp() function. The
Tcl_CreateObjCommand() function associates a string command name with a function that will be called
whenever the interpreter encounters the command string in an appropriate context.

Very little code is needed to provide access to all Cocoa from TCL. One technique only requires the addition of
two new commands to the TCL interpreter using Tcl_CreateObjCommand(). Add one command called
classWithName which takes a single argument that is the name of a class and returns a reference to the named
Objective-C class. Add a second command called sendMessage that sends a named message to a specified
object. The classWithName command is implemented with NSClassFromString(NSString *). The
sendMessage command is implemented with NSSelectorFromString(NSString *) and the -
performSelector: method.

The following TCL code uses the new commands to load image data from the hard disk:

bundle = classWithName NSBundle;
path = sendMessage [sendMessage $bundle mainBundle] pathToResource:ofType:
 testImage tiff;
image = sendMessage [sendMessage [ClassWithName NSImage] alloc]
 initWithPath: $path;

The next TCL code sample converts a Fahrenheit value obtained from one objective-C object and sets the value of
another Objective-C object to the equivalent Celsius value. The arg1 and sender values are previously defined
objects.

http://sourceforge.net/projects/rubycocoa/
http://sourceforge.net/projects/rubycocoa/
http://www.fscript.org/
http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

sendMessage $arg1 setFloatValue: [expr 5 * (
 [sendMessage sender floatValue] - 32) / 9]; # Fahrenheit to
Celsius

An example at www.cocoaprogramming.net uses the Fahrenheit to Celsius code to implement a Cocoa
temperature converter with a slider and a text field.

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/www.cocoaprogramming.net

Book: Cocoa® Programming
Section: Appendix A. Unleashing the Objective-C Runtime

Summary

The Objective-C runtime is one of the strengths of Cocoa and provides many advantages
over other languages for certain applications. The Objective-C runtime can also be
misused. The techniques and information presented in this appendix are not needed to
implement the vast majority of Cocoa applications. The almost unparalleled flexibility and
power enabled by the runtime make detailed introspection, the integration of scripting
languages, and sophisticated optimizations possible, but it is necessary to use low-level C
code and it is very easy to introduce hard to track bugs unless great care is taken.

Appendix B, "Optimizing and Finding Memory Leaks," describes several techniques for
debugging and optimizing Cocoa applications. Cocoa provides many hooks for error
detection and debugging. Apple provides developer tools to help optimize Cocoa
applications, and Appendix B describes how they are used.

Book: Cocoa® Programming
Section: Part IV: Appendixes

Appendix B. Optimizing and Finding Memory Leaks

IN THIS APPENDIX

● Optimizing Applications
● Finding Memory Leaks

This appendix describes techniques for optimizing Cocoa applications and finding memory
leaks. A Cocoa application called LotsOfWords is developed and revised several times
within the appendix to demonstrate various optimizations. LotsOfWords displays strings
with random positions, font sizes, and colors. The application is small but realistic. It could
form the basis of a screen saver, but more importantly, the optimizations that apply to
LotsOfWords also apply to larger applications. Finally, techniques for finding memory
leaks are provided.

Book: Cocoa® Programming
Section: Appendix B. Optimizing and Finding Memory Leaks

Optimizing Applications

Several general principals apply to optimizing applications. The first and most important principal is not to optimize
prematurely. Another important principal is that most applications spend 80% of the their time executing only 20% of the code.
When optimizing an application, it is important to concentrate on optimizations that will have a noticeable affect on
performance. Optimizing the 80% of the program that consumes 10% of the execution time has no noticeable affect on
performance.

Premature Optimization

The famous computer scientist Donald Knuth is quoted in nearly every book that describes optimizations. He said, "Premature
optimization is the root of all evil." There are many reasons to avoid optimizing at all.

● Optimizing an application often introduces new bugs.
● Optimizing an application's code usually makes that code harder to read and maintain.
● A lot of time can be spent optimizing code for little gain in performance.

Before optimizing an application, consider whether the application needs to be optimized at all. In many cases, applications are
fast enough without any specific optimizations. The decision to optimize cannot be made until the application is substantially
complete. Therefore, any optimization before the application is nearly complete is premature.

NOTE

The temptation to prematurely optimize strikes all programmers sooner or later. The best practice is to resist the
temptation. Wait until the time spent optimizing can be spent where it will provide the best performance
improvements.

The 80/20 Rule

A rule of thumb, which was alluded to earlier, is that 80% of a program's execution time is spent on 20% of the code. In the rare
case that an application spends the same amount of time in every module of code, the task of optimizing is gigantic. In such
cases, every module must be optimized to be able to get noticeable improvements. For most applications, after the critical 20%
of the code has been identified, focused optimization of only that code can provide maximum benefit for minimum effort. The
key is finding the critical code.

In some Cocoa applications, the code that consumes the most execution time is inside the Cocoa frameworks. This is
particularly true for graphical Cocoa applications. Most of the drawing code used by Cocoa applications is inside the
frameworks. It is not realistic to modify the Cocoa frameworks when optimizing applications. In many cases, the Cocoa
frameworks are already highly optimized. If an application spends most of its time executing framework code, the best
optimization technique is to execute framework code less often. For example, drawing as little as possible results in fewer calls
into the framework's drawing code and can yield dramatic performance improvements.

The LotsOfWords Application

The LotsOfWords application displays words randomly selected from a text file at /usr/share/dict/words, which is
part of Mac OS X's BSD subsystem. The application can be trivially modified to use words from another source. No word is
displayed more than once before all words have been displayed at least once. The application has been stripped to its minimum
features so that this chapter can focus on optimizing without the distraction of extraneous features. The complete source code
for the LotsOfWords application is available at www.cocoaprogramming.net.

The LotsOfWords application is implemented with three custom classes: MYWordView, _MYWord, and
MYWordController. An instance of the MYWordView class is used to draw instances of the _MYWord class. An instance
of the MYWordController class acts as the NSApplication's delegate; it keeps track of the application's update rate and

http://www.cocoaprogramming.net/

provides the _MYWord instances that MYWordView draws. Figure B.1 shows the LotsOfWords application displaying
words with random colors, random amounts of transparency, random font sizes, and random positions.

Figure B.1. The LotsOfWords application displays words with random attributes.

The LotsOfWords application loosely follows the MVC design described in Chapter 6, "Design Patterns." The _MYWord
class comprises most of the model. The MYWordView class and the application's nib file implement the view subsystem. The
MYWordController class implements the controller subsystem and manages an array of _MYWord instances to be
displayed.

The code in this section implements a working application, but it is only a starting point. The code is optimized throughout the
remainder of the appendix. The following code defines the interface of the _MYWord class:

File _MYWord.h

#import <Cocoa/Cocoa.h>
@interface _MYWord : NSObject
{
 NSString *_myWord; /*" The word "*/
 NSPoint _myPosition; /*" The word's position "*/
 NSDictionary *_myAttributes; /*" The word's attributes "*/
}

/*" Class methods "*/
+ (void)initializeWordSetWithPath:(NSString *)aPath;
+ (NSString *)nextWordInSet;

/*" Designated Initializer "*/
- (id)initWithWord:(NSString *)aWord inRect:(NSRect)aFrame;

/*" Alternate Initializers "*/
- (id)initWithNextWordInRect:(NSRect)aFrame;
- (id)init;

/*" Drawing "*/
- (void)drawRect:(NSRect)aRect;

/*" Accessors "*/
- (NSString *)word;

@end

The code that implements the _MYWord class includes methods that are not exposed in the class's interface. The hidden
methods are used to obtain random attributes for words and manage initialization.

File _MYWord.m

#import "_MYWord.h"

@implementation _MYWord
/*" Instances of the _MYWord class store a string, a position, and attributes
to use when drawing the string at the position.
"*/

static NSMutableSet *_MYWordSet = nil; /*" Set of words to draw "*/
static NSEnumerator *_MYWordEnumerator = nil; /*" Keeps pos in set "*/

+ (void)initializeWordSetWithPath:(NSString *)aPath
/*" Call this method to specify a file to use as a source of words. Each word
in the file at aPath is stored in a set that is later used to provide words
for display. This method should be called before +nextWordInSet or
-initWithNextWordInRect:. Each time this method is called it replaces the set
of words specified with the previous call. If the file at aPath can not be
read or does not conatin any words, the set of words will be empty. "*/
{
 NSString *wordsSource = [NSString stringWithContentsOfFile:aPath];

 [_MYWordSet release];
 _MYWordSet = [[NSMutableSet alloc] init];

 if(nil != wordsSource)
 {
 NSScanner *scanner = [NSScanner scannerWithString:wordsSource];
 NSCharacterSet *interestingSet = [NSCharacterSet letterCharacterSet];
 NSString *results;

 [scanner scanUpToCharactersFromSet:interestingSet intoString:NULL];
 while([scanner scanCharactersFromSet:interestingSet intoString:&results])
 {
 // ignore one letter words
 if(1 < [results length])
 {
 [_MYWordSet addObject:results];
 }
 [scanner scanUpToCharactersFromSet:interestingSet intoString:NULL];
 }
 }
}

+ (NSString *)nextWordInSet
/*" Returns the next word in the set of words produced by calling
+initializeWordSetWithPath:. No word is returned more than once until every
word in the set has been returend at least once. If all words in the set have
been previously returned, this method starts over returning words from the
set. If no set of words is available or the set is empty, this method returns
@"None". "*/
{
 NSString *result;
 if (nil == (result = [_MYWordEnumerator nextObject]))

 {
 // there is no next object so try getting a new enumerator
 [_MYWordEnumerator release];
 _MYWordEnumerator = [[_MYWordSet objectEnumerator] retain];
 if (nil == (result = [_MYWordEnumerator nextObject]))
 {
 // there is still no next word so no words are available
 result = @"None";
 }
 }

 return result;
}

/*" Minimum point size of font used to draw words "*/
#define _MYMINIMUM_FONT_SIZE (9)

/*" Maximum point size of font used to draw words "*/
#define _MYMAXIMUM_FONT_SIZE (45)

+ (NSFont *)_myRandomFont
/*" Returns the user's default bold system font with a size randomly selected
between _MYMINIMUM_FONT_SIZE points and _MYMAXIMUM_FONT_SIZE points. "*/
{
 const int fontSizeDelta = (_MYMAXIMUM_FONT_SIZE - _MYMINIMUM_FONT_SIZE);
 const int shiftFactor = 512; // least significant bits returned by random()
 // are not very random. Constant used to shift
 // to more random bits
 const int shiftedFontSizeDelta = fontSizeDelta * shiftFactor;

 return [NSFont boldSystemFontOfSize:(float)(
 random() % shiftedFontSizeDelta) / (float)shiftFactor +
 _MYMINIMUM_FONT_SIZE];
}

+ (NSColor *)_myRandomColor
/*" Returns a color with randomly selected red, green, blue, and alpha
components. "*/
{
 const int shiftFactor = 512; // least significant bits returned by random()
 // are not very random. Constant used to shift
 // to more random bits
 const float floatShiftFactor = (float)shiftFactor;
 const float red = (float)(random() % shiftFactor) / floatShiftFactor;
 const float green = (float)(random() % shiftFactor) / floatShiftFactor;
 const float blue = (float)(random() % shiftFactor) / floatShiftFactor;
 const float alpha = (float)(random() % shiftFactor) / floatShiftFactor;

 return [NSColor colorWithCalibratedRed:red green:green blue:blue
 alpha:alpha];
}

+ (NSPoint)_myRandomPointInRect:(NSRect)aRect
/*" Returns a random point within aRect or NSZeroPoint if aRect has no area.
"*/
{
 NSPoint result;

 if(aRect.size.width > 0.0 || aRect.size.height > 0.0)

 {
 // there is room for the word
 result = NSMakePoint((random() % (int)aRect.size.width) + aRect.origin.x,
 (random() % (int)aRect.size.height) + aRect.origin.y);
 }
 else
 {
 // there is no room for the word so any point is as good as another
 result = NSZeroPoint;
 }

 return result;
}

- (id)_myReinitWithWord:(NSString *)aWord inRect:(NSRect)aFrame
/*" Called by -initWithWord:inRect:. This method does the actual work of
initializing an instance. "*/
{
 NSSize stringSize;
 NSRect validPositionArea;
 id attributes[2];
 id keys[2];

 // copy the word
 aWord = [aWord copy];
 [_myWord release];
 _myWord = aWord;

 // release any existing attributes
 [_myAttributes release];

 // store random attributes in the attributes dictionary
 attributes[0] = [[self class] _myRandomFont];
 attributes[1] = [[self class] _myRandomColor];
 keys[0] = NSFontAttributeName;
 keys[1] = NSForegroundColorAttributeName;
 _myAttributes = [[NSDictionary alloc] initWithObjects:attributes
 forKeys:keys count:2];

 // get the size of specified word drawn with specified attributes
 // and subtract from specified frame so that entire word will be
 // visible if drawn inside the frame.
 stringSize = [_myWord sizeWithAttributes:_myAttributes];
 validPositionArea = aFrame;
 validPositionArea.size.width -= stringSize.width;
 validPositionArea.size.height -= stringSize.height;

 // store random position
 _myPosition = [[self class] _myRandomPointInRect:validPositionArea];

 return self;
}

- (id)initWithWord:(NSString *)aWord inRect:(NSRect)aFrame
/*" Initializes receiver with aWord, a random position within aFrame, and
random attributes. "*/
{
 self = [super init];

 if(self)
 {
 [self _myReinitWithWord:aWord inRect:aFrame];
 }

 return self;
}

- (id)initWithNextWordInRect:(NSRect)aFrame
/*" Initializes the receiver with the next word obtained by calling
+nextWordInSet. "*/
{
 self = [self initWithWord:[[self class] nextWordInSet] inRect:aFrame];

 return self;
}

- (id)init
/*" Initializes receiver with the word "None" at NSZeroPoint with random
attributes. "*/
{
 return [self initWithWord:@"None" inRect:NSZeroRect];
}

- (void)drawRect:(NSRect)aRect
/*" Draws receiver's word at receiver's position with receiver's
attributes. "*/
{
 [_myWord drawAtPoint:_myPosition withAttributes:_myAttributes];
}

- (NSString *)word
/*" Returns the receiver's stored word. "*/
{
 return _myWord;
}

- (void)dealloc
/*" Cleanup "*/
{
 [_myWord release];
 _myWord = nil;
 [_myAttributes release];
 _myAttributes = nil;

 [super dealloc];
}

@end

The MYWordView class is almost as simple as an NSView subclass can be. An instance of MYWordView stores an array of
_MYWord instances and draws those instances as needed. The array of _MYWord instances is set with the only method that
MYWordView adds to NSView, -setWordsToView:.

File MYWordView.h

#import <Cocoa/Cocoa.h>

@interface MYWordView : NSView
{
 NSArray *_myWordsArray; /*" The array of words to display "*/
}

/*" Accessors "*/
- (void)setWordsToView:(NSArray *)anArray;

@end

The MYWordView class overrides the inherited implementation of -drawRect: to draw the words set with -
setWordsToView:.

File MYWordView.m

#import "MYWordView.h"
#import "_MYWord.h"

@implementation MYWordView
/*" Draws an array of _MYWord instances set with -setWordsToView:. "*/

- (void)setWordsToView:(NSArray *)anArray
/*" Set the array of words to draw. "*/
{
 [anArray retain];
 [_myWordsArray release];
 _myWordsArray = anArray;
}

- (void)drawRect:(NSRect)aRect
/*" Draw the words set with -setWordsToView: "*/
{
 NSEnumerator *enumerator = [_myWordsArray objectEnumerator];
 _MYWord *currentWord;

 while(nil != (currentWord = [enumerator nextObject]))
 {
 [currentWord drawRect:aRect];
 }
}

- (void)dealloc
/*" Clean-up "*/
{
 [_myWordsArray release];
 _myWordsArray = nil;

 [super dealloc];
}

@end

An instance of the MYWordController class is used as the application's delegate. The -
applicationDidFinishLaunching: and -applicationWillTerminate: delegate methods are used to setup
and shut down the application, respectively. While the application is running, the MYWordController instance uses a timer
to redraw the MYWordView as fast as possible, adding a new word every time it is drawn. The MYWordController
instance also keeps track of timing information so that it can log reports about its own performance.

File MYWordController.h

#import <Cocoa/Cocoa.h>
#import "MYWordView.h"
@interface MYWordController : NSObject
{
 IBOutlet MYWordView *wordView; /*" Connect in IB: word view"*/
 int _myNumberOfWordsToView; /*" Num simultaneous words "*/
 NSMutableArray *_myWordsArray; /*" Words being displayed "*/
 NSTimer *_myTimer; /*" Used to add words+display"*/
 NSTimeInterval _myStartTime; /*" Used to calc update rate"*/
 NSTimeInterval _myLastReportTime; /*" Used to calc update rate"*/
 int _myUpdateCounter; /*" Used to calc update rate"*/
}

/*" Application delegate methods "*/
- (void)applicationDidFinishLaunching:(NSNotification *)aNotification;
- (void)applicationWillTerminate:(NSNotification *)aNotification;

@end

The MYWordController class is designed to be used as an applications delegate. MYWordController provides an outlet
that must be connected to an instance of MYWordView to draw anything.

File MYWordController.m

#import "MYWordController.h"
#import "_MYWord.h"

@implementation MYWordController
/*" Use an instance of this class as the application's delegate. Forces an
instance of MYWordView to periodically redraw with a new word and logs
information about the redraw rate. "*/

- (void)_mySetNumberOfWords:(int)aNumber
/*" Set the number of words to draw each time. "*/
{
 _myNumberOfWordsToView = MAX(0, aNumber);

 // remove as many words as necessary to get down to aNumber words stored.
 while([_myWordsArray count] > _myNumberOfWordsToView)
 {
 [_myWordsArray removeObjectAtIndex:0];
 }
}

- (void)_myAddNextWord
/*" Add a word to draw. Removes a word if necessary to ensure that no more
than the number of words specified with -_mySetNumberOfWords: are drawn. "*/
{
 if(_myNumberOfWordsToView > 0)
 {
 if([_myWordsArray count] >= _myNumberOfWordsToView)
 {
 [_myWordsArray removeObjectAtIndex:0];
 }

 [_myWordsArray addObject:[[_MYWord alloc] initWithNextWordInRect:
 [wordView bounds]]];

 [wordView setNeedsDisplay:YES];
 }
}

/*" The number of seconds between update rate logs "*/
#define _MYNUM_SECONDS_BETWEEN_LOGS (10.0f)

- (void)addWord:(id)sender
/*" Called repeatedly from a timer. Adds a new word to draw replacing an old
one if necessary. Logs the cumulative redraw rate periodically. "*/
{
 NSTimeInterval _currentTime = [NSDate timeIntervalSinceReferenceDate];

 // Add a word to draw.
 [self _myAddNextWord];

 _myUpdateCounter++;

 if(_MYNUM_SECONDS_BETWEEN_LOGS <= (_currentTime - _myLastReportTime))
 {
 // ten seconds or more has elapsed since last log
 NSLog(@"%f Hz", (double)_myUpdateCounter / (_currentTime -
 _myLastReportTime));

 _myLastReportTime = _currentTime;
 _myUpdateCounter = 0;
 }
}

/*" The number of words to view for each redraw "*/
#define _MYDEFAULT_NUM_WORDS_TO_VIEW (30)

/*" Path to file containing words to display "*/
#define _MYDEFAULT_PATH_TO_WORDS_FILE (@"/usr/share/dict/words")

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
/*" Called automatically if receiver is application's delegate. Schedules a
timer that calls -addWord: at periodic intervals but no more than once per
cycle of the application's run loop. "*/
{
 _myWordsArray = [[NSMutableArray alloc] init];
 [self _mySetNumberOfWords:_MYDEFAULT_NUM_WORDS_TO_VIEW];

 // Initialize the set of words to display
 [_MYWord initializeWordSetWithPath:_MYDEFAULT_PATH_TO_WORDS_FILE];

 // Tell the wordView what words to draw
 [wordView setWordsToView:_myWordsArray];

 // set up a repeating timer
 _myTimer = [NSTimer scheduledTimerWithTimeInterval:0.0
 target:self selector:@selector(addWord:) userInfo:nil repeats:YES];
 [_myTimer retain];

 // store information for redraw rate log
 _myStartTime = [NSDate timeIntervalSinceReferenceDate];
 _myLastReportTime = _myStartTime;
 _myUpdateCounter = 0;
}

- (void)applicationWillTerminate:(NSNotification *)aNotification
/*" Called automatically if receiver is application's delegate. Shuts down
the timer that caused redraws. "*/
{
 [_myTimer invalidate];
 [_myTimer release];
 _myTimer = nil;
}

- (void)dealloc
/*" Clean-up"*/
{
 [_myWordsArray release];
 _myWordsArray = nil;

 [super dealloc];
}

@end

The only other code in the LotsOfWords application is the unmodified main.m file that Project Builder generated when the
project was created.

To run this application, download the complete project from www.cocoaprogramming.net, or create a new Project Builder
project using the Cocoa Application template. Add the MYWordView, _MYWord, and MYWordController classes to the
project. Edit the project's MainMenu.nib file so that it contains one window filled with an instance of the MYWordsView
class. Use Interface Builder to create an instance of the MYWordController class. Connect the MYWordsView instance to
the MYWordController instances's wordView outlet. Make the MYWordController instance the application's delegate.
Build the project and run it with project Builder to see the log output. On a 450 MHz G4 computer, this implementation of
LotsOfWords redraws at approximately 12 Hz. In the remainder of this appendix, the application will be optimized so that it
redraws at 70 Hz or more on the same computer. The almost 600% increase results primarily from graphics optimizations.

First Optimize Graphics

The first, and most important, optimization for graphical applications is to reduce drawing as much as possible. For most
applications, changing the color of even one pixel onscreen is time consuming in comparison to the time spent executing
application logic. Modern computers are much faster at mathematical operations than they are at memory operations. To draw a
button onscreen, Cocoa must set the values of every pixel in the button. If the button includes any transparency, Cocoa must
read the values of the pixels that will be replaced by the pixels of the button, combine them with the pixels of the button, and
then set the values of the combined pixels of the button. After Cocoa has drawn the button, Mac OS X's window server must
copy the memory that stores the pixel values for the button from the computer's main memory to the memory of its graphic
card. It is common for drawing graphics to consume 90% of an application's time. Little benefit arises from optimizing an
application's logic until its drawing is fully optimized. The bottom line is that almost any amount of processing to avoid
drawing is justified.

Finding Excess Drawing

The first step in optimizing drawing is finding excess drawing that can be eliminated. Drawing fewer pixels each time an
application updates can yield large performance improvements.

Apple provides a tool called Quartz Debug, which is located in the /Developer/ Applications folder. When running,
Quartz Debug communicates with Mac OS X's window server process and highlights areas of the screen that are being redrawn.
Quartz Debug works with all Mac OS X applications. It is instructional to use Quartz Debug to analyze how much drawing
takes place in Apple's applications, including Project Builder. Figure B.2 shows Quartz Debug being used with LotsOfWords
to show the areas of the screen being redrawn.

Figure B.2. Quartz Debug indicates the areas of the screen being redrawn by drawing a colored highlight rectangle over
those areas.

http://www.cocoaprogramming.net/

As shown in Figure B.2, the LotsOfWords application is very sloppy with its drawing. The whole MYWordView instance is
redrawn every time a word is added.

Reducing Excess Drawing Part I

The LotsOfWords application adds one word each time the MYWordView is redrawn. At most one word is removed each
time the MYWordView is redrawn. The first step to reducing drawing in LotsOfWords is to take advantage of these facts and
redraw only the area of a MYWordView that is covered by an added word or a removed word.

To implement the first optimization, it is necessary to know the area of the MYWordView that is covered by each word.
Fortunately, that area is already calculated when each word is added so that no part of the word is drawn outside the bounds of
the MYWordView. The _MYWord class must be modified to store the area covered by the word rather than just the position of
the word.

Replace the definition of the _myPosition instance variable in the _MYWord class with the _myRect instance variable, as
shown in the following redefinition of _MYWord's instance variables.

@interface _MYWord : NSObject
{
 NSString *_myWord; /*" The word "*/
 // _myPosition is replaced by _myRect
 //NSPoint _myPosition; /*" The word's position "*/
 NSRect _myRect; /*" The word's position & size "*/
 NSDictionary *_myAttributes; /*" The word's attributes "*/
}

Add the accessor method, -rect, to _MYWord's interface. The -rect method will return the _myRect instance variable.

/*" Accessors "*/
- (NSString *)word;
- (NSRect)rect; // added as part of first optimization

Change the implementation of the _MYWord class to use _myRect instead of _myPosition. In the -_
myReinitWithWord: inRect: method, replace the line that sets _myPosition with the following code:

// Replaced code that sets _myPosition with code to set _myRect

//_myPosition = [[self class] _myRandomPointInRect:validPositionArea];
_myRect.origin = [[self class] _myRandomPointInRect:validPositionArea];
_myRect.size = stringSize;

Rewrite _MYWord's -drawRect: method to use the _myRect instance variable and only draw the word if _myRect
intersects that rectangle argument passed to -drawRect:.

- (void)drawRect:(NSRect)aRect
/*" "*/
{
 // Replaced next line that always draws the word
 // [_myWord drawAtPoint:_myPosition withAttributes:_myAttributes];

 // Draw only if word's rectangle intersects aRect
 if(NSIntersectsRect(_myRect, aRect))
 {
 [_myWord drawInRect:_myRect withAttributes:_myAttributes];
 }
}

Testing for the intersection of _myRect and the rectangle passed as an argument to -drawRect: has a lot of potential to
reduce drawing, but for it to help, the rectangle passed to -drawRect: must be minimized. If the rectangle passed to -
drawRect: is always the full bounds of a view, the optimizations made so far do not reduce drawing at all.

To help the LotsOfWords application minimize the rectangles passed to _MYWord's -drawRect: method, other classes
need to know the rectangle covered by each word before it is added and removed. To provide that information, implement the -
rect accessor method as follows:

- (NSRect)rect
/*" Returns the rectangle covered by receiver's stored word. "*/
{
 return _myRect;
}

The next step is to modify the MYWordView class so that it draws correctly even if the rectangle passed to its -drawRect:
method is smaller than the view's bounds. In MYWordView.m, add a line to clip the current graphics context to the rectangle
passed in to MYWordView's -drawRect: method. The following code implements the modified method:

- (void)drawRect:(NSRect)aRect
/*" Draw the words set with -setWordsToView: "*/
{
 NSEnumerator *enumerator = [_myWordsArray objectEnumerator];
 _MYWord *currentWord;

 // Add this line to clip to aRect
 NSRectClip(aRect);
 while(nil != (currentWord = [enumerator nextObject]))
 {
 [currentWord drawRect:aRect];
 }
}

Some of the words might partially overlap the area being redrawn and, therefore, need to be redrawn. However, such words
might also overlap other words that do not overlap the area being redrawn. The clipping is necessary to prevent the words that
are being redrawn from inappropriately obscuring overlapping words that are not redrawn. After the modifications for this
optimization are complete, experiment by commenting the call to NSRectClip() to see its effects.

Finally, modify the MYWordController class so that it uses the rectangles obtained from MYWord's -rect method and
only tells the MYWordView class to redraw the areas covered by the added word and any removed word. Change the

implementation of MYWordController's -_myAddNextWord: method to the following:

- (void)_myAddNextWord
/*" Add a word to draw. Removes a word if necessary to ensure that no more
than the number of words specified with -_mySetNumberOfWords: are drawn. "*/
{
 if(_myNumberOfWordsToView > 0)
 {
 _MYWord *newWord = [[_MYWord alloc] initWithNextWordInRect:
 [wordView bounds]];

 if([_myWordsArray count] >= _myNumberOfWordsToView)
 {
 NSRect obsoleteRect = [[_myWordsArray objectAtIndex:0] rect];

 [_myWordsArray removeObjectAtIndex:0];

 // Tell wordView it needs to redraw rect covered by removed word
 [wordView setNeedsDisplayInRect:obsoleteRect];
 }

 [_myWordsArray addObject:newWord];
 [wordView setNeedsDisplayInRect:[newWord rect]];
 }
}

With these modifications, rebuild the LotsOfWords application and run it in Project Builder. There is already a dramatic
speedup, but more can be done. Figure B.3 shows the results of the first optimization reflected in Quartz Debug.

Figure B.3. Now only part of the MYWordView is redrawn.

Large areas of the MYWordView are still redrawn, but the whole MYWordView is no longer redrawn every time. The reason
for this is Cocoa's abysmal implementation of NSView's -setNeedsDisplayInRect: method in Mac OS X version
10.1.3 Each time the -setNeedsDisplayInRect: message is sent to a view, the view stores the smallest rectangle that
encloses the argument to -setNeedsDisplayInRect: as well as the rectangles specified by all previous calls to -
setNeedsDisplayInRect: since the last redraw. When the view is finally redrawn, it redraws the rectangle that encloses
all the rectangles set via -setNeedsDisplayInRect:.

In the LotsOfWords application, if the word that is removed is in one corner of the MYWordsView and the word that is
added is in the opposite corner, the entire view ends up being redrawn because the rectangle that encloses both words covers the
entire view.

Reducing Excess Drawing Part II

The next optimization modifies the LotsOfWords application so that it does not use -setNeedsDisplayInRect:. The -
setNeedsDisplayInRect: method exists to improve drawing performance by accumulating the rectangles that need to be
redrawn and redrawing them all at once under optimal conditions. It is ironic that Cocoa's poor implementation of the -
setNeedsDisplayInRect: method actually degrades efficiency compared to alternatives.

NOTE

Apple's class documentation recommends the use of -setNeedsDisplayInRect: instead of -
displayRect:. In reality, applications should almost always use -displayRect: instead of -
setNeedsDisplayInRect: at least until Apple improves the implementation of -
setNeedsDisplayInRect:.

The principal alternative to using -setNeedsDisplayInRect: is to use -displayRect:. Unlike -
setNeedsDisplayInRect:, which accumulates rectangles for future display, -displayRect: forces its receiver to
redraw the specified rectangle immediately.

Replace each occurrence of -setNeedsDisplayInRect: with -displayRect: within MYWordController's
implementation so that its -_myAddNextWord: method is implemented as follows:

- (void)_myAddNextWord
/*" Add a word to draw. Removes a word if necessary to ensure that no more
than the number of words specified with -_mySetNumberOfWords: are drawn. "*/
{
 if(_myNumberOfWordsToView > 0)
 {
 _MYWord *newWord = [[_MYWord alloc] initWithNextWordInRect:
 [wordView bounds]];

 if([_myWordsArray count] >= _myNumberOfWordsToView)
 {
 NSRect obsoleteRect = [[_myWordsArray objectAtIndex:0] rect];

 [_myWordsArray removeObjectAtIndex:0];

 // Tell wordView it needs to redraw rect covered by removed word
 [wordView displayRect:obsoleteRect];
 }
 [_myWordsArray addObject:newWord];
 [wordView displayRect:[newWord rect]];
 }
}

On a 450 MHz G4, this version of LotsOfWords redraws at more than 70 Hz. Figure B.4 shows the results of the latest
optimization reflected in Quartz Debug.

Figure B.4. MYWordView now redraws the minimum area.

An interesting effect of this optimization is that the application actually runs faster with its window maximized than it does with
a very small window. The time needed to draw the optimized MYWordView is proportional to the number of words drawn.
Because the words are randomly placed within the MYWordView, a large bounds size means that it is not likely for words to
overlap. With a very small bounds size, almost all words overlap, and the minimum redraw must redraw many overlapping
words. With a large bounds, most likely only the word removed and the word added need to be drawn. Running with its
window maximized, LotsOfWords updates at more than 70 Hz on the system tested.

Optimizing Nongraphical Code

Optimizing drawing is crucial, but nongraphical Cocoa applications and applications that already have highly optimized
drawing can benefit from other optimizations. The developer tools that come with Mac OS X include several applications that
help identify nongraphics code that can benefit from optimization.

Finding Performance Bottlenecks

The task of identifying which lines of code are called most often and which lines of code take the longest time to execute is
called profiling. Mac OS X comes with two profiling applications: Sampler, and gprof. Each uses a different technique to
identify performance bottlenecks.

Sampler works by periodically interrupting an application's execution and checking the call stack to determine which function
or method is currently being executed. After Sampler has interrupted an application many times, a statistical profile is generated
that estimates the percentage of the application's execution time spent in each function or method.

Sampler can be used with any application. When the Sampler application has been launched, its File, New menu item is used to
specify an application to launch and sample. Applications that are already running can be sampled by using Sampler's File,
Attach menu item. Figure B.5 shows Sampler's statistical analysis of the LotsOfWords application that has optimized
graphics.

Figure B.5. Sampler shows that the vast majority of samples are spent inside MYWordView's -drawRect: method.

Even with optimized graphics, LotsOfWords is executing code called from MYWordView's -drawRect: method in 4,377
samples out of 6,482. That means that approximately 68% of the application's time is spent for custom drawing. Drawing is
actually even more expensive than that. Further analysis with Sampler reveals that an additional 15% of the execution time is
spent flushing graphics from main memory to the graphics card. In total, 83% of the application's time is needed for drawing.
There is little to gain from optimizing the parts of LotsOfWords that does not involve drawing.

NOTE

Additional graphical optimizations for LotsOfWords require heroic efforts beyond the scope of this appendix.
For example, it is possible to use OpenGL rather than Apple's Quartz to draw the words, but doing so will
probably degrade the quality of the drawing.

To describe techniques for optimizing nongraphical code, the remainder of the optimizations in this section are applied to a
version of LotsOfWords that does not draw anything. The techniques described here are best applied to nongraphical
applications. Download the LotsOfWordsNoDraw project from www.cocoaprogramming.net, or make changes to
LotsOfWords so that it no longer draws. To disable drawing, comment out the two -displayRect: messages in
MYWordController's -_myAddNextWord method as follows:

- (void)_myAddNextWord
/*" Add a word to draw. Removes a word if necessary to ensure that no more
than the number of words specified with -_mySetNumberOfWords: are drawn. "*/
{
 if(_myNumberOfWordsToView > 0)
 {
 _MYWord *newWord = [[_MYWord alloc] initWithNextWordInRect:
 [wordView bounds]];

 if([_myWordsArray count] >= _myNumberOfWordsToView)
 {
 // Comment the following line to eliminate warning
 // generated if drawing is disabled
 //NSRect obsoleteRect = [[_myWordsArray objectAtIndex:0] rect];

 [_myWordsArray removeObjectAtIndex:0];

 // Comment the following line to disable drawing
 //[wordView displayRect:obsoleteRect];
 }

http://www.cocoaprogramming.net/

 [_myWordsArray addObject:newWord];

 // Comment the following line to disable drawing
 //[wordView displayRect:[newWord rect]];
 }
}

The declaration of obsoleteRect in the -_myAddNextWord method is also commented so that the compiler does not
generate a warning that the variable is declared, but not used when drawing is disabled.

Even though the periodic redraw of the LotsOfWords application is disabled by modifying MYWordController's -
_myAddNextWord method, the application will still redraw for other reasons. For example, resizing the window containing
the MYWordView instance causes a redraw. However, unless the window is continuously resized while sampling, the number
of samples that the Sampler application finds inside the drawing code should drop to close to zero.

Optimize Only the Bottlenecks

When Sampler is used with the version of LotsOfWords that does not draw, it is clear that the most time is spent inside the
NSFont class's -boldSystemFontOfSize: method called from _MYWord's -_myRandomFont method. Figure B.6
shows that 3,575 samples out of 5,851 (or 61%) are spent inside -_ myRandomFont. The NSFont class's -
boldSystemFontOfSize: method is clearly the bottleneck to performance.

Figure B.6. The -boldSystemFontOfSize: method consumes most of the time in the version of LotsOfWords that
does not draw.

The LotsOfWords application uses a small number of different sizes of the user's default bold system font. Because it is not
practical to change the implementation of -boldSystemFontOfSize:, the best optimization is to not call it as often. To
avoid calling -boldSystemFontOfSize: every time _MYWord's -_ myRandomFont method is called, the collection of
fonts needed can be cached and reused. Add the following -_myCachedFontWithSize: method to the _MYWord class's
implementation right before the implementation of -_myRandomFont.

/*" Cached fonts to avoid lookups "*/
static NSMutableArray *_MYCachedFonts = nil;

+ (NSFont *)_myCachedFontWithSize:(int)aSize
/*" Returns the cached font with the specified size or nil if aSize is not
available. "*/
{

 NSFont *result = nil;

 if(aSize >= _MYMINIMUM_FONT_SIZE && aSize <= _MYMAXIMUM_FONT_SIZE)
 {
 if(nil == _MYCachedFonts)
 {
 // create the cache & fill with fonts
 int i;

 _MYCachedFonts = [[NSMutableArray alloc] init];
 for(i = _MYMINIMUM_FONT_SIZE; i <= _MYMAXIMUM_FONT_SIZE; i++)
 {
 [_MYCachedFonts addObject:[NSFont boldSystemFontOfSize:(float)i]];
 }
 }

 result = [_MYCachedFonts objectAtIndex:aSize - _MYMINIMUM_FONT_SIZE];
 }

 return result;
}

The _myCachedFontWithSize: method stores an instance of NSFont in the _MYCachedFonts array for each font size
used.

Next, rewrite the -_myRandomFont method to call -_myCachedFontWithSize: instead of -
boldSystemFontOfSize: as follows:

+ (NSFont *)_myRandomFont
/*" Returns the user's default bold system font with a size randomly selected
between _MYMINIMUM_FONT_SIZE points and _MYMAXIMUM_FONT_SIZE points. "*/
{
 const int fontSizeDelta = (_MYMAXIMUM_FONT_SIZE - _MYMINIMUM_FONT_SIZE);
 const int shiftFactor = 512; // least significant bits returned by random()
 // are not very random. Constant used to shift
 // to more random bits
 const int shiftedFontSizeDelta = fontSizeDelta * shiftFactor;

 // Use the cached fonts rather than NSFont's -boldSystemFontOfSize:
 return [self _myCachedFontWithSize:(random() % shiftedFontSizeDelta) /
 shiftFactor + _MYMINIMUM_FONT_SIZE];
}

After the modification to use a font cache, Sampler shows that, with the exception of start-up time spent initializing the set of
words, more than 90% of the samples are inside Apple's Core Foundation code that handles the event loop and the timer. No
more optimizations that will have a significant impact on performance are practical for LotsOfWords.

Using gprof to Profile

The Gnu gprof application is provided with Apple's developer tools. The gprof application provides detailed analysis of the
number of times each function or method is called, which functions and methods call other functions or methods, and the
number of computer cycles spent in each function or method. Applications must be recompiled specifically for use with gprof
to be able to use it.

Project Builder is configured to compile source code that includes gprof profiling information by setting the
PROFILING_CODE build setting to YES. Figure B.7 shows the Build Settings tab for the LotsOfWords target in Project
Builder. The PROFILING_CODE build setting is not always in the table of build settings for a target. If it is not already in the
table, add it and set its value to YES.

Figure B.7. The PROFILING_CODE build setting is highlighted in the Build Settings table for the LotsOfWords target.

To get profile information for functions and methods inside frameworks, the application being profiled must be configured to
run with the profiling versions of the frameworks. Figure B.8 shows the Executables tab for the LotsOfWords target. The
Dynamic Library Runtime Variant pop-up button is set to Profile.

Figure B.8. A target is configured to use the Profile variant of each dynamic library via the Executables tab for the
target.

It is possible to profile an application that uses the standard versions of the system frameworks, but without profiling
information for the frameworks, the value of the information provided by gprof is diminished. It becomes impossible to
determine which application methods are called as the result of framework code.

NOTE

If the system libraries have been updated through Apple's Software Update application, it might not be possible to
use the profiling versions of system frameworks. The profiling versions of the system frameworks must be from
the same build as the standard versions, but because the profile versions are only distributed with the developer
tools, any update that installs system frameworks newer than the developer tools prevents profiling.

After Project Builder is configured to include profiling information and optionally use the profiling versions of frameworks, the
application must be completely rebuilt. Clean the application target and rebuild it.

The next time the application is run, it writes a file named gmon.out to the application's current directory. The gmon.out
file includes all the profiling information gathered during the run. The gprof application generates a report from the data in the
gmon.out file.

To run gprof and generate the profiling report, start the Terminal application. Change Terminal's current directory to the
directory where the gmon.out file was generated. The command to execute gprof requires the full path to the executable for
the profiled application and the path to the gmon.out file.

The following command line was used to generate a profiling report for the LotsOfWords application:

[View full width]

gprof /Users/erikbuck/LotsOfWords/build/LotsOfWords.app/Contents/MacOS/ LotsOfWords ./
gmon.out

The path to the executable will be different for each user. The executable for a Cocoa application is in the Contents/
MacOS/ folder within the application package. Use Finder's context menu to open the application's package and see the folders
inside.

The report generated by gprof is too long and detailed to include here. Information about each field in the report is provided at
the top of the report that is generated. Additional information about gprof and its report format is available at www.gnu.org/
manual/gprof-2.9.1/gprof.html.

Optimizing Rules of Thumb

The following rules of thumb apply to optimizing large Cocoa applications:

● Using a better algorithm yields bigger performance improvements than any number of low-level optimizations.
● Graphics usually consume the vast majority of an application's time. Optimize graphics before anything else.
● After graphics, the next most time consuming code is usually dynamic memory allocation. Avoid dynamic memory

allocation when possible.
● Extremely low-level optimizations such as using NSObject's -methodForSelector: to obtain a pointer to the

function that implements a method rarely improves performance. Use low-level techniques only as a last resort.

Keep the optimizing rules of thumb in mind when optimizing Cocoa applications. The choice of algorithms to use in an
application is beyond the scope of this book. This appendix has already described techniques to optimize graphics. Low-level
optimizations using NSObject's -methodForSelector: are described in Chapter 4, "Objective-C" and Appendix A,
"Profiling, Optimizing, and Detecting Memory Leaks." Additional low-level optimizations are explained at www.mulle-
kybernetik.com/artikel/Optimization. One feature of Cocoa applica-tions that commonly consumes a lot of time, but has not
been adequately described is dynamic memory allocation. The next section describes a technique for avoiding dynamic memory
allocation.

Avoiding Dynamic Memory Allocation

Dynamic memory allocation is one of the slowest services provided by modern operating systems. One reason dynamic
memory allocation is slow is its need to communicate with the operating system's kernel to obtain additional memory. Freeing
memory is also slow. The operating system and system libraries need to do a lot of work to avoid memory fragmentation when
memory is freed. Consider the following: 1000 bytes is allocated followed by 4 bytes followed by another 1000 bytes. When
the 4 byte block is freed, the operating system might have to shuffle memory around to avoid leaving a 4 byte block of memory
that cannot be easily reused because of the large blocks on either side of it.

The dynamic memory allocation functions provided by Mac OS X are optimized and automatically avoid memory
fragmentation, but they are still a common source of performance problems. The problem is exacerbated by the fact that most

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/&r=noccc&xmlid=0-672-32230-7/app02lev1sec1#PLID17
http://www.gnu.org/manual/gprof-2.9.1/gprof.html
http://www.gnu.org/manual/gprof-2.9.1/gprof.html
http://www.mulle-kybernetik.com/artikel/Optimization
http://www.mulle-kybernetik.com/artikel/Optimization

objects only require a few bytes of storage. Frequent allocation and deallocation of objects puts the maximum memory
allocation burden on the system. The following MYShortString class shows one way to reduce dynamic memory allocation
for objects.

The MYShortString Class

In a particular large Cocoa application, profiling revealed that a large percentage of processing time was being spent allocating
and deallocating NSString instances. The strings were usually very short, but thousands of them were allocated and
deallocated every second. Because one of the primary requirements of the application was string processing, a solution to avoid
the dynamic allocation of string objects was needed. The MYShortString class presented here, and available at www.
cocoaprogramming.net, provided the solution.

The MYShortString class only handles short strings. Instances of MYShortString are allocated as needed, but are
seldom deallocated. Instead of being deallocated, the MYShortString instances are added to a pool of available instances.
When a new MYShortString instance is needed, one of the unused instances in the pool is reused rather than allocating a
new one.

Creating the MYShortString subclass of NSString is complicated because NSString is the abstract interface to a class
cluster. Class clusters are described in Chapter 6, and Apple provides documentation on class clusters at http://developer.apple.
com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Foundation/Concepts/ClassClusters.html. To create a
new concrete subclass of a class cluster's abstract class, the following rules should be followed:

● The new class must override the superclass's primitive methods.
● The new class must override all the superclass's initializer methods or risk exceptions.
● Every initializer in the new class must call its superclass's designated initializer, which is always -init for abstract

interface to a class cluster.

Primitive methods provide the core features common to all classes in a class cluster. Apple's class documentation identifies the
primitive methods of the public classes in class clusters. The other methods declared for a class cluster are implemented using
the primitive methods. The existence of primitive methods reduces the number of methods that must be overridden in a subclass
of a class cluster. By implementing just the primitive methods for a class cluster, a new concrete subclass ensures that the other
inherited methods operate properly.

NSString's primitive methods are -length and -characterAtIndex:. According to the rules for subclassing class
clusters, the MYShortString class must implement -length and -characterAtIndex: as well as all NSString's
initializers. The following code defines the class interface for the MYShortString class.

File MYShortString.h

#import <Foundation/Foundation.h>

#define _MYMAX_SHORT_STRING_LENGTH (40)

@interface MYShortString : NSString
{
 unichar _myBuffer[_MYMAX_SHORT_STRING_LENGTH+1]; /*" the string "*/
 unsigned int _myLength; /*" num unichars not counting null "*/
}

/*" Overridden allocator "*/
+ (id)allocWithZone:(NSZone *)aZone;

/*" Shared resource cleanup "*/
+ (void)cleanup;

/*" Reuse statistics "*/
+ (unsigned int)numberOfAvailableInstances;
+ (unsigned int)totalNumberOfInstances;

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Foundation/Concepts/ClassClusters.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Foundation/Concepts/ClassClusters.html

/*" Encoding support "*/
+ (BOOL)isSupportedEncoding:(NSStringEncoding)anEncoding;

/*" Overridden designated initializer "*/
- (id)init;

/*" Undocumented method that MUST be overridden in a concrete subclass of
NSString "*/
- (id)initWithBytes:(const void *)bytes length:(unsigned)length
encoding:(NSStringEncoding)encoding;

/*" Overridden initializers "*/
- (id)initWithCharacters:(const unichar *)characters length:(unsigned)length;
- (id)initWithCString:(const char *)bytes length:(unsigned)length;
- (id)initWithString:(NSString *)aString;
- (id)initWithData:(NSData *)data encoding:(NSStringEncoding)encoding;

/*" Overridden NSString primitive methods "*/
- (unsigned int)length;
- (unichar)characterAtIndex:(unsigned)index;

/*" Overridden NSString performance methods "*/
- (void)getCharacters:(unichar *)buffer;
- (void)getCharacters:(unichar *)buffer range:(NSRange)aRange;

@end

The rule that every initializer in the class cluster's interface must be overridden to avoid exceptions is particularly difficult to
follow in this case because Apple failed to document one of NSString's most important initializers. The -
initWithBytes:length:encoding: method is called frequently by the Cocoa frameworks, but it does not appear
anywhere in Apple's documentation.

Failure to override all the class cluster's initializers in a subclass does not automatically mean that the subclass cannot be used.
The initializers that are overridden will work correctly. Attempts to use initializers that are not overridden will raise exceptions
that must be handled. Just keep in mind that any of the initializers might be called from code inside the Cocoa frameworks
where it is not easy to handle exceptions.

The MYShortString class deliberately does not override some of NSString's initializers and raises exceptions from some
of the initializers it does override. The primary reason is that MYShortString cannot handle strings that are longer than
MYMAX_SHORT_STRING_LENGTH (40). It is better to raise an exception in situations where MYShortString cannot
determine the length of the string it is being asked to store or it knows the string is too long, rather than fail silently or truncate
the stored string. The following code implements the MYShortString class:

#import "MYShortString.h"
#import <objc/objc-class.h>

@implementation MYShortString
/*" This class helps alleviate the overhead of memory allocation for short
strings. As long as the string values are short, this class can be used more
efficiently than the built in NSString concrete classes. Instances of this
class are seldom deallocated and can be reused repeatedly without penalty. "*/

/*" Collection of shared instances "*/
static NSMutableArray *_MYShortStringCache = nil;

/*" Number of instances allocated "*/
static unsigned int _MYTotalNumberOfInstances = 0;

static BOOL _MYCacheIsDisabled = NO;

+ (NSMutableArray *)_myShortStringCache
/*" Return the shared array of available instances. "*/
{
 if(nil == _MYShortStringCache && !_MYCacheIsDisabled) {
 _MYShortStringCache = [[NSMutableArray alloc] init];
 }

 return _MYShortStringCache;
}

+ (void)cleanup;
/*" Releases all of the shared short string instances that are available for
reuse "*/
{
 id temp = _MYShortStringCache;

 _MYShortStringCache = nil;
 _MYCacheIsDisabled = YES; // prevent re-caching when instances released
 [temp release];
 _MYCacheIsDisabled = NO;
}

+ (unsigned int)numberOfAvailableInstances
/*" Returns number of MYShortString instances available for reuse. "*/
{
 return [[self _myShortStringCache] count];
}

+ (unsigned int)totalNumberOfInstances
/*" Returns total number of MYShortString instances ever allocated. "*/
{
 return _MYTotalNumberOfInstances;
}

 /*" Encoding support "*/
+ (BOOL)isSupportedEncoding:(NSStringEncoding)anEncoding
/*" Returns YES if instances of receiver support anEncoding. Only
NSASCIIStringEncoding and NSUnicodeStringEncoding are currently supported. "*/
{
 BOOL result = NO;

 if(anEncoding == NSASCIIStringEncoding ||
 anEncoding == NSUnicodeStringEncoding)
 {
 result = YES;
 }

 return result;
}

+ (id)allocWithZone:(NSZone *)aZone
/*" Reuses any available existing instance before creating a new one. "*/
{
 NSMutableArray *shortStringCache;
 MYShortString *result = nil;
 shortStringCache = [self _myShortStringCache];

 if([shortStringCache count] > 0) {
 // there is an available instance to reuse
 result = [shortStringCache lastObject];
 [result retain]; // retain (next line will release)
 [shortStringCache removeLastObject]; // release result

 } else {
 // create a new instance (Can't use +alloc without infinite recursion)
 result = NSAllocateObject([self class], 0, aZone);
 _MYTotalNumberOfInstances++;
 }

 return result;
}

- (unichar *)_myBuffer
/*" Returns the fixed size buffer used to store strings "*/
{
 return _myBuffer;
}

- (id)init
/*" Overridden designated initializer "*/
{
 _myBuffer[0] = '\0';
 _myLength = 0;

 return self;
}

- (id)initWithCharacters:(const unichar *)characters length:(unsigned)length
/*" Initializes receiver. Raises NSRangeException if length is too long. "*/
{
 id result;

 self = [self init];
 result = self;
 if(length < _MYMAX_SHORT_STRING_LENGTH)
 {
 memcpy(_myBuffer, characters, (length * sizeof(unichar)));
 _myLength = length;
 }
 else
 {
 [self release];
 self = nil;
 [NSException raise:NSRangeException format:@""];
 }

 return result;
}

- (id)initWithCString:(const char *)bytes length:(unsigned)length
/*" Initializes receiver. Raises NSRangeException if length is too long. "*/
{
 id result;

 self = [self init];

 result = self;

 if(length < _MYMAX_SHORT_STRING_LENGTH)
 {
 int i;

 for(i = 0; (i < length) && ('\0' != bytes[i]); i++) {
 _myBuffer[i] = bytes[i];
 }
 _myBuffer[i] = '\0';
 _myLength = i;
 }
 else
 {
 [self release];
 self = nil;
 [NSException raise:NSRangeException format:@""];
 }
 return result;
}

- (id)initWithCString:(const char *)bytes
/*" Initializes the receiver. Calls -initWithCString:length:. "*/
{
 return [self initWithCString:bytes length:strlen(bytes)];
}

- (id)initWithString:(NSString *)aString
/*" Initializes receiver. Raises NSRangeException if aString is too long. "*/
{
 id result;
 const int length = [aString length];

 self = [self init];
 result = self;

 if(length < _MYMAX_SHORT_STRING_LENGTH)
 {
 NSRange copyRange = NSMakeRange(0, length);

 [aString getCharacters:_myBuffer range:copyRange];
 _myBuffer[length] = '\0';
 _myLength = length;
 }
 else
 {
 [self release];
 self = nil;
 [NSException raise:NSRangeException format:@""];
 }

 return result;
}

- (id)initWithBytes:(const void *)bytes length:(unsigned)length
encoding:(NSStringEncoding)encoding
/*" Apple's super secret undocumented method that MUST be overridden in every
concrete subclass of NSString. Only NSASCIIStringEncoding and

NSUnicodeStringEncoding are supported. Any othe encoding causes
NSInvalidArgumentException. "*/
{
 if(encoding == NSASCIIStringEncoding)
 {
 self = [self initWithCString:(char *)bytes length:length];
 }
 else if(encoding == NSUnicodeStringEncoding)
 {
 self = [self initWithCharacters:(unichar *)bytes
 length:length / sizeof(unichar)];
 }
 else
 {
 [self release];
 self = nil;
 [NSException raise:NSInvalidArgumentException format:@""];
 }

 return self;
}

- (id)initWithData:(NSData *)data encoding:(NSStringEncoding)encoding
 /*" Initializes the receiver. Calls -initWithBytes:length:encoding: "*/
{
 return [self initWithBytes:[data bytes] length:[data length]
 encoding:encoding];
}

/*" Overridden NSString primitive methods "*/
- (unsigned int)length
/*" Returns receiver's length in Unicode charaters "*/
{
 return _myLength;
}

- (unichar)characterAtIndex:(unsigned)index
/*" Returns receiver's charater at index. Raises NSRangeException if index is
not available. "*/
{
 if(index >= _myLength)
 {
 [NSException raise:NSRangeException format:@""];
 }
 return _myBuffer[index];
}

/*" Overridden NSString primitive methods "*/
- (void)getCharacters:(unichar *)buffer
/*" Copies the receiver's characters into buffer. This method does not NULL
terminate buffer. Buffer must be able to store the number of Unicode
characters stored by the receiver. "*/
{
 memcpy(buffer, _myBuffer, ((_myLength) * sizeof(unichar)));
}

- (void)getCharacters:(unichar *)buffer range:(NSRange)aRange

/*" Copies the receiver's characters from aRange into buffer. This method does
not NULL terminate buffer. Buffer must be able to store aRange.length Unicde
characters. Raises NSRangeException if any character specified by aRange are
not available in the receiver. "*/
{
 if((aRange.length + aRange.location) > _myLength || aRange.location < 0)
 {
 [NSException raise:NSRangeException format:@"-getCharacters: %@",
 [[self class] description]];

 } else {
 memcpy(&buffer[aRange.location], _myBuffer,
 ((aRange.length) * sizeof(unichar)));
 }
}

- (void)release
/*" Overloaded to cache unused instances for reuse. "*/
{
 if([self retainCount] == 1) {
 [[[self class] _myShortStringCache] addObject:self];
 }

 [super release];
}

- (void)dealloc
/*" Clean-up "*/
{
 _MYTotalNumberOfInstances-;

 [super dealloc];
}

@end

The key to the implementation of MYShortString is that it overrides the -release method to store unused instances for
later reuse rather than deallocating them. The +allocWithZone: method reuses stored instances rather than creating new
ones whenever it can. The number of instances available for reuse is obtained from the +
numberOfAvailableInstances method. The total number of instances that have been allocated is returned from the +
totalNumberOfInstances method. The +cleanup method is used to release and deallocate all the instances that are
available for reuse and reduces the total number of instances to the minimum number in use at one time.

The MYShortString class is not required to override the -getCharacters: and -getCharacters:range: methods
inherited from NSString because they are not primitive methods. However, these two methods are called frequently by other
NSString methods. The NSString class includes implementations of -getCharacters: and -getCharacters:
range: based on the primitive methods, but the implementations provided in MYShortString are much faster because they
avoid many unnecessary calls to the primitive methods.

The MYShortString class can be used directly in application code. Instances can be created by calling [MYShortString
alloc] and initialized by calling any of the provided initializers. However, Cocoa classes that return strings do not
automatically take advantage of the MYShortString class. For example, calling NSString's
+stringByAppendingString: method will return an instance of one of Cocoa's private concrete NSString subclasses
rather than an instance of MYShortString. Even if +stringByAppendingString: is sent to a MYShortString
instance, the string returned will not be a MYShortString.

It is possible to force Cocoa to use a custom subclass of a class cluster and return the custom class from framework methods.
An example is available at www.cocoaprogramming.net that shows how to force Cocoa to use MYShortString instances
whenever possible and automatically fall back to Cocoa's own private NSString subclasses when MYShortString can't
handle a string.

http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Appendix B. Optimizing and Finding Memory Leaks

Finding Memory Leaks

Unlike optimizations, which are unnecessary for many applications, memory leaks are usually bugs that need to
be fixed. Memory leaks and other memory errors are described in Chapter 5, "Cocoa Conventions." Memory
leaks can cause long running applications to crash, and they can reduce the performance of the operating system
by consuming memory that is needed for other applications.

Apple explains how to efficiently use and debug memory at the following URL: http://developer.apple.com/
techpubs/macosx/Essentials/Performance/VirtualMemory/Allocating__eing_Memory.html.

Apple provides developer tools for finding memory leaks. The easiest tool to use is ObjectAlloc, and can be used
with any Cocoa application. Another tool is MallocDebug, which provides detailed information about memory
leaks in Carbon and Cocoa applications. MallocDebug scans an application's memory for areas that are no longer
referenced elsewhere in the application. Such areas are usually leaks. Finally, the Objective-C runtime and
Cocoa frameworks contain features for finding memory leaks.

ObjectAlloc

ObjectAlloc is located in /Developer/Applications and documented at http://developer.apple.com/
techpubs/macosx/Essentials/Performance/PerformanceTools/Observing_A_ObjectAlloc.html. It provides
animated bar charts that show how many instances of each class are allocated over time. It can also show how
many bytes are used. Figure B.9 shows ObjectAlloc's analysis of the LotsOfWords application. It shows the
roughly 230,000 strings that store the words loaded from /usr/share/dict/words. Watching
ObjectAlloc's bar charts over time highlights a memory leak in LotsOfWords. The number of _MYWord
instances grows continuously, and each _MYWord instance stores both a dictionary and a color.

Figure B.9. ObjectAlloc highlights a memory leak in LotsOfWords.

http://developer.apple.com/techpubs/macosx/Essentials/Performance/VirtualMemory/Allocating__eing_Memory.html
http://developer.apple.com/techpubs/macosx/Essentials/Performance/VirtualMemory/Allocating__eing_Memory.html
http://developer.apple.com/techpubs/macosx/Essentials/Performance/PerformanceTools/Observing_A_ObjectAlloc.html
http://developer.apple.com/techpubs/macosx/Essentials/Performance/PerformanceTools/Observing_A_ObjectAlloc.html

Armed with the information that _MYWord instances are leaking, a quick inspection of the LotsOfWords code
reveals the problem. The -_myAddNextWord method in the MYWordController class violates Cocoa's
reference-counted, memory-management conventions. It allocates instances of _MYWord, but it never releases
them. The following implementation of -_myAddNextWord adds the necessary -release message and an
appropriate comment:

- (void)_myAddNextWord
/*" Add a word to draw. Removes a word if necessary to ensure that no more
than the number of words specified with -_mySetNumberOfWords: are drawn.
"*/
{
 if(_myNumberOfWordsToView > 0)
 {
 // The following line allocates new _MYWordInstances
 _MYWord *newWord = [[_MYWord alloc] initWithNextWordInRect:
 [wordView bounds]];

 if([_myWordsArray count] >= _myNumberOfWordsToView)
 {
 NSRect obsoleteRect = [[_myWordsArray objectAtIndex:0] rect];

 [_myWordsArray removeObjectAtIndex:0];

 // Tell wordView it needs to redraw rect covered by removed word
 [wordView displayRect:obsoleteRect];
 }

 [_myWordsArray addObject:newWord];
 [newWord release]; // !!! Must release newWord
 [wordView displayRect:[newWord rect]];
 }
}

With this small modification, the LotsOfWords application no longer leaks.

NOTE

ObjectAlloc shows the number of allocated objects and memory blocks changing continuously. As
long as the numbers do not continually increase, there is no leak. It is normal for the number of
allocations to count up, and then go back down over time.

MallocDebug

MallocDebug is located in /Developer/Applications and documented at http://developer.apple.com/
techpubs/macosx/Essentials/Performance/PerformanceTools/Debugging_A_MallocDebug.html. It uses a
conservative algorithm for detecting unreferenced blocks of memory. MallocDebug searches an application's
memory for pointers to each allocated block. MallocDebug cannot always definitively identify memory leaks. It
classifies memory blocks as either leaked, possibly leaked, or not leaked.

MallocDebug provides the call stack that resulted in the allocation of memory classified as a leak. Use the call

http://developer.apple.com/techpubs/macosx/Essentials/Performance/PerformanceTools/Debugging_A_MallocDebug.html
http://developer.apple.com/techpubs/macosx/Essentials/Performance/PerformanceTools/Debugging_A_MallocDebug.html

stack to determine what went wrong and fix the problem. Possible leaks pose a much trickier problem. The best
way to determine if possible leaks are actual leaks is to watch the total amount of memory allocated by the
functions that allocated the possible leaks. If the total amount of memory allocated by those functions grows and
never shrinks, there is most likely a leak.

MallocDebug can detect a wide variety of memory misuse bugs. It detects memory overruns and underruns. It
also detects the use of already freed memory. The reports produced my MallocDebug often contain so much
information that important details are easily missed in the mass of unimportant statistics. The real trick to using
MallocDebug is learning to filter the information and selecting only the important parts. Unfortunately, that is
not easy to do, and the important information for one application might be unimportant for another. It is usually
best to start looking for leaks with ObjectAlloc and only resort to using MallocDebug to narrow down the cause
of a leak that ObjectAlloc already detected.

Using Cocoa Frameworks to Find Leaks

Cocoa's Foundation framework includes a header file named NSDebug.h. Searching for NSDebug in Project
Builder reveals a multitude of useful memory debugging information. NSDebug.h lists a group of environment
variables that can be set to control how Cocoa's memory-management conventions are enforced. For example,
when the NSZombieEnabled environment variable is set to YES, no objects are deallocated. Instead, the class
of each object that would have been deallocated is changed to a special debugging class that logs all messages it
receives. As a result, messages to objects that would have been deallocated are logged to an error report. Setting
NSZombieEnabled to YES makes it easy to isolate attempts to use or release already deallocated objects.

Another useful environment variable is NSAutoreleaseFreedObjectCheckEnabled. Setting this
variable to YES degrades the performance of autorelease pools, but makes it easy to identify when an already
released object is still in an autorelease pool. This environment variable helps detect one of the most common
bugs in Cocoa applications.

The NSDebug.h file also contains a category that extends the NSAutoreleasePool class with methods to
aid in leak detection. In particular, the +showPools method displays the state of all autorelease pools in the
current thread.

When a reference counting bug has been identified, one technique for tracking down the specific problem is to
override the -retain and -release methods inherited from NSObject to log the call stack each time -
retain or -release is called. The following versions of the -retain and -release methods show one
technique:

- (id)retain
{
 NSLog(@"RETAIN <%p> %d %@", self, [self retainCount],
 [[self class] description]);
 return [super retain];
}

- (void)release
{
 NSLog(@"RELEASE <%p> %d %@", self, [self retainCount],
 [[self class] description]);
 [super release];
}

The address of self output to the log enables you to differentiate between instances of the same class. The call

stacks can be analyzed in gdb to determine which calls were made in error by setting break points on the
overridden -retain and -release methods.

Book: Cocoa® Programming
Section: Appendix B. Optimizing and Finding Memory Leaks

Summary

Optimizing and memory-leak detection are large topics that are not completely covered in
this appendix, but enough information is provided to meet the needs of most applications.
The rules of thumb provided represent best practices that can save a lot of time and effort
optimizing and debugging. Apple provides a collection of documents related to
performance optimization and memory debugging at the following location: http://
developer.apple.com/techpubs/macosx/Essentials/Performance/. Many of the documents
referenced in this appendix are also available indirectly through that URL.

Appendix C, "Finding Third-Party Resources," lists many additional resources available to
help Cocoa programmers. A large and diverse community of Cocoa programmers provides
content for Web sites and mailing lists. Apple provides detailed Cocoa reference
information on its own site. Finally, many Cocoa example programs are available for use
as references. Example programs often contain the exact line of code or algorithm that is
needed for a new Cocoa application.

http://developer.apple.com/techpubs/macosx/Essentials/Performance/
http://developer.apple.com/techpubs/macosx/Essentials/Performance/

Book: Cocoa® Programming
Section: Part IV: Appendixes

Appendix C. Finding Third-Party Resources

IN THIS APPENDIX

● Apple-Provided Documentation xxx
● Example Code xxx
● Web Sites xxx
● Mailing Lists xxx

Many topics covered within this book could easily be book topics on their own. Apple
provides reference documentation with their developer tools and via the Web. Tremendous
amounts of example code as well as complete frameworks and applications are available
for reference and for use in applications. Several Web sites are dedicated solely to Cocoa
topics, and more cover Cocoa as part of their overall Mac coverage. Finally, mailing lists
are some of the best resources dedicated to Cocoa development issues.

Book: Cocoa® Programming
Section: Appendix C. Finding Third-Party Resources

Apple-Provided Documentation

Apple provides developer documentation with the standard Mac OS X Developer Tools.
The best place to start looking for answers to specific questions is in the Apple
documentation. Search tools such as Apple's own Sherlock as well as MTLibrarian (http://
www.montagetech.com/MTLibrarian.html can be used to search the documentation.)

Apple updates the developer documentation from time to time, and the latest version is
available on their Web site at http://developer.apple.com/techpubs/index.html. Apple also
provides an excellent search interface to these documents along with technical notes at
http://developer.apple.com/search/search.html.

Cocoa Developer Documentation

http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

This is a general portal to all of Apple's Cocoa developer documentation, including
reference materials, tutorials, and various programming topic notes. It leads to the
individual documentation for each of the various components related to Cocoa provided by
Apple.

Core Foundation

/Developer/Documentation/CoreFoundation/
corefoundation_carbon.html

The procedural C library, CoreFoundation, is the basis for some of Cocoa's Foundation
framework classes. Most features of CoreFoundation are best used through Cocoa's objects,
but CoreFoundation offers some additional functionality beyond the Foundation
framework. Some features unique to CoreFoundation that might be of interest to Cocoa
programmers include Utility Services and XML Services. Utility Services contain
functions to perform byte swapping and convert numbers to and from property lists. XML
Services provide an XML parser to read and extract data from XML format files.

Carbon Frameworks

/Developer/Documentation/Carbon/carbon.html

Until Cocoa has Objective-C wrappers for all the functionality available on Mac OS X,
Carbon can be used for some tasks.

http://www.montagetech.com/MTLibrarian.html
http://www.montagetech.com/MTLibrarian.html
http://developer.apple.com/techpubs/index.html
http://developer.apple.com/search/search.html
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

Developer Tools

/Developer/Documentation/DeveloperTools/devtools.html

Apple is working very hard to make the developer tools the best possible. They are updated
several times a year, and new features are constantly being added. There is a general
developer tool index that points to the various components, such as Project Builder,
Interface Builder, gcc, gdb, and FileMerge. Also, be sure to read the Project Builder release
notes (they are displayed every time ProjectBuilder starts).

Release Notes

/Developer/Documentation/ReleaseNotes

Always read the release notes. They are updated with most developer releases and often
have great details that you might otherwise miss. They're also an excellent place to keep up
with the newest features being added to the Cocoa Frameworks. These cover not only
Cocoa, but also the other technologies that you encounter during your Mac OS X
development projects: Carbon, Foundation, CoreFoundation, the developer tools, and Java
technologies.

Book: Cocoa® Programming
Section: Appendix C. Finding Third-Party Resources

Example Code

Examining others' work is a great aid to understanding how things can be done. A good
amount of source code is available for Cocoa developers to examine.

Cocoa Sample Code

http://developer.apple.com/samplecode/Sample_Code/Cocoa.htm

/Developer/Examples/AppKit

/Developer/Examples/Foundation

/Developer/Examples/InterfaceBuilder

Apple provides sample code with the Mac OS X Developer Tools installation, and more is
available online in the Sample Code pages of the Developer Connection.

Omni Group Frameworks

http://www.omnigroup.com/developer/sourcecode/

Omni Group, the developers of OmniWeb and many other Mac OS X applications, have
very generously made a great deal of their source code available in what is commonly
referred to as the OmniFrameworks. It is made up of several individual frameworks that
benefit from their years of Cocoa (and before that OpenStep) development.

The frameworks include

● OmniBase: a series of debugging aids, alternate assertions, and runtime
manipulation aids. All the Omni Frameworks rely on this base class.

● OmniFoundation: Classes that extend and compliment Apple's Foundation/
CoreFoundation frameworks. This includes Unicode-friendly regular expression, its
own implementation of NSScanner, some Carbon wrappers, custom NSFormatters
and more. That includes about 130 classes/categories in all.

● OmniAppKit: Widgets, widgets, and more widgets. Dozens of UI-oriented classes,
including its own implementation of Apple's Aqua buttons, calendar views, chasing
arrows, preference-panel implementations, and inspectors. OmniAppKit includes
more than 90 classes in all.

● OmniNetworking: An Objective-C wrapper around basic BSD-level sockets.

http://developer.apple.com/samplecode/Sample_Code/Cocoa.htm
http://www.omnigroup.com/developer/sourcecode/

They've also released an example for an FTP server that uses this framework.
● OWF: This is the Omni Web Framework and is responsible for a good amount of

the underlying architecture of OmniWeb itself. It includes content fetching, HTML
parsing, and more.

● OmniExpat: A wrapper around the James Clark's expat XML-parsing framework.

All these are available for use in your own applications, and include full-source code.
They're covered by the Omni Source License (a straightforward, open license).

The Omni Group provides information and examples for building Open GL-based games
for Mac OS X. Game related information is available at http://www.omnigroup.com/
developer/gamedevelopment/. Omni provides the OmniTimer framework for high-
performance, low-overhead timing. Slides and sample code from a presentation made at the
2001 Game Developer's Conference about developing Mac OS X games are available.

MiscKit Frameworks

http://www.misckit.com/

The MiscKit is a collection of frameworks and classes that provide additional functionality
to both Apple's Cocoa and Foundation frameworks. Originally, developed under
NeXTSTEP, they've been updated for the Cocoa frameworks. The MiscKit is a community-
driven, developed effort and submissions are welcome.

The MiscKit is the home for AutoDoc, an Objective-C documentation tool similar to
JavaDoc. AutoDoc can read comments in source code and generate HTML or RTF-
formatted output in the style of Apple's documentation.

MOKit Frameworks

http://www.lorax.com/FreeStuff/MOKit.html

The MOKit is a collection of useful objects written by Mike Ferris. This framework
includes a regular-expression class implemented as a wrapper around Henry Spencer's
Unicode-capable, regular-expression implementation. Classes to implement field
completion, and an NSFormatter palette that utilizes regular expressions for validation are
available.

Mike Ferris also provides TextExtras that can be installed to enhance the features of
Apple's Cocoa text-handling classes. When installed, all Cocoa applications benefit. Every
place text is manipulated in a Cocoa application, a staggering number of new features
become available. More information is available at http://www.lorax.com/FreeStuff/
TextExtras.html.

http://www.omnigroup.com/developer/gamedevelopment/
http://www.omnigroup.com/developer/gamedevelopment/
http://www.misckit.com/
http://www.lorax.com/FreeStuff/MOKit.html
http://www.lorax.com/FreeStuff/TextExtras.html
http://www.lorax.com/FreeStuff/TextExtras.html

EDCommon Frameworks

http://www.mulle-kybernetik.com/software/ALX3000/edcommon.html

http://www.mulle-kybernetik.com/software/ALX3000/edinternet.html

The EDCommon Frameworks are a set of frameworks written by long-time developer Erik
Dörnenburg as part of the ALX3000 Cocoa newsreader project. They consist of three parts:
EDInternet, EDCommon, and EDPalette.

● EDInternet is designed to make interacting with network and mail protocols easier.
It includes classes for communicating with SMTP mail servers, creating MIME
messages, as well as writing applications that utilize BSD sockets. Categories on
various Foundation classes offer access to the underlying utilities for MIME
encoding NSData and NSString objects.

● EDCommon consists of utility classes and categories. Functionality includes
several new Collection objects (EDObjectPair, EDStack, EDRedBlackTree,
EDNumberSets, and EDSparseClusterArray), and extensions to Foundation classes
(EDRange, EDLightWeightLock, EDBitmapCharacterSet, EDStringScanner,
EDIRCObject, EDLRUCache and EDObjectReference). It also includes
convenience enhancements for the Application Kit and several additional user
interface widgets.

● EDPalette is an Interface Builder palette that enables the drag and drop creation of
EDTableView, EDActivityIndicator, EDCanvas, and EDObjectWell from within
Interface Builder.

http://www.mulle-kybernetik.com/software/ALX3000/edcommon.html
http://www.mulle-kybernetik.com/software/ALX3000/edinternet.html

Book: Cocoa® Programming
Section: Appendix C. Finding Third-Party Resources

Web Sites

Many Web sites are dedicated to Mac news and developer information. Some sites cover
all information relevant to Mac users, and some specialize in just Mac OS X or just
developer issues.

Stepwise

http://www.stepwise.com/

Stepwise has been serving the NeXTStep, OpenStep, Rhapsody, and Mac OS X
communities since March 1993. Stepwise includes information for developers just getting
started with Cocoa as well as Cocoa technical articles, editorials, and news. Stepwise
provides search utilities and links of interest to Cocoa programmers.

The authors of this book are all Stepwise contributors. Scott Anguish owns and operates
Stepwise. Don Yacktman is a frequent contributor and is on the Stepwise editorial board.
Erik Buck is a contributor and likes to hang out with the Stepwise crowd.

Softrak

http://www.stepwise.com/Softrak

Softrak is a service of Stepwise. It's a self-managed archive of Mac OS X software. Each
developer creates and maintains their own entries, and full search capabilities are available.
Often developers make source code and frameworks available. Softrak has a special
category for applications that include source code, and it is possible to search for
applications using the criteria that have source code available.

O'Reilly Mac DevCenter

http://www.oreillynet.com/mac

Although the O'Reilly Mac DevCenter publishes articles addressing the Unix side of Mac
OS X, they often have good Cocoa articles available as well.

CocoaDev

http://www.cocoadev.com

http://www.stepwise.com/
http://www.stepwise.com/Softrak
http://www.oreillynet.com/mac
http://www.cocoadev.com/

CocoaDev is a collaborative site for the Mac OS X developer community. Readers can add
or edit any existing articles.

MacTech

http://www.mactech.com

MacTech is the grand daddy of the Macintosh-developer magazines. Although mainly a
print oriented resource, they do maintain a Web site with current information and links.

http://www.mactech.com/

Book: Cocoa® Programming
Section: Appendix C. Finding Third-Party Resources

Mailing Lists

Several active mailing lists are available for Cocoa developers. They are often read by
Apple engineers as well as long time Cocoa developers and are excellent resources.

Each of these mailing lists represents a community of sorts, and it's best to understand the
community standards before beginning to rant.

cocoa-dev

http://www.lists.apple.com/cocoa-dev

Hosted by Apple, this a great place to get started with your Cocoa questions. It covers all
aspects of Cocoa development in both Objective-C and Java.

Project Builder

http://www.lists.apple.com/projectbuilder-users

Also hosted by Apple, this list is a must for users of Apple's development environment.
Questions about Apple provided developer tools are answered here, often by the developers
of the tools.

macosx-dev

http://www.omnigroup.com/developer/mailinglists/macosx-dev

The Omni Group hosts this list. It is another of the "must read" lists and is populated by
new developers and veterans. It's oriented toward technical/development issues.

http://www.lists.apple.com/cocoa-dev
http://www.lists.apple.com/projectbuilder-users
http://www.omnigroup.com/developer/mailinglists/macosx-dev

Book: Cocoa® Programming
Section: Appendix C. Finding Third-Party Resources

Summary

Mac OS X Cocoa development has a thriving community that is constantly growing on the
Internet. The previous information is current as of publication. Up-to-date pointers are
available on http://www.cocoaprogramming.net. The authors of this book have created the
http://www.cocoaprogramming.net to provide updated information as needed.

http://www.cocoaprogramming.net/
http://www.cocoaprogramming.net/

Book: Cocoa® Programming
Section: Part IV: Appendixes

Appendix D. Cocoa Additions in Mac OS X Version 10.2

IN THIS APPENDIX

● Quartz Extreme
● Handwriting Recognition
● Address Book and vCard
● Universal Access
● Updated Tools
● Framework Enhancements

Mac OS X version 10.2, code named Jaguar, is a significant update that includes many
features not available in previous versions. This appendix introduces many of the new
features and explains how they impact Cocoa applications. Some of the new features are
implemented in the frameworks so that existing Cocoa programs automatically take
advantage of them without even being recompiled for Jaguar. Other features are introduced
with entirely new programming interfaces. Applications need new code to use those
features, and such applications will not work with prior releases of Mac OS X.

Book: Cocoa® Programming
Section: Appendix D. Cocoa Additions in Mac OS X Version 10.2

Quartz Extreme

One of the most highly anticipated new features in Jaguar is Quartz Extreme. Quartz
consists of a window server process and a powerful library of 2D drawing functions based
on Adobe's Portable Document Format (PDF) imaging model. The window server is a
process that runs in the background and controls display access by applications. The
window server manages the layering of windows owned by different applications and
implements features such as translucency, live-window dragging, and color correction. The
window server can reposition windows, apply translucent drop shadows, and layer
translucent windows without interrupting other applications. Quartz Extreme enhances the
window server to use hardware accelerated graphics operations when possible. Cocoa
applications benefit from Quartz Extreme automatically.

OpenGL Accelerated 2D

Quartz Extreme uses OpenGL to access available graphics hardware on a computer.
OpenGL is most often associated with high-performance 3D graphics, but it can also be
used for 2D. The Quartz Extreme window server is able to store the images that represent
windows using a special format called an OpenGL texture. Textures can be stored in
memory on the graphics card instead of the computer's main memory. Modern graphics
cards enable very fast manipulation of textures with translucency and many other effects.

By using OpenGL and graphics-card hardware, operations such as dragging windows,
hiding windows, and drawing drop shadows are accelerated. In some cases, scrolling can
be accelerated also. With much of the graphics work offloaded to the graphics card, the
main CPU chip(s) have more cycles available for nongraphics operations.

The 2D line and font drawing features of Quartz are not accelerated by Quartz Extreme.
The high-quality, device-independent PDF imaging model used by Quartz is incompatible
with the accelerated drawing features supported by OpenGL and common graphics
hardware. Graphics cards are optimized to simply draw graphics on a single device, the
computer screen, as fast as possible. Features such as What You See Is What You Get
(WYSIWYG) drawing that can be output to high-resolution printers as well as the
computer screen are not supported by the current generation of graphics cards.

The Quartz PDF imaging model is used to draw the lines and fonts that are displayed in
each window. Quartz draws the contents of each window into a memory buffer. With the
introduction of Quartz Extreme, that memory buffer can be used as an OpenGL texture,
and further operations such as dragging the window onscreen take advantage of the
hardware acceleration available when using textures.

Multiple Layers per Window

Another feature made possible by Quartz Extreme is the use of multiple layers within each
window. The Window Server already manages a buffer for each window and draws the
buffers to the screen to implement overlapping layered windows. By enabling multiple
buffers per window, Quartz Extreme can accelerate the drawing of overlapping layers
within windows.

Requirements

Quartz Extreme requires modern graphics hardware. At a minimum, the graphics card must
support 2x AGP and provide 16 Mb of memory on the card. Recent ATI and nVidia brand
cards shipped with new Macs have the required features. If the required hardware is not
available, Quartz Extreme falls back to the all-software system used in Mac OS X versions
prior to 10.2.

Book: Cocoa® Programming
Section: Appendix D. Cocoa Additions in Mac OS X Version 10.2

Handwriting Recognition

Cocoa applications automatically benefit from the handwriting input and recognition
features named Ink that Apple provides with Jaguar. When used with an input tablet, Ink
enables input of text via a stylus. Users accustomed to using a tablet can use Ink to avoid
switching to the keyboard. Advanced handwriting recognition software automatically
converts handwritten input into text.

In all versions of Mac OS X, Cocoa text input objects use a plug-in architecture called
Input Managers to obtain input from a variety of sources. Input Managers are described in
the "Input Managers" section of Chapter 10, "Views and Controls." The Ink technology is
exposed to Cocoa programmers as another Input Manager. As a result, handwriting can be
input to any Cocoa text object. From the programmer's perspective the source of the input
is not important.

Book: Cocoa® Programming
Section: Appendix D. Cocoa Additions in Mac OS X Version 10.2

Address Book and vCard

Mac OS X 10.2 comes with a new Address Book application that is used to organize
contact information such as names, addresses, and email addresses. Address Book uses an
underlying database that is compatible with an emerging operating system independent
standard called vCards. The vCards standard simplifies the storage and exchange of
information. In addition to typical business card information, vCards support graphics and
multimedia including photographs, company logos, and audio clips. More information
about vCards is available at http://www.imc.org/pdi/vcardoverview.html.

Apple makes the vCards-compatible database of information accessible from Cocoa
programs through a new Address Book framework. The framework provides both
Objective-C classes and a C API. With the new classes, Cocoa applications gain the
capability to read and modify contact information that can be easily exchanged between
applications and across devices. A whole new breed of applications that collect and unify
information as diverse as cell phone speed dial numbers and photographs is possible;
however, new applications that link with the Address Book framework will only run on
Mac OS X 10.2 and subsequent versions.

http://www.imc.org/pdi/vcardoverview.html

Book: Cocoa® Programming
Section: Appendix D. Cocoa Additions in Mac OS X Version 10.2

Universal Access

There are aspects of computer usage that many people find physically difficult. Jaguar
includes technology intended to make the computer more accessible to users with
disabilities. The entire screen can be magnified to assist users with vision impairments. The
magnified screen can be panned, and the zoom factor can be changed to accommodate a
wide range of needs. Jaguar also includes a flexible text-to-speech technology that can be
used to read any onscreen text to the user. These features are implemented as operating
system services. Existing Cocoa applications work seamlessly with the new features.

Jaguar also includes enhancements to many of the standard Cocoa user interface control
classes. The enhancements provide more keyboard access than prior versions so that, in
theory, it is possible to use applications without the mouse. The enhancements also provide
features such as near universal text to speech. For example, users can have the text portion
of each user interface item read to them whether the item is a menu or a button. Existing
Cocoa applications benefit from the enhancements automatically in most cases, but custom
controls need to be revised to support the enhancements.

Custom controls must implement new accessibility methods and call the inherited
implementations as appropriate. In addition, several new notifications and exceptions
related to accessibility features have been added in Jaguar.

Book: Cocoa® Programming
Section: Appendix D. Cocoa Additions in Mac OS X Version 10.2

Updated Tools

Many of the software tools and system services provided with Mac OS X have been
updated and enhanced in version 10.2. Apple's own developer tools as well as the gcc
compiler and standard Unix tools are all improved.

GCC 3.1

The Gnu Compiler Collection (GCC) shipped with Jaguar is version 3.1, and it is a major
update from previous versions. Numerous bug fixes and performance enhancements have
been made. Integration of the compiler with Apple's Project Builder Integrated
Development Environment (IDE) has been improved. The new compiler generates much
more efficient code for Apple's PPC architecture.

GCC 3.1 includes support for the ISO C99 standard which provides many benefits for C
programmers. The Objective-C language also benefits from the upgrade to C99. In
particular, because C99 allows the declaration of variables anywhere in a programming
block, Objective-C now allows that as well.

GCC 3.1 offers much closer to conformance with ANSI/ISO standard C++ than previous
versions of GCC provide. GCC now supports code that uses newer features of C++ and the
Standard Template Library (STL). The improvements to C++ greatly simplify the task of
porting C++ code to Mac OS X. The improvements to C++ support also apply to the
Objective-C++ language.

More information about GCC 3.1 is available at http://gcc.gnu.org/gcc-3.1.

BSD Tools

Jaguar includes updated versions of many BSD Unix command-line programs and tools,
and keeps Mac OS X roughly up-to-date with other Unix-based operating systems. The
updates include the Apache Web server software, Kerberos Network Authentication
Protocol software, the Samba file sharing server, and more.

IPv6

Internet Protocol Version 6 (IPv6) is the next-generation protocol designed to be a new
international standard. IPv6 will gradually replace the current version of the Internet
Protocol, which is Internet Protocol Version 4 (IPv4). IPv4 is nearly twenty years old and
has served well in spite of its age, but it has limitations. Almost all IPv4 addresses have

http://gcc.gnu.org/gcc-3.1

already been allocated, and a new address is needed for each computer added to the
Internet. IPv6 solves the address shortage and provides other improvements such as
improved routing and improved network autoconfiguration options.

Apple has contributed technology and protocol definitions called Zero Configuration
Networking to international standards organizations and the Internet Engineering Task
Force (IETF) to improve future opportunities for automatic configuration of computers
when they are added to heterogeneous networks. The technology attempts to simplify
configuration of industry-standard TCP/IP networking using IPv6.

IPv6 is completely backward compatible with IPv4, which means that the transition to IPv6
can be gradual, but only computers that support IPv6 will be able to take advantage of new
network services. The inclusion of IPv6 in Mac OS X 10.2 keeps the Mac up-to-date with
other operating systems and ensures continued access and compatibility with the Internet.

Many of the networking APIs in Mac OS X have been improved to support IPv6. Apple's
CFNetworking component in the Core Foundation framework has been greatly
expanded from prior versions. Cocoa programmers can use CFNetworking to access
network resources. The BSD sockets API in Jaguar has also been expanded.

Updated Cocoa Spell Checking Support

The English spelling dictionary provided by Apple is dramatically improved and expanded
in Jaguar. All Cocoa applications are able to take advantage of the built in spell checking
support provided by Cocoa's text classes and Mac OS X's system services. Apple provides
hooks for using any spelling dictionary with Cocoa, but most users are content to stick with
the one installed by default. Because of the enhancements to the default spelling dictionary,
spell checking is automatically improved in all Cocoa applications.

Book: Cocoa® Programming
Section: Appendix D. Cocoa Additions in Mac OS X Version 10.2

Framework Enhancements

Many of Apple's frameworks have been improved and expanded in Jaguar. In almost all
cases, new features have been added, and pre-existing features have been preserved. Table
D.1 describes the components and classes that have undergone the most changes:

Table D.1. New and Significantly Changed Components in Jaguar

Component Description

CFNetworking Improved communication with the
standard services on the Web. Support
for detecting and broadcasting to
network services, configuring socket
streams, encryption, and firewalls.

NSURLHandle Enhanced to use features of
CFNetworking.

NSNetServices Partial Cocoa interface to
CFNetworking.

NSText classes Support for bidirectional text and new
input managers.

NSResponder, NSTabView,
NSToolBar, NSWindow

Additional support for keyboard
navigation.

NSThread Enhanced threading support and
simplified access to an application's
main thread.

NSUserDefaults Introduction of new preferences domains
and locked preferences.

NSFileManager Enhanced support for traditional Mac
OS/HFS+ file attributes.

Keyed archiving system A new system for encoding and
decoding object graphs in a human
readable text format.

New CD Burning API Simplifies addition of CD- and DVD-
writing features to Cocoa applications.

New digital Camera support API Simplifies addition of digital camera
support to Cocoa applications.

New text to speech classes Simplifies addition of text to speech
features to Cocoa applications.

Book: Cocoa® Programming
Section: Appendix D. Cocoa Additions in Mac OS X Version 10.2

Summary

Many Cocoa classes have been expanded and improved in the Jaguar release of Mac OS X.
Several entirely new frameworks have been added including support for industry standard
vCard databases, accessibility features, CD and DVD writing, digital camera access, and
text to speech. The Quartz 2D graphics system has been improved and benefits from
graphics hardware acceleration in some cases. Apple has made substantial enhancements to
the networking layers of the operating system and the BSD Unix tools.

Cocoa applications written with previous versions of Mac OS X continue to work, and in
some cases they automatically gain new features when run on Mac OS X 10.2. Most of the
enhancements add value to all Cocoa applications. Cocoa applications that use new
frameworks introduced with Jaguar will not work with prior versions.

Book: Cocoa® Programming

#import preprocessor directive 2nd

#include preprocessor directive 2nd

+cellClass method

 NSControl class

+currentHost method

 NSHost class

+deepestScreen method

 NSScreen class

+deliverMessage method

 NSMailDelivery class 2nd 3rd

+EPSOperationWithView method

 NSPrintOperation class

+fontWithName method

 NSFont class

+generalPasteboard method

 NSPasteboard class

+hostWithAddress method

 NSHost class

+hostWithName method

 NSHost class

+initialize method

 NSObject class (Objective-C)

+load method

 NSObject class (Objective-C)

+mainScreen method

 NSScreen class

+pageLayout method

 NSPageLayout class

+pasteboardWithName method

 NSPasteboard class

+pasteboardWithUniqueName method

 NSPasteboard class

+PDFOperationWithView method

 NSPrintOperation class

+printersName method

 NSPrinter class

+printerWithName method

 NSPrinter class

+printerWithType method

 NSPrinter class

+printOperationWithView method

 NSPrintOperation class

+setCellClass method

 NSControl class

+setUserFont method

 NSFont class

+sharedFontPanel method

 NSFontManager class

+sharedWorkspace method

 NSWorkspace class 2nd 3rd

+systemFontOfSize method

 NSFont class

+systemFontSize method

 NSFont class

+userFontOfSize method

 NSFont class

+worksWhenModal method

 NSFontManager class

-abortModal method

 NSApplication class

-acceptsFirstResponder method

 NSControl class

-activeDocument method

 MYDocumentManager class

-addAttributes method

 NSMutableAttributeString class

-addColumn method

 NSMatrix class

-addEntry method

 NSForm class

-addFontTrait method

 NSFontManager class

-addObserver method

 NSDistributedNotificationCenter class

-addPopUpColor method

 NSPopUpButton class 2nd

-addresses method

 NSHost class

-addRow method

 NSMatrix class

-addTabViewItem method

 NSTabView class 2nd

-addTypes.owner method

 NSPasteboard class

-adjustPageHeight method

 NSPrintInfo class 2nd 3rd

-adjustPageWidth method

 NSPrintInfo class 2nd 3rd

-alternateClass method

 NSButton class

-alternateTitle method

 NSButton class

-animationDelay method

 NSProgressIndicator class

-appendAttributedString method

 NSMutableAttributeString class

-applicationDockMenu method

 NSMenu class 2nd

-applicationOpenFile method

 NSApplication class 2nd

-applicationShouldTerminate method

 MYDocumentManager class

 NSApplication class 2nd

-arguments method

 NSProcessInfo class

-ascender method

 NSFont class

-attributedSubstringFromRange method

 NSAttributeString class 2nd 3rd 4th

-attributedTitle method

 NSButton class

-attributesAtIndex method

 NSAttributeString class 2nd 3rd 4th

-availableFonts method

 NSFontManager class

-beginDocument method

 NSView class

-beginEditing method

 NSTextStorage class

-beginPageInRect method

 NSView class

-capHeight method

 NSFont class

-cellAtIndex method

 NSForm class

-changeFont method

 NSFontManager class 2nd

 NSTextView class

-checkForRemovableMedia

 NSWorkspace class

-clickedOnCell method

 NSTextView class

-clickedOnLink method

 NSTextView class

-compare method

 NSString class

-convertFont method

 NSFontManager class 2nd 3rd 4th

-dataCellForRow method

 NSTableColumn class

-dealloc method

 MYDocumentManager class 2nd

-declareTypes.owner method

 NSPasteboard class 2nd

-deleteCharactersInRange method

 NSMutableAttributeString class

-descender method

 NSFont class

-description method

 NSString class 2nd

-deselectItemAtIndex method

 NSComboBox class 2nd

-deselectSelectedCell method

 NSMatrix class

-displayName method

 NSFont class

-doCommandBySelector method

 NSTextView class 2nd

-documentClass method

 MYDocumentManager class 2nd

-documentExtensions method

 MYDocumentManager class 2nd

-documentPath method

 MYDocument class

-documentWillClose method

 MYDocumentManager class 2nd

-doubleClickedOnCell method

 NSTextView class

-draggedCell method

 NSTextView class

-drawPageBorderWithSize method

 NSView class

-drawRect method

 NSView class 2nd 3rd

-endEditing method

 NSTextStorage class

-endPage method

 NSView class

-environment method

 NSProcessInfo class

-existingOpenDocuments method

 MYDocumentManager class

-familyName method

 NSFont class

-findApplications

 NSWorkspace class

-fixAttributesInRange method

 NSMutableAttributeString class

-fixFontAttributeInRange method

 NSMutableAttributeString class

-fontMenu method

 NSFontManager class 2nd

-fontPanel method

 NSFontManager class 2nd

-forwardInvocation method (NSInvocation class) 2nd

-fragment method

 NSURL class

-fullPathForApplication method

 NSWorkspace class

-getObjectValue method

 NSFormatter class 2nd

-globallyUniqueString method

 NSProcessInfo class

-hasEverBeenSaved method

 MYDocument class

-host method

 NSURL class

-hostName method

 NSProcessInfo class

-iconForFile method

 NSWorkspace class

-incrementBy method

 NSProgressIndicator class 2nd

-indexOfItem method

 NSMenu class

-infoDictionary method

 NSBundle class

-initImageCell method

 NSCell class

-initTextCell method

 NSCell class

-initWithDictionary method

 NSPrintInfo class 2nd

-initWithIdentifier method

 NSToolbar class

-initWithPath method

 MYDocument class 2nd 3rd

 NSAttributedString class 2nd

-initWithScheme method

 NSURL class 2nd 3rd 4th

-initWithString method

 NSAttributedString class 2nd 3rd

 NSURL class 2nd 3rd 4th

-insertItemWithTitle method

 NSMenu class 2nd

-isContinuous method

 NSControl class

-isDocumentEdited method

 MYDocument class

-isEqualToAttributedString method

 NSAttributeString class 2nd 3rd 4th

-isPartialStringValid method

 NSFormatter class 2nd 3rd 4th 5th

-isVertical method

 NSSlider class 2nd

-itemArray method

 NSMenu class

-itemAtRow method

 NSOutlineView class 2nd

-itemWithTag method

 NSMenu class

-jobDisposition method

 NSPrintInfo class

-keyEquivalent method

 NSButton class

-knobThickness method

 NSSlider class

-knowsPageRange method

 NSView class 2nd 3rd

-launchApplication

 NSWorkspace class

-length method

 NSAttributeString class 2nd 3rd 4th

 NSString class

-levelForRow method

 NSOutlineView class

-load method

 NSBundle class 2nd

-LoadColumnZero method

 NSBrowser class

-makeDocumentActive method

 MYDocumentManager class

-modifyFont method

 NSFontManager class 2nd

-mountedLocalVolumePaths method

 NSWorkspace class

-mutableString method

 NSMutableAttributeString class

-myInitInstanceVariables method

 MYDocumentManager class 2nd

-myLoadDocumentWithPath method

 MYDocument class 2nd

-myNextUntitledDocument method

 MYDocumentManager class

-myRegisterDocument method

 MYDocumentManager class

-mySetDocumentPath method

 MYDocument class 2nd

-name method

 NSHost class

-newDocument method

 MYDocumentManager class

-nextState method

 NSButton class

-numberOfItems method

 NSComboBox class

 NSMenu class

-numberOfRowsInTableView method

 NSTableView class

-openDocument method

 MYDocumentManager class

-operatingSystem method

 NSProcessInfo class

-orderFrontFontPanel method

 NSFontManager class

-panelConvertFont method

 NSFontManager class

-paperName method

 NSPrintInfo class 2nd

-paperSize method

 NSPrintInfo class 2nd

-parameterString method

 NSURL class

-password method

 NSURL class

-path method

 NSURL class

-performFileOperation

 NSWorkspace class

-pointSize method

 NSFont class

-port method

 NSURL class

-postNotificationName method

 NSDistributedNotificationCenter class 2nd

-preparePageLayout method

 NSDocument class

-principalClass method

 NSBundle class

-print method

 NSPrintPanel class 2nd

 NSView class

-printer method

 NSPrintInfo class

-printInfo method

 NSDocument class

 NSPrintOperation class

-printJobTitle method

 NSView class

-printShowingPrintPanel method

 NSDocument class 2nd

-processIdentifier method

 NSProcessInfo class

-query method

 NSURL class

-readFromURL method

 NSMutableAttributeString class

-rectForPage method

 NSView class 2nd 3rd

-relativePath method

 NSURL class 2nd 3rd

-relativeString method

 NSURL class 2nd 3rd

-reloadColumn method

 NSBrowser class

-removeColumn method

 NSMatrix class

-removeItemAtIndex method

 NSMenu class

 NSToolbar class

-removeObserver method

 NSDistributedNotificationCenter class

-removeRow method

 NSMatrix class

-removeTabViewItem method

 NSTabView class 2nd

-removeTextContainerAtIndex method

 NSTextView class

-replaceCharacters method

 NSTextView class 2nd

-replaceCharactersInRange method

 NSMutableAttributeString class

-resourceDataUsingCache method

 NSURL class

-rowForRow method

 NSOutlineView class

-rowsCount method

 NSTableView class 2nd

-runModalForWindow method

 NSApplication class

-runModalWithPrintInfo method

 NSPageLayout class 2nd

-runOperation method

 NSPrintOperation class 2nd

-runPageLayout method

 NSDocument class 2nd

 NSPageLayout class 2nd

-safeClose method

 MYDocument class 2nd 3rd

-saveAllDocuments method

 MYDocumentManager class

-saveDocument method

 MYDocument class 2nd 3rd 4th

-saveDocumentAs method

 MYDocument class 2nd 3rd 4th

-saveFrameUsingName method

 NSWindow class

-scrollColumnToVisible method

 NSBrowser class

-selectCell method

 NSMatrix class

-selectedCell method

 NSBrowser class

-selectedColumn method

 NSBrowser class

-selectFileInViewerRootedAtPath

 NSWorkspace class

-selectFirstTabViewItem method

 NSTabView class

-selectItem method

 NSPopUpButton class

-selectItemAtIndex method

 NSComboBox class 2nd

 NSPopUpButton class

-selectLastTabViewItem method

 NSTabView class

-selectPreviousTabViewItem method

 NSTabView class

-selectTabViewItemAtIndex method

 NSTabView class 2nd

-selectTabViewItemWithIdentifier method

 NSTabView class 2nd

-selectText method

 NSTextField class

-sendActionOn method

 NSControl class

-setAcceptsArrowKeys method

 NSBrowser class

-setAccessoryView method

 NSPageLayout class

 NSPrintOperation class

-setAction method

 NSControl class

-setAlignment method

 NSControl class 2nd

 NSMutableAttributeString class

 NSTextView class

-setAllowsBranchSelection method

 NSBrowser class

-setAllowsEmptySelection method

 NSBrowser class

-setAllowsMultipleSelection method

 NSBrowser class

-setAllowsTruncatedLabels method

 NSTabView class

-setAllowsUserCustomization method

 NSToolbar class

-setAlphaValue method

 NSWindow class

-setArrowPosition method

 NSPopUpButtoncell class

-setAttributedStringValue method

 NSControl class 2nd

-setAttributes method

 NSMutableAttributeString class

-setAutoenablesItems method

 NSMenu class 2nd

-setAutosavesConfiguration method

 NSToolbar class

-setAutosizesCells method

 NSMatrix class

-setBackgroundColor method

 NSMatrix class

 NSScrollView class

 NSTextField class

 NSWindow class

-setBezeled method

 NSTextField class

-setBezelStyle method

 NSButton class

-setBordered method

 NSButton class

 NSCell class

 NSTextField class

-setBorderType method

 NSBox class 2nd

 NSScrollView class

-setCell method

 NSControl class

-setCellSize method

 NSMatrix class

-setContentView method

 NSBox class

 NSScrollView class 2nd

-setContinuous method

 NSControl class

-setControlSize method

 NSCell class

-setControlTint method

 NSCell class

-setDelegate method

 NSSplitView class

 NSTabView class 2nd

 NSTextField class

 NSToolbar class

-setDisplayMode method

 NSToolbar class

-setDocumentEdited method

 MYDocument class

-setDocumentView method

 NSScrollView class 2nd

-setDoubleAction method

 NSBrowser class

 NSMatrix class

-setDrawsBackground method

 NSMatrix class

 NSTabView class

-setEditable method

 NSTextField class

-setEnabled method

 NSControl class

-setEntryWidth method

 NSForm class

-setFloatValue method

 NSSlider class

-setFont method

 NSControl class

 NSTextView class

-setFrameAutosaveName method

 NSWindow class

-setFrameUsingName method

 NSWindow class

-setGradientType method

 NSButton class

-setHasHorizontalScroller method

 NSScrollView class

-setHasShadow method

 NSWindow class

-setHasVerticalScroller method

 NSComboBox class

 NSScrollView class

-setHighlighted method

 NSCell class

-setHighlightsBy method

 NSButton class

-setHorizontalPagination method

 NSPrintInfo class 2nd 3rd 4th 5th 6th

-setHorizontalRulerView method

 NSScrollView class 2nd

-setIgnoresMultiClick method

 NSControl class

-setImage method

 NSImageView class

 NSMenuItem class

 NSToolbarItem class

-setImageAlignment method

 NSImageView class

-setImageFrameStyle method

 NSImageView class

-setImagePosition method

 NSButton class

-setImageScaling method

 NSImageView class

-setIntercellSpacing method

 NSComboBox class

-setIsPaneSplitter method

 NSSplitView class 2nd

-setItemHeight method

 NSComboBox class

-setKeyEquivalent method

 NSMenuItem class 2nd

-setKnobThickness method

 NSSlider class

-setLabel method

 NSToolbarItem class

-setLineScroll method

 NSScrollView class

-setMaxValue method

 NSSlider class

 NSStepper class

-setMaxVisibleColumns method

 NSBrowser class

-setMenu method

 NSPopUpButton class

-setMinValue method

 NSSlider class

 NSStepper class

-setNoBorder method

 NSBox class

-setNumberOfTicks method

 NSSlider class 2nd

-setObjectValue method

 NSControl class 2nd

-setOpaque method

 NSWindow class

-setPageOrder method

 NSPrintOperation class

-setPageScroll method

 NSScrollView class

-setPaletteLabel method

 NSToolbarItem class

-setPath method

 NSBrowser class

-setPrintInfo method

 NSDocument class

-setPrototype method

 NSMatrix class

-setPullsDown method

 NSPopUpButton class

-setRepresentedObject method

 NSMenuItem class

-setScrollable method

 NSTextField class

-setSelectedFont method

 NSFontManager class 2nd

-setSelectedRange method

 NSTextView class

-setSeparatesColumns method

 NSBrowser class

-setState method

 NSButton class

 NSMenuItem class 2nd

-setString method

 NSTextView class

-setSubmenu method

 NSMenu class 2nd

 NSMenuItem class 2nd

-setSuspended method

 NSDistributedNotificationCenter class 2nd

-setTabViewType method

 NSTabView class

-setTag method

 NSControl class

 NSMenuItem class

 NSStepper class

-setTarget method

 NSControl class

 NSMenuItem class

-setText method

 NSTextView class

-setTextAlignment method

 NSForm class

-setTextColor method

 NSTextField class

-setTextFont method

 NSForm class

-setTickMarkPosition method

 NSSlider class 2nd

-setTitle method

 NSBox class

 NSBrowser class

 NSCell class

 NSFormCell class

 NSMenuItem class

-setTitleAlignment method

 NSForm class

-setTitleFont method

 NSForm class

-setTitleWidth method

 NSFormCell class

-setTransparent method

 NSButton class

-setType method

 NSCell class

-setUsesThreadedAnimation method

 NSProgressIndicator class

-setVertical method

 NSSplitView class 2nd

-setVerticalPagination method

 NSPrintInfo class 2nd 3rd 4th 5th 6th

-setVerticalRulerView method

 NSScrollView class 2nd

-setView method

 NSToolbarItem class

-setVisible method

 NSToolbar class

-setWraps method

 NSTextField class

-shouldChangePrintInfo method

 NSDocument class

-shouldChangeTextInRange method

 NSTextView class

-showsStateBy method

 NSButton class

-sound method

 NSButton class

-standardizedURL method

 NSURL class

-startAnimation method

 NSProgressIndicator class

-stopModalWithCode method

 NSApplication class

-stringForObjectValue method

 NSFormatter class

-superscript method

 NSTextView class

-superscriptRange method

 NSMutableAttributeString class

-tabViewType method

 NSTabView class

-tag method

 NSControl class

-textColorForRow method

 NSTableColumn class

-textContainer method

 NSTextView class

-textContainerChangedTextView method

 NSTextView class

-textDidBeginEditing method

 NSText class

-textDidChange method

 NSText class

-textShouldBeginEditing method

 NSText class

-textShouldEndEditing method

 NSText class

-textStorage method

 NSTextView class

-textViewDidChangeSelection method

 NSTextView class

-title method

 NSMenu class

-toggleRuler method

 NSScrollView class

-underline method

 NSTextView class

-undoManagerForTextView method

 NSTextView class

-user method

 NSURL class

-validateMenuItem method

 MYDocument class

 MYDocumentManager class 2nd

 NSMenuItem class 2nd 3rd

-validateToolbarItem method

 NSToolbar class 2nd

-visibleItems method

 NSToolbar class

-willChangeSelectionfromCharacterRange method

 NSTextView class

-windowDidBecomeKey method

 NSWindow class 2nd

-windowShouldClose method

 NSWindow class 2nd

-windowWillClose method

 NSWindow class 2nd

-writeCell method

 NSTextView class

-writeTO.pasteboard method

 NSPasteboard class

.nib files

 localized strings 2nd

100% Pure Java

 application development environment

 versus Cocoa

2D graphics

 Quartz 2nd

2D/3D accelerated graphics (OpenGL)

3D graphics

 OpenGL

 NSOpenGLContext class 2nd

 NSOpenGLPixelFormat class 2nd 3rd 4th

 NSOpenGLView class 2nd 3rd 4th 5th

3D Labs Web site

80/20 optimization rule 2nd

AAA+ Software Web site

accessing

 MYDocumentManager class documents

 printers

 NSPrintInfo class

 vended objects (distributed) 2nd 3rd 4th 5th

activating

 MYDocumentManager class documents

active delegates

 browser views 2nd 3rd

Active Directory (directory services)

Add Frameworks command (File menu-Project Builder) 2nd

adding

 MYDocumentManager class

 to Image Viewer application 2nd 3rd 4th 5th

Address Book

 vCards

 Mac OS X version 10.2 2nd

adopting

 protocols

 Objective-C extension 2nd

alert panels

 Image Viewer

 creating (NSRunAlertPanel macro) 2nd

aligning

 text fields

 user interfaces

allocating

 extra memory bytes

 Objective-C 2nd

alternative pagination

 PaginationDemos example

Animal example

 delegate methods 2nd

 NSTask class

 asynchronous tasks 2nd 3rd 4th 5th

 delegate methods 2nd

 parsing output 2nd

 user interface 2nd 3rd

 user interface 2nd 3rd

ANSI C language

 Objective-C superset

 Objective-C++ language

ANSI standard C

APIs

 menu support 2nd

 ToolTips

 creating 2nd 3rd 4th 5th 6th 7th

appending

 image attachments

 NSTextView class 2nd

 text

 NSTextView class 2nd

Apple

 documentation

 Apple TechPubs

 Cocoa development

 Core Frameworks

 CoreFoundation

 developer tools

 MTLibrarian

 release notes

Apple Darwin Open Source Web site

Apple Developer Web site

 Apple Events documentation

 authentication/authorization documentation

 Carbon Authorization Services API

 Cocoa sample code

 current console user example code

 directory servicess resources

 distributed objects

 drawers documentation 2nd

 encoding constants

 input manager documentation

 layout managers examples 2nd

 localized strings documentation

 Mach messages/ports resources

 messaging resources

 modal loop resources

 Model-View-Controller (MVC)

 NSFileHandle class resources

 NSFont class documentation

 NSFormatter class tutorial

 NSPanel class documentation 2nd

 NSScreen class documentation

 NSTextView class documentation

 optimization resources

 sheet usage guidelines

 text system

 documentation overview

 transparent windows sample

Apple Developers Web site

 Core Audio/Core MIDI Framework documentation

 NSMovie class

 bMovie example

 OpenGL 3D sample applications

 QuickTime API references/samples

 sound playing resources

 speech resources 2nd

Apple Directory Services API

Apple Events

 interapplication communication

 Apple Developer Web site documentation

Apple Help

 comprehensive help 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

15th 16th

 help books

 application integration 2nd

 creating 2nd 3rd

 HTML documentation 2nd 3rd 4th 5th 6th

 meta tags

 CFBundleHelpBookFolder key 2nd

 CFBundleHelpBookName key 2nd

 ToolTips

Apple Interface Builder

Apple Web site

 class cluster documentation

 Objective-C++ documentation

AppleScript

 Studio tool

Application Kit

 mutable attributed string methods

 NSBundle class

 text attributes 2nd 3rd 4th 5th 6th

 widgets

 interactive 2nd

 passive 2nd

Application Kit framework 2nd

applications

 100% Pure Java development environment

 Carbon development environment 2nd

 Cocoa development environment 2nd

 design patterns

 archiving 2nd

 class clusters 2nd

 coding

 commands

 delegates 2nd 3rd

 enumerators 2nd 3rd

 facades 2nd

 Model-View-Controller 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 notifications 2nd

 prototypes 2nd 3rd

 proxies 2nd 3rd

 responder chain 2nd

 shared objects 2nd 3rd

 subviews 2nd

 targets/actions 2nd 3rd

 development language selection

 Java pros/cons 2nd 3rd

 Objective-C pros/cons 2nd 3rd 4th 5th

 scripting languages pros/cons 2nd

 drawers versus sheets 2nd

 help

 viewing (Apple Help Viewer) 2nd 3rd 4th 5th 6th

 help books

 integrating (Apple Help) 2nd

 modal loops 2nd

 modal windows versus sheets 2nd

 Objective-C

 closed world 2nd

 open world 2nd 3rd

 optimization

 80/20 rule 2nd

 dynamic memory allocation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 graphics time consumption 2nd 3rd

 LotsOfWords application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th

 memory leaks 2nd 3rd 4th 5th 6th 7th 8th

 nongraphical code 2nd 3rd 4th 5th 6th 7th 8th

 overview

 performance bottlenecks 2nd 3rd 4th 5th

 premature optimization 2nd

 rules of thumb 2nd

 panels

 NSPanel class 2nd

 services

 installing 2nd

 set uid 2nd

 sheets versus drawers 2nd

 sheets versus modal windows 2nd

 versus framework projects 2nd

Aqua

 menu development resources

archiving

 design patterns

 application types 2nd

ArrayBrowserDelegate class (ClassBrowser example) 2nd 3rd 4th

arrays

 Foundation framework

 NSArray class 2nd

 NSMutableArray class 2nd

asynchronous downloading

 NSURLHandle class 2nd

asynchronous tasks

 NSTask class 2nd 3rd 4th 5th

attributed strings

 implementing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th

 initializing 2nd 3rd 4th 5th

authentication

 operating system 2nd

authorization

 Carbon Authorization Servvices API

automatic garbage collection

 Java objects

automatic menu validation

 disabling 2nd

automatic pagination

 PaginationDemos example 2nd 3rd 4th 5th 6th 7th

backward compatability

 frameworks

 creating 2nd 3rd

behaviors

 buttons

 configuring 2nd

Berners-Lee, Tim

blocking

 threads 2nd

BOOL type (Objective-C language)

border buttons

borderless boxes

borders

 boxes 2nd

 text fields

 selecting

boxes

 user interface

 creating (NSBox class) 2nd 3rd 4th 5th 6th 7th 8th 9th

 user interfaces

 borderless

 borders 2nd

 content views

 titles

browser views

 NSBrowser class

 uses

browsers

 delegates

 active 2nd 3rd

 multiple column 2nd

 passive 2nd 3rd

 single column 2nd 3rd

BSD Unix sockets

 distributed objects

 interapplication communication

BSD Unix tools

 Mac OS X version 10.2

built-in types

 Foundation framework 2nd

 dates 2nd 3rd 4th 5th 6th

 raw data 2nd 3rd 4th 5th

 strings 2nd 3rd 4th

 values 2nd 3rd 4th 5th

bundles

 Foundation framework

 function of

 localized resource files 2nd

 NSBundle class 2nd 3rd 4th

 uses

 JavaBeans

buttons

 behaviors 2nd 3rd 4th

 borders

 continuous

 icon position

 images

 key equivalents

 momentary states

 NSButton class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th 17th 18th 19th 20th 21st 22nd 23rd

 NSButtoncell class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

15th 16th 17th 18th 19th 20th 21st 22nd 23rd

 pop-up 2nd 3rd 4th 5th 6th

 rendering 2nd 3rd

 sounds

 states

 configuring 2nd

 titles

 toggles states

 types

 Push

 Radio

 Round

 rounded bevel

 Square

 user interface

 behavior configuration 2nd

 configuring 2nd 3rd

 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 key equivalents

 rendering 2nd 3rd

 state configuration 2nd

bycopy keyword (Objective-C)

 distributed messaging 2nd

bytes

 extra memory allocation (Objective-C) 2nd

C language

 Objective-C roots 2nd

cache element (Objective-C objects)

 hashing functions 2nd

Calendar

 CalendarController class 2nd 3rd

 source code

 downloading

 user interface 2nd 3rd

CalendarController class 2nd 3rd

Carbon

 APIs

 application development environment 2nd

 current user console example code

 help functionality

 implementing 2nd 3rd 4th 5th 6th 7th 8th 9th

 help functionlity

 MiscHelpManager class 2nd 3rd 4th 5th 6th 7th 8th 9th

 versus Cocoa 2nd

Carbon Authorization Services API

Carbon Frameworks

CarbonDater

categories

 classes

 Objective-C language

 methods

 replacing (Objective-C runtime) 2nd 3rd 4th 5th

 Objective-C extensions 2nd 3rd

 method restrictions

 NeXT recommendations

 organizational uses

 potential for abuse

categories (Objective-C objects) 2nd

CD burning API

 Mac OS X version 10.2

cells

 appearance

 setting (NSCell class) 2nd 3rd 4th 5th 6th 7th 8th

 NSActionCell class

 NSCell class 2nd 3rd 4th 5th 6th 7th 8th 9th

 target-actions

 defining (NSActionCell class)

cells (controls)

 function of 2nd

 manipulating 2nd 3rd

CFBundleHelpBookFolder key

 Apple Help meta tag 2nd

CFBundleHelpBookName key

 Apple Help meta tag 2nd

CFNetworking component

 Mac OS X version 10.2

CFURLCreateStringByAddingPercentEscapes() function

Chain of Responsibility GOF pattern 2nd 3rd 4th 5th

checking

 MYDocument class document status 2nd

CircleView example

 NSLayoutManager class

class clusters

 design patterns

 application types 2nd

 Foundation framework

 NSArray class

 NSCharacterSet class

 NSData class

 NSDictionary class

 NSScanner class

 online documentation

 uses

 NSArray class

 NSCharacterSet class

 NSData class

 NSDictionary class

 NSScanner class

 online documentation

 uses

class methods (Objective-C) 2nd 3rd 4th 5th

Class structure (Objective-C objects) 2nd

Class type (Objective-C language)

class-based specialization (object orientation) 2nd

ClassBrowser example

 ArrayBrowserDelegate class 2nd 3rd 4th

 ClassBrowserController class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 multiple column delegate implementation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 single column delegate implementation 2nd 3rd 4th

 source code location 2nd 3rd 4th 5th

 user interface appearance 2nd

ClassBrowserController class (ClassBrowser example) 2nd 3rd 4th

 action methods 2nd

 model accessors 2nd 3rd 4th

classes

 accessing from scripting languages (Objective-C) 2nd

 Carbon

 MiscHelp Manager 2nd 3rd 4th 5th 6th 7th 8th 9th

 declaring (Objective-C language) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 Foundation framework

 immutable 2nd

 mutable 2nd

 implementing (Objective-C language) 2nd 3rd 4th

 listing (MYShowAllClasses function) 2nd

 methods (Objective-C language) 2nd 3rd 4th 5th 6th

 MYDocument

 doucment paths for Image Viewer application 2nd

 file types for Image Viewer application

 image loading for Image Viewer application 2nd

 Image Viewer application 2nd 3rd

 MYDocument.h file 2nd 3rd 4th

 MYDocument.m file 2nd 3rd 4th

 sheet support 2nd 3rd 4th 5th 6th

 window configuration for Image Viewer application 2nd 3rd 4th

 MYDocumentManager

 Image Viewer application 2nd 3rd

 sheet support 2nd 3rd

 MYMasterController 2nd 3rd 4th 5th

 MYWorkspaceNotificationObserver 2nd 3rd 4th 5th

 NSActionCell

 NSApplication

 delegate methods 2nd 3rd 4th

 NSArray

 NSBox 2nd 3rd 4th 5th 6th 7th 8th 9th

 NSBrowser 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 NSBrowserCell 2nd

 NSBundle 2nd 3rd 4th

 NSButton 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

17th 18th 19th 20th 21st 22nd 23rd

 NSButtonCell 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th 17th 18th 19th 20th 21st 22nd 23rd

 NSCalendarDate 2nd

 NSCell 2nd 3rd 4th 5th 6th 7th 8th 9th

 NSCharacterSet 2nd

 NSColor

 color retrieval 2nd

 color space conversion 2nd

 color storage 2nd

 derived color creation 2nd 3rd

 system color notification

 system color values

 NSColorList 2nd 3rd

 NSColorPanel 2nd 3rd 4th 5th

 color dragging from user interfaces 2nd

 NSColorPicker

 custom color pickers 2nd 3rd 4th 5th 6th

 NSColorWell

 color wells 2nd 3rd 4th

 NSComboBox 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 NSComboBoxCell 2nd 3rd 4th

 NSConditionLock 2nd 3rd 4th 5th 6th

 NSConnection

 distributed objects 2nd

 NSControl

 +cellClass method

 +setCellClass method

 -acceptsFirstResponder method

 -isContinuous method

 -sendActionOn method

 -setAction method

 -setAlignment method 2nd

 -setAttributedStringValue method 2nd

 -setCell method

 -setContinuous method

 -setEnabled method

 -setFont method

 -setIgnoresMultiClick method

 -setObjectValue method 2nd

 -setTag method

 -setTarget method

 -tag method

 function of 2nd

 NSColorWell subclass 2nd 3rd

 NSDate

 NSDateFormatter 2nd 3rd 4th

 NSDictionary 2nd

 NSDistributedLock 2nd 3rd

 NSDocument

 -preparePageLayout method

 -printInfo method

 -printShowingPrintPanel method 2nd

 -runPageLayout method 2nd

 -setPrintInfo method

 -shouldChangePrintInfo method

 Image Viewer application 2nd

 NSDocumentController

 Image Viewer application 2nd

 NSDragPboard 2nd

 NSEnumerator 2nd

 NSFileHandle

 Apple Developer Web site resources

 NSFont 2nd

 information, obtaining 2nd 3rd

 instances, obtaining 2nd

 NSFontManager 2nd 3rd

 font availability

 font conversion 2nd 3rd

 font modifications 2nd 3rd

 font selection 2nd

 user interface changes 2nd

 NSFontPanel

 user interface changes 2nd 3rd 4th

 NSFontTraitMask

 trait values 2nd 3rd

 NSForm 2nd 3rd 4th

 NSFormatter 2nd 3rd 4th

 NSFormCell

 NSGeometry 2nd 3rd

 NSHelpManager

 ToolTip methods 2nd

 NSImageCell 2nd 3rd 4th 5th 6th

 NSImageView 2nd 3rd 4th 5th 6th

 NSInputManager 2nd

 NSInputServer 2nd

 NSInvocation 2nd

 NSLayoutManager

 Control layer (MVC) 2nd 3rd

 NSLock 2nd

 NSMatrix 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 NSMenu 2nd 3rd

 object additions 2nd

 object creation

 object removal

 object searches 2nd

 NSMenuItem 2nd 3rd

 item creation 2nd

 menu appearance configuration

 menu identifier configuration

 menu key equivalents configuration 2nd

 menu state configuration 2nd

 menu target configuration

 properties 2nd

 submenu configuration 2nd

 NSMovie 2nd 3rd

 NSMovieView 2nd 3rd 4th 5th

 NSMutableArray

 NSMutableAttributedString

 Model layer (MVC) 2nd 3rd 4th

 NSMutableDictionary 2nd

 NSMutableSet

 NSNotification 2nd

 NSNotificationCenter 2nd 3rd

 NSNumberFormatter 2nd 3rd 4th

 NSObject

 +initialize method (Objective-C)

 +load method (Objective-C)

 message forwarding (Objective-C) 2nd 3rd

 object comparisons (Objective-C) 2nd

 object introspection (Objective-C) 2nd 3rd

 Objective-C language 2nd 3rd

 optimization (Objective-C) 2nd

 performing (Objective-C)

 posing (Objective-C)

 runtime integration (Objective-C) 2nd 3rd 4th 5th 6th 7th

 NSOpenGLContext 2nd

 NSOpenGLPixelFormat 2nd 3rd 4th

 NSOpenGLView 2nd 3rd 4th 5th

 NSOutlineView 2nd 3rd 4th 5th 6th 7th 8th 9th

 NSPageLayout 2nd 3rd

 NSPanel 2nd 3rd 4th 5th 6th 7th

 NSParagraphStyle

 NSPasteboard 2nd 3rd 4th

 NSPopUpButton 2nd 3rd 4th 5th 6th 7th 8th

 NSPrinter

 PostScript Printer Description (PPD)

 NSPrintInfo

 dictionary keys 2nd

 instance creation 2nd

 job disposition

 pagination attributes 2nd

 paper attributes 2nd

 printer access

 NSPrintOperation

 executing operations 2nd

 instance creation 2nd

 operation attributes

 NSPrintPanel 2nd

 NSProcessInfo 2nd 3rd

 NSProgressIndicator 2nd 3rd 4th 5th 6th 7th 8th

 NSProxy

 NSProxy class 2nd

 NSQuickDrawView 2nd

 NSRange 2nd

 NSRecursiveLock

 NSRunLoop 2nd

 NSScanner 2nd

 NSScroller

 NSScrollView 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 NSSecureTextField 2nd

 NSSet

 NSSlider 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 NSSocketPort class

 NSSound 2nd 3rd 4th

 NSSplitView 2nd 3rd 4th 5th 6th

 NSStepper 2nd 3rd 4th

 NSString 2nd 3rd 4th

 NSStringEncoding

 values

 NSTableView 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 creating

 overview 2nd

 NSTabView 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th

 NSTask

 Animal example 2nd 3rd 4th 5th

 asynchronous tasks 2nd 3rd 4th 5th 6th 7th

 Calendar example 2nd 3rd 4th 5th 6th 7th

 cleanup 2nd

 data transmittal 2nd

 overview 2nd

 parsing output 2nd

 pausing 2nd

 receiving output 2nd

 restarting 2nd

 signaling 2nd

 stopping 2nd

 synchronous tasks 2nd 3rd 4th 5th

 terminating 2nd

 termination status 2nd

 NSTextAttachment

 NSTextContainer

 NSTextField 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th 17th 18th

 NSTextStorage

 Model layer (MVC) 2nd 3rd 4th

 NSTextView 2nd 3rd 4th

 setting text to display 2nd 3rd

 View layer (MVC) 2nd 3rd

 NSThread 2nd 3rd

 ThreadExample program 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

14th 15th 16th 17th 18th 19th 20th

 NSTimer 2nd

 NSTimeZone

 NSToolbar 2nd 3rd 4th 5th

 NSToolbarItem 2nd

 NSURL

 components 2nd 3rd 4th

 instance creation 2nd 3rd 4th

 NSURLHandle

 NSUserDefaults 2nd 3rd

 NSValue 2nd

 NSDecimalNumber subclass 2nd

 NSNumber subclass

 NSView

 print capabilities 2nd 3rd 4th

 ToolTip methods 2nd 3rd 4th 5th

 NSWindow

 delegate methods 2nd 3rd 4th

 MYDocument class instances 2nd 3rd 4th

 NSWorkspace 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 object orientation

 Objective-C language

 categories

 posing

cleaning up

 NSTask class 2nd

closed world applications

 Objective-C 2nd

closing

 MYDocumentManager class documents

Coaoa

 Objective-C language

Cocoa

 advantages over over development environments 2nd

 application development environment 2nd

 development

 evolution

 features overview

 frameworks 2nd

 Application Kit 2nd

 Foundation 2nd

 NeXTSTEP applications

 Interface Builder

 Lotus Improv

 programming requirements 2nd

 spell checking support

 Mac OS X version 10.2

 versus 100% Pure Java development environment

 versus Carbon development environment 2nd

 versus other object-oriented environments 2nd

Cocoa Application Kit

 NSSound class 2nd 3rd 4th 5th

Cocoa Programing.net Web site

 LotsOfWords application source code

Cocoa Programming.net Web site

 Animal example

 source code

 Calendar source code

 ClassBrowser example 2nd 3rd 4th 5th

 DockMenu example

 source code

 DynamicMenu example 2nd

 Image Viewer application

 PaginationDemos example 2nd

 PieWidget example source code 2nd

 QuickDraw example 2nd

 ScoreTable example source code 2nd

 source code

 source code examples

 StatusItems example

 TaskOutliner example 2nd

 ThreadExample program

 source code

 ToolbarWxample source code 2nd

cocoa-dev mailing list

Cocoa-Menus palette (Interface Builder)

CocoaDev Web site

CocoaProgramming.net Web site

 MiscKit

code

 also check source code

 critical sections 2nd

 multithreading issues 2nd

 MiscHelpManager class 2nd 3rd 4th 5th 6th 7th 8th

 optimization

 memory leaks 2nd 3rd 4th 5th 6th 7th 8th

 nongraphical 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th 17th 18th 19th 20th 21st

 performance bottlenecks 2nd 3rd 4th 5th

 optmization

 dynamic memory allocation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 threads

 locking 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 locking witout blocks 2nd

coding

 design patterns

 application types

collection classes

 Foundation framework 2nd

 arrays 2nd 3rd

 deep versus shallow copying 2nd

 dictionaries 2nd 3rd 4th

 enumerators 2nd

 sets 2nd

color lists

 NSColorList class 2nd 3rd

color panels

 colors

 dragging (NSColorPanel class) 2nd

 creating (NSColorPanel class) 2nd 3rd 4th 5th

color spaces

 converting 2nd

color wells

 visual states (NSColorWell class) 2nd 3rd 4th

colors

 color space conversion 2nd

 color wells

 visual states 2nd 3rd 4th

 current

 setting

 derived

 creating 2nd 3rd

 device-dependent

 color space constants 2nd

 device-independent

 color space constants 2nd

 NSColor class

 NSColorList class 2nd 3rd

 NSColorPanel class 2nd 3rd 4th 5th

 dragging colors from user interfaces 2nd

 NSColorPicker class

 custom color pickers 2nd 3rd 4th 5th 6th

 objects

 creating (NSColor class) 2nd 3rd 4th 5th 6th 7th

 retrieving (NSColor class) 2nd

 storing (NSColor class) 2nd

 system notification

 system values

 text fields

 selecting

columns

 outline views (NSOutlineView class) 2nd

 table views

 cell formatting (NSTableColumn class) 2nd 3rd 4th 5th

 controlling selectability of 2nd

combo boxes

 creating (NSComboBox class) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 creating (NSComboBoxCell class) 2nd 3rd 4th

 delegate methods

 external data sources 2nd

 internal data sources

 items

 programmatic selection 2nd

Command GOF pattern

commands

 design patterns

 application types

 File menu

 Add Frameworks (Project Builder) 2nd

 New Project (Project Builder)

Common Unix Printing System (CUPS)

Composite GOF pattern 2nd

compound controls

 forms 2nd 3rd 4th 5th

 matricies 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 pop-up buttons 2nd 3rd 4th 5th 6th

 steppers 2nd 3rd 4th

comprehensive help

 viewing (Apple Help Viewer) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

14th 15th

configuring

 Info.plist

 pasteboard services 2nd 3rd 4th 5th

 key equivalents

 NSMenuItem class 2nd

 menu appearance

 NSMenuItem class

 menu identifiers

 NSMenuItem class

 menu state

 NSMenuItem class 2nd

 submenus

 NSMenuItem class 2nd

 targets

 NSMenuItem class

connecting

 menu items

 Interface Builder 2nd

constant-string objects

 Objective-C extensions 2nd

containers

 boxes 2nd

 creating 2nd 3rd 4th 5th 6th 7th

 controls 2nd

 scroll views

 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 split views

 creating 2nd 3rd 4th 5th

 delegates

 tab views

 adding 2nd

 creating 2nd 3rd 4th 5th 6th 7th 8th

 delegates 2nd

 removing 2nd

 selecting 2nd

 views 2nd

content views

 boxes

contextual menus 2nd

continuous buttons

Control layer

 text system

 classes 2nd 3rd

Controller layer

 application design pattern 2nd

controls [See also widgets]

 appearance

 setting 2nd 3rd

 cells

 function of 2nd

 manipulating 2nd 3rd

 compound

 forms 2nd 3rd 4th 5th

 matricies 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 pop-up buttons 2nd 3rd 4th 5th 6th

 steppers 2nd 3rd 4th

 event responses

 modifying

 NSControl class

 -acceptsFirstResponder method

 -isContinous method

 -sendActionOn method

 -setAction method 2nd

 -setAlignment method 2nd

 -setAttributedStringValue method 2nd

 -setContinous method

 -setEnabled method

 -setFont method

 -setIgnoresMultiClick method

 -setObjectValue method 2nd

 -setTag method

 -tag method

 function of 2nd

 progress indicators

 NSProgressIndicator class 2nd 3rd 4th 5th 6th 7th 8th

 tags

 assigning 2nd

 target-actions

 implementing 2nd 3rd 4th 5th

 text fields

 NSImageView class 2nd 3rd 4th 5th 6th

 NSTextField class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

15th 16th 17th 18th

 user interfaces

 customizing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 values

 setting 2nd 3rd 4th

converting

 color spaces 2nd

 fonts

 NSFontManager class 2nd 3rd

convienence allocators

 NSString class 2nd

Core Audio Framework 2nd

Core Foundation APIs

 Darwin

Core Foundation library

 data types 2nd 3rd

 procedural APIs 2nd 3rd

Core Graphics API (Quartz) 2nd

 PDF compatability

Core MIDI Framework 2nd

CoreFoundation library

creating

 color objects

 NSColor class 2nd 3rd 4th 5th 6th 7th

 custom frameworks 2nd

 derived colors 2nd 3rd

 email messages

 in user email client (NSURL class) 2nd

 without user email client (NSMailDelivery class) 2nd 3rd

 filter services 2nd

 frameworks

 Project Builder 2nd 3rd 4th 5th 6th 7th 8th 9th

 help books

 Apple Help 2nd 3rd

 instances

 MYDocumentManager class 2nd 3rd 4th 5th

 NSPrintInfo class 2nd

 NSPrintOperation class 2nd

 Objective-C language

 menu items

 Interface Builder

 NSMenuItem class 2nd

 MYDocumentManager class instances 2nd 3rd 4th

 NSURL class instances 2nd 3rd 4th

 NSURLHandle class instances 2nd 3rd 4th

Cris.com Web site

 hashing function resources

critical sections

 code 2nd

 multithreading issues 2nd

CURLHandle implementation

 NSURLHandle class

current colors

 setting

custom color pickers (NSColorPicker class) 2nd 3rd 4th 5th 6th

custom frameworks

 creating 2nd

 creating (Project Builder) 2nd 3rd

custom pagination

 PaginationDemos example 2nd

customizing

 user interface controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

15th

cut, copy & paste pasteboards 2nd 3rd

Darwin

 Mac OS X

 BSD (Berkeley Standard Distribution) Unix component

 Core Foundation APIs

 device drivers

 file system support 2nd

 low-level components 2nd

 Mach kernel

 networking components

 Objective-C runtime

 source code

 open licensing 2nd

data

 downloading (NSURL class) 2nd 3rd 4th 5th

 downloading (NSURLHandle class) 2nd 3rd 4th 5th 6th 7th 8th 9th

 filters

 pasteboards 2nd

 parsing (NSTask class) 2nd

 pasteboards

 providing lazily 2nd

 writing to 2nd 3rd 4th

 reading from NSPasteboard class 2nd 3rd

 transmitting (NSTask class) 2nd

data sources

 MultiplicationTable example (NSTableView class) 2nd

 outline views (NSOutlineView class) 2nd 3rd 4th

 user interfaces

 lazy loading 2nd

data types

 Core Foundation library 2nd 3rd

 pasteboards 2nd

 lazy evaluations 2nd

 return type registration 2nd

 richness of 2nd

 send type registration 2nd

dates

 Foundation framework

 NSCalendarDate class 2nd

 NSDate class

 NSTimeInterval type

 NSTimeZone class

deadlock

 threads

deadlocks

 multithreading issues 2nd 3rd 4th 5th

debugging

 frameworks 2nd

 Image Viewer application

 NSAssert() macro 2nd

 multithreading issues 2nd

declaring

 classes

 Objective-C language 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 protocols

 Objective-C extension 2nd

 service provider objects

 MYServiceProvider class 2nd

Decorator GOF pattern 2nd

deep copying

 versus shallow copying (Foundation framework) 2nd

defaults system

 Foundation framework 2nd 3rd

 NSUserDefaults class 2nd 3rd

delegate methods

 Animal example (NSTask class) 2nd

 NSApplication class 2nd 3rd 4th 5th 6th 7th 8th

 NSWindow class 2nd 3rd 4th

delegates

 design patterns

 application types 2nd 3rd

 limitations

 NSToolbar class

 creating 2nd 3rd 4th 5th

 tab views

 text fields

 NSTextField class

deprecated methods

 menus 2nd 3rd

derived colors

 creating 2nd 3rd

design patterns

 archiving 2nd

 class clusters 2nd

 coding

 commands

 decision criteria

 definitions list

 delegates 2nd 3rd

 limitations

 elements of

 enumerators 2nd 3rd

 facades 2nd

 function of 2nd 3rd 4th 5th

 GOF patterns

 Model-View-Controller 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 name of

 notifications 2nd

 limitations

 prototypes 2nd 3rd

 proxies 2nd 3rd

 range of

 responder chain 2nd

 shared objects 2nd 3rd

 subviews 2nd

 targets/actions 2nd 3rd

 terminology 2nd

Design Patterns \#208 Elements of reusable Object-Oriented Software (italics)

detaching

 threads

 NSThread class 2nd

determinate progress indicators

developer tools (Apple) 2nd

device drivers

 Darwin

device-dependent colors

 color space constants 2nd

device-independent colors

 color space constants 2nd

dictionaries

 Foundation framework

 NSDictionary class 2nd

 NSMutableDictionary class 2nd

dictionary keys

 NSPrintInfo class 2nd

dictionary keys (services)

 NSKeyEquivalent

 NSMenuItem

 NSMessage

 NSPortName

 NSReturnTypes

 NSSendTypes

 NSTimeout

 NSUserData

digital camera support API

 Mac OS X version 10.2

directory services

 Active Directory

 Apple Directory Services APIs

 function of 2nd

 NetInfo

 OpenLDAP

disabilities

 universal access features (Mac OS X version 10.2) 2nd

disabling menu items

disbaling

 automatic menu validation 2nd

distributed messaging

 protocols (Objective-C extensions) 2nd

distributed notifications

 interapplication communication

 posting 2nd 3rd 4th 5th 6th 7th

distributed objects

 Apple Developer Web site

 Gnustep Project Web site

 interapplication communication

 BSD Unix sockets

 error handling 2nd 3rd 4th 5th

 Objective-C keywords 2nd 3rd 4th

 proxies 2nd

 vending 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Distributed Objects (DO)

 thread isolation 2nd

dock menus 2nd

 extending 2nd 3rd 4th

 helper objects

DockMenu example

 source code

documentation

 Apple-provided

 Apple TechPubs

 Carbon Frameworks

 Cocoa development

 CoreFoundation

 developer tools

 MTLibrarian

 release notes

documents

 MYDocumentManager class

 activating

 closing

domains

 file locations

 Local 2nd 3rd 4th 5th

 Network 2nd 3rd 4th 5th

 System 2nd 3rd 4th 5th

 User 2nd 3rd 4th 5th

doucments

 paths

 MYDocument class 2nd

downloading

 data

 NSURL class 2nd 3rd 4th 5th

 NSURLHandle class 2nd 3rd 4th 5th 6th 7th 8th 9th

drag and drop pasteboards

 drags

 initiating 2nd 3rd

 implementing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

 NSDraggingDestination protocol 2nd 3rd 4th 5th 6th 7th 8th 9th

 NSDraggingInfo protocol 2nd

 NSDraggingSource protocol 2nd 3rd 4th 5th

 NSDragOperationCopy constant

 NSDragOperationDelete constant

 NSDragOperationGeneric constant

 NSDragOperationLink constant

 NSDragOperationMove constant

 NSDragOperationName constant

 NSDragOperationPrivate constant

 outline view 2nd 3rd

 table view 2nd 3rd 4th 5th

drags

 drag and drop pasteboards

 initiating 2nd 3rd

drawers

 documentation (Apple Developer Web site) 2nd

 versus sheets 2nd

drawing

 graphics

 optimization issues 2nd 3rd

dynamic memory allocation

 avoiding 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

DynamicMenu example

 navigating 2nd

 pop-up lists

 manipulating 2nd

 source code 2nd

 submenus

 adding 2nd

editing

 menus

 Interface Builder 2nd

 text fields

 options 2nd

email

 messages

 creating in user email client (NSURL class) 2nd

 creating without user email client (NSMailDelivery class) 2nd 3rd

enabling

 frameworks

 prebinding 2nd 3rd

enabling menu items

Encapsulated Postscript (EPS)

 NSPrintOperation class 2nd

encapsulation

 object orientation 2nd

encoding constants

 Apple Developer Web site

enumerators

 design patterns

 application types 2nd 3rd

 Foundation framework

 NSEnumerator class 2nd

error handling

 distributed messaging 2nd 3rd 4th 5th

events

 responses

 modifying (NSControl class)

extending

 dock menus

 with delegates 2nd

 without code 2nd

extensions

 Objective-C

 categories 2nd 3rd

 constant-string objects 2nd

 protocols 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 type encoding 2nd

F-Script Web site

Facade GOF pattern 2nd 3rd 4th 5th 6th 7th

facades

 design patterns

 application types 2nd

FAT (File Allocation Table) 2nd

File menu commands (Project Builder)

 Add Frameworks 2nd

 New Project

file systems

 Darwin

 FAT (File Allocation Table) 2nd

 HFS+ (Hierarchical File System Plus) 2nd

 ISO 9660 2nd

 NFS (Network File System) 2nd

 UDF (Universal Disk Format) 2nd

 UFS (Unix File System) 2nd

 Foundation framework

 NSFileHandle class 2nd 3rd

 NSFileManager class 2nd

 NSFileWrapper class 2nd

file types

 MYDocument class

files

 importing (Objective-C language) 2nd

 naming (Objective-C language) 2nd

 standard locations

 domains 2nd 3rd 4th 5th

filter services

 creating 2nd

filters

 pasteboards 2nd 3rd 4th

fonts

 classes

 NSFont 2nd 3rd 4th 5th 6th

 NSFont class

 NSFontManager 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 NSFontManager class

 NSFontPanel 2nd 3rd 4th

 NSFontPanel class

 common weights and restrictions 2nd 3rd

 Model-View-Controller (MSV) architecture

 name syntax

 text system

 supported formats

formatters

 text system

 NSFormatter class 2nd 3rd

formatting

 cells

 MultiplicationTable example (NSTableView class)

 text fields

 user interfaces 2nd 3rd 4th

forms

 creating (NSForm class) 2nd

 creating (NSform class)

 creating (NSForm class)

 creating (NSFormCell class)

forwarding

 messages

 via objects (Objective-C) 2nd 3rd

Foundation framework 2nd

 built-in types 2nd

 dates 2nd 3rd 4th 5th 6th

 raw data 2nd 3rd 4th 5th

 strings 2nd 3rd 4th

 values 2nd 3rd 4th 5th

 bundles

 function of

 localized resource files 2nd

 NSBundle class 2nd 3rd 4th

 uses

 class clusters

 NSArray class

 NSCharacterSet class

 NSData class

 NSDictionary class

 NSScanner class

 online documentation

 uses

 classes

 immutable 2nd

 mutable 2nd

 collection classes 2nd

 arrays 2nd 3rd

 deep versus shallow copying 2nd

 dictionaries 2nd 3rd 4th

 enumerators 2nd

 sets 2nd

 Core Foundation library

 data types 2nd 3rd

 procedural APIs 2nd 3rd

 defaults system 2nd 3rd

 NSUserDefaults class 2nd 3rd

 file system access

 NSFileHandle class 2nd 3rd

 NSFileManager class 2nd

 NSFileWrapper class 2nd

 GNUstep.org Web site

 immutable instance variables 2nd 3rd 4th

 memory leaks

 locating 2nd

 mutable instance variables 2nd 3rd 4th

 notifications 2nd

 NSNotification class 2nd

 NSNotificationCenter class 2nd 3rd

 NSString class

 convienence allocators 2nd

 property lists 2nd 3rd

 run loops

 NSRunLoop class 2nd

 string processing

 formatters

 NSCharacterSet class 2nd

 NSScanner class 2nd

 regular expressions 2nd

 support types

 NSGeometry class 2nd 3rd

 NSRange class 2nd

 timers

 NSTimer class 2nd

Foundation Kit framework

 enumeration design pattern 2nd 3rd

fragile base class problem 2nd 3rd

framework (Foundation)

 built-in types 2nd

 dates 2nd 3rd 4th 5th 6th

 raw data 2nd 3rd 4th 5th

 strings 2nd 3rd 4th

 values 2nd 3rd 4th 5th

 bundles

 function of

 localized resource files 2nd

 NSBundle class 2nd 3rd 4th

 uses

 class clusters

 NSArray class

 NSCharacterSet class

 NSData class

 NSDictionary class

 NSScanner class

 online documentation

 uses

 classes

 immutable 2nd

 mutable 2nd

 collection classes 2nd

 arrays 2nd 3rd

 deep versus shallow copying 2nd

 dictionaries 2nd 3rd 4th

 enumerators 2nd

 sets 2nd

 Core Foundation library

 data types 2nd 3rd

 procedural APIs 2nd 3rd

 defaults system 2nd 3rd

 NSUserDefaults class 2nd 3rd

 file system access

 NSFileHandle class 2nd 3rd

 NSFileManager class 2nd

 NSFileWrapper class 2nd

 GNUstep.org Web site

 immutable instance variables 2nd 3rd 4th

 mutable instance variables 2nd 3rd 4th

 notifications 2nd

 NSNotification class 2nd

 NSNotificationCenter class 2nd 3rd

 property lists 2nd 3rd

 run loops

 NSRunLoop class 2nd

 string processing

 formatters

 NSCharacterSet class 2nd

 NSScanner class 2nd

 regular expressions 2nd

 support types

 NSGeometry class 2nd 3rd

 NSRange class 2nd

 timers

 NSTimer class 2nd

frameworks

 Application Kit 2nd

 backward compatability

 creating 2nd 3rd

 creating (Project Builder) 2nd 3rd 4th 5th 6th 7th 8th 9th

 custom

 creating (Project Builder) 2nd 3rd

 creation overview 2nd

 debugging 2nd

 EDCommon 2nd

 enhancements

 Mac OS X version 10.2

 Foundation 2nd

 fragile base class problem 2nd 3rd

 function of 2nd

 headers

 precompiling 2nd

 public versus private 2nd 3rd

 install locations

 setting (Project Builder) 2nd

 MiscKit

 MOKit

 Omni Group 2nd

 prebinding

 enabling 2nd 3rd

 versions

 setting 2nd

 versus application projects 2nd

FreeBSD 3.2

freezing

 objects 2nd

functions

 (Foundation framework)

 analysis (gprof tool) 2nd

 CFURLCreateStringByAddingPercentEscapes()

 NSFullUserName()

 NSHomeDirectory()

 NSSearchPathForDirectoriesInDomains()

 NSSearchPathForDirectoriesInDomains() function

 NSUserName()

 Objective-C runtime

 MYSendMessageToAClass

 NSClassFromString

 NSSelectorFromString

 NSStringFromSelector

gcc (GNU Compiler Collection)

GCC (GNU Compiler Collection)

 Mac OS X version 10.2 2nd

 Web site resources 2nd

general pasteboards

genstrings program

 localizable strings

GL Utility Kit (GLUT) 2nd

global variables

 multithreading issues 2nd

GLUT (GL Utility Kit) 2nd

GNU Compiler Collection (gcc)

Gnu Compiler Collection (GCC)

 Mac OS X version 10.2 2nd

Gnustep Project Web site

GNUstep.org Web site

 Foundation framework

GOF patterns

 (Gang of Four)

 Chain of Responsibility 2nd 3rd 4th 5th

 commands

 Composite 2nd

 Decorator 2nd

 Facade 2nd 3rd 4th 5th 6th 7th

 Iterator 2nd 3rd

 Memento 2nd

 Observer 2nd 3rd

 Prototype 2nd 3rd

 Proxy 2nd 3rd

 Singleton 2nd

GOF patterns (design patterns)

gprof tool

 optimization

 function/method analysis 2nd

graphics

 applications

 Model-View-Controller design pattern 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 LotsOfWords application

 reduction of excess drawings (Quartz Debug tool) 2nd 3rd 4th 5th 6th 7th 8th

 OpenGL

 optimization

 application time consumption 2nd 3rd

 Quartz Debug tool

handling

 errors

 distributed messaging 2nd 3rd 4th 5th

handwriting recognition

 Mac OS X version 10.2

hardware

 Quartz Extreme (Mac OS X version 10.2)

hash tables

 cache element (Objective-C) 2nd

hashing functions

 cache element (Objective-C) 2nd

headers

 frameworks

 precompiling 2nd

 public versus private 2nd 3rd

help

 Carbon

 MiscHelpManager class 2nd 3rd 4th 5th 6th 7th 8th 9th

 comprehensive help

 viewing (Apple Help) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

14th 15th

 MiscKit

 ToolTips

 appearance of

 Cocoa APIs 2nd 3rd 4th 5th

 limitations of (Interface Builder)

 NSHelpManager class 2nd

 setting (Interface Builder) 2nd

help books

 applications

 integrating 2nd

 creating (Apple Help) 2nd 3rd

 HTML documentation 2nd 3rd 4th

 meta tags 2nd 3rd 4th 5th 6th

helper objects

 dock menus

HFS+ (Hierarchical File System Plus) 2nd

hierarchical data

 tree structure

 connected nodes 2nd

 leaf nodes 2nd

 root nodes 2nd

HTML

 help book documentation 2nd 3rd 4th 5th 6th

 text system

 class support

icon buttons

id type (Objective-C language) 2nd 3rd

identifying

 users

 on operating system

image attachments

 appending (NSTextView class) 2nd

 inserting (NSTextView class) 2nd

Image Viewer

 alert panels

 creating (NSRunAlertPanel macro) 2nd

Image Viewer application

 complete implementation (Cocoa Programming.net Web site)

 debugging (NSAssert macro) 2nd

 document paths (MYDocument class) 2nd

 doucment file types (MYDocument class)

 images

 loading (MYDocument class) 2nd

 MainMenu.nib file

 multidocument support 2nd 3rd 4th

 multidocument support

 configuring (MYDocument class) 2nd 3rd 4th

 doucment paths (MYDocument class) 2nd

 file types (MYDocument class)

 loading images (MYDocument class) 2nd

 MYDocument class 2nd 3rd

 MYDocumentManager class 2nd 3rd

 NSDocument class 2nd

 NSDocumentController class 2nd

 MYDocument class

 initializing instances 2nd 3rd

 management methods 2nd 3rd 4th

 menu validation

 save methods 2nd 3rd 4th 5th 6th 7th 8th

 status methods 2nd 3rd

 MYDocumentManager class

 .h file 2nd 3rd

 .m file 2nd

 .m file; [See localized strings]

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/L.html#idd1e28651

 activating documents

 adding to 2nd 3rd 4th 5th

 document closure

 information methods 2nd

 initializing instances 2nd

 instance creation 2nd 3rd 4th

 menu validation

 open document access methods

 save methods

 NSApplication class

 delegate methods 2nd 3rd

 transparent windows

 windows frames

 saving in user defaults 2nd

images

 loading in Image Viewer (MYDocument class) 2nd

 menus

 NSMenuItem class

 user interface

 displaying 2nd 3rd 4th 5th 6th

IMC.org Web site

 vCard resources 2nd

immutable classes

 Foundation framework 2nd

immutable instance variables

 Foundation framework 2nd 3rd 4th

IMP type (Objective-C language)

implementation inheritance

implementing

 classes

 Objective-C language 2nd 3rd 4th

importing

 files

 Objective-C language 2nd

IMPs

 messaging via (Objective-C runtime) 2nd 3rd 4th 5th

 replaced methods

 storing 2nd 3rd 4th 5th

 searching

in keyword (Objective-C)

 distributed messaging 2nd

indeterminate progress indicators

info element (Objective-C objects)

inheritance

 object orientation

initializing

 instances

 MYDocument class 2nd 3rd

 MYDocumentManager class 2nd

inout keyword (Objective-C)

 distributed messaging 2nd

input managers

 text system

 NSTextView class 2nd

inserting

 image attachments

 NSTextView class 2nd

 text

 NSTextView class 2nd

 Web links

 NSAttributedString class 2nd

installing

 applications

 service-oriented 2nd

instance methods (Objective-C) 2nd 3rd 4th 5th

instance variables

 fragile base class problem 2nd 3rd

 immutable (Foundation framework) 2nd 3rd 4th

 listing (MYShowAllInstance Variables function)

 mutable (Foundation framework) 2nd 3rd 4th

 private

 Objective-C 2nd 3rd

 protected

 Objective-C 2nd 3rd

 public

 Objective-C 2nd 3rd

instance-based specialization (object orientation) 2nd

instance_size element (Objective-C objects)

instances

 creating (Objective-C language)

 MYDocument class

 initializing 2nd 3rd

 MYDocumentManager class

 creating 2nd 3rd 4th 5th 6th 7th 8th 9th

 initializing 2nd

 NSFont class

 obtaining 2nd

 NSPrintInfo class

 creating 2nd

 NSPrintOperation class

 creating 2nd

 NSURL class

 creating 2nd 3rd 4th

 NSURLHandle class

 creating 2nd 3rd 4th

 object orientation 2nd 3rd

integrating

 help books

 in applications (Apple Help) 2nd

interactive widgets 2nd

interapplication communication

 Apple Events

 Apple Developer Web site documentation

 BSD Unix sockets

 distributed notifications

 posting 2nd 3rd 4th 5th 6th 7th

 distributed objects

 BSD Unix sockets

 error handling 2nd 3rd 4th 5th

 Objective-C keywords 2nd 3rd 4th

 proxies 2nd

 vending 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 Mach messages/ports

Interface Builder

 alignment control constants 2nd

 buttons

 behavior configuration 2nd

 behaviors 2nd

 borders

 continuous

 icon position

 images 2nd

 key equivalent configuration

 key equivalents

 momentary states

 rendering 2nd 3rd

 sounds 2nd

 state configuration 2nd

 text fields

 titles

 toggles states

 type options 2nd

 ClassBrowser example connections 2nd

 Cocoa Data palette 2nd 3rd 4th

 combo boxes

 creating 2nd

 Containers palette 2nd

 boxes 2nd 3rd 4th 5th 6th 7th 8th 9th

 scroll views 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 split views 2nd 3rd 4th 5th 6th

 tab views 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th

 control tags

 assigning 2nd

 control values

 setting 2nd 3rd 4th

 dock menus

 creating 2nd

 event responses

 modifying

 forms

 creating 2nd 3rd 4th

 images

 displaying 2nd 3rd 4th 5th 6th

 matricies

 cell selection

 configuring 2nd

 manipulating

 options 2nd

 menus

 connecting items 2nd

 creating new items

 editing 2nd

 palette

 renaming items

 reordering items

 MultiplicationTable example

 configuring 2nd

 creating 2nd 3rd 4th

 custom cell formatting 2nd

 data sources 2nd

 NSBrowser class

 configuring 2nd 3rd 4th

 pop-up buttons

 creating 2nd 3rd 4th

 progress indicators

 creating 2nd 3rd 4th 5th 6th 7th

 sliders

 configuring 2nd

 ranges

 rendering

 sizing 2nd

 tick marks 2nd

 titles

 steppers

 options 2nd 3rd 4th

 target-actions

 implementing 2nd 3rd 4th 5th

 text fields

 configuring 2nd 3rd 4th

 delegates

 field editor 2nd

 input managers 2nd

 secure fields 2nd

 tabbing 2nd

 validation 2nd 3rd 4th

 ToolTips

 limitations of

 setting 2nd

 user interfaces

 color wells 2nd 3rd

interface inheritance

interfaces

 Java objects 2nd

interthread communication

 thread locks 2nd

invokation

 Objective-C language

 objects

invoking

 services

 programmatically (pasteboards) 2nd

IPv6 (Internet Protocol version 6)

 Mac OS X version 10.2 2nd

isa element (Objective-C objects)

ISO 9660 file system 2nd

items

 NSToolbar class

 validation 2nd

Iterator GOF pattern 2nd 3rd

ivars element (Objective-C objects) 2nd

Jaguar, [See Mac OS X version 10.2]

Java

 100% Pure Java programs

 automatic garbage collection (objects)

 cross-platform abilities

 influence of Objective-C language

 interfaces (objects) 2nd

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/M.html#idd1e132456

 Java Bridge

 Java Virtual Machine (JVM)

 JavaBeans

 bundles

 safety

 security

 selection criteria

 pros/cons 2nd 3rd

Java 2 Standard Edition

Java Bridge

 object interaction with Objective-C

Java Virtual Machine (JVM)

Java Virtual Mahcine (JVM)

 automatic garbage collection (objects)

JavaBeans

 bundles

job disposition

 NSPrintInfo class

Joy

 Cocoa integration tool for scripting languages

key equivalents

 buttons

 configuring

keyed archiving systems

 Mac OS X version 10.2

languages

 selection criteria

 Java pros/cons 2nd 3rd

 Objective-C pros/cons 2nd 3rd 4th 5th

 scripting languages pros/cons 2nd

lazy data

 pastebaords

 providing 2nd

lazy evaluations

 pasteboards

 data types 2nd

lazy loading

 data sources

 user interfaces 2nd

Local domain

 files

 location and contents 2nd 3rd 4th 5th

localized strings

 .nib files 2nd

 Apple Developer Web site resources

 NSLocalizedString() macro 2nd

locating

 menu items

 NSMenu class 2nd

locking

 threads 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 interthread communication 2nd

 NSConditionLock class 2nd 3rd 4th 5th 6th

 NSDistributedLock class 2nd 3rd

 NSLock class 2nd

 without blocks 2nd

LotsOfWords application

 complete source code

 graphics drawing reduction

 Quartz Debug tool 2nd 3rd 4th 5th 6th 7th 8th

 memory leaks

 locating (Foundation framework) 2nd

 locating (MallocDebug tool) 2nd

 locating (ObjectAlloc tool) 2nd

 MyWord class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 MyWordController class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 MyWordView class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 optimization

 performance bottlenecks 2nd 3rd 4th 5th

Lotus Improv 2nd

LowTek Web site

 sockets documentation

Mac OS 8

 Carbon environment

 applications development 2nd

 QuickTime

Mac OS 9

 Carbon environment

 applications development 2nd

 QuickTime

Mac OS X

 100% Pure Java environment

 applications development

 100% Pure Java programs

 Carbon environment

 applications development 2nd

 Cocoa environment

 applications development 2nd

 Darwin

 BSD (Berkeley Standard Distribution) Unix component

 Core Foundation APIs

 device drivers

 file system support 2nd

 low-level components 2nd

 Mach kernel

 networking components

 Objective-C runtime

 evolution of 2nd

 Java 2 Standard Edition

 layered architecture of 2nd

 OpenGL

 2D/3D accelerated graphics

 Quartz

 2D graphics features 2nd

 QuickTime

 streaming media features

 roots in Unix 2nd

 Unix developers

 third-party enhancements

Mac OS X version 10.2

 (Jaguar)

 Address Book

 vCards 2nd

 BSD Unix tools

 Cocoa spell checking support

 framework enhancements

 Gnu Compiler Collection (GCC) 2nd

 handwriting recognition

 IPv6 (Internet Protocol version 6) 2nd

 Quartz Extreme

 multiple layers per window

 OpenGL Accelerated 2D 2nd

 required hardware

 universal access 2nd

 updated components

 CD burning API

 CFNetworking

 digital camera support API

 key archiving systems

 NSFileManager

 NSNetServices

 NSText

 NSThread

 NSURLHandle

 NSUserDefaults

Mach kernel (Darwin)

Mach messages/ports

 Apple Developer Web site resources

 interapplication communication

Macintosh fonts

 text system support

macosx-dev mailing list

MacTech Web site

mailing lists

 cocoa-dev

 macosx-dev

 Project Builder

mailto parameter

 NSURL class

 email messages 2nd

MainMenu.nib file (Image Viewer)

 multiple windows support 2nd 3rd 4th

MallocDebug tool

 memory leaks

 locating 2nd 3rd 4th

managing

 MYDocument class documents 2nd 3rd 4th

master-detail interface

 table views

master-detail interfaces

 table views

 implementing (NSDocument class) 2nd 3rd 4th 5th 6th 7th 8th

 implementing (NSTableView class) 2nd 3rd 4th

matricies

 cell selection (NSMatrix class)

 configuring (NSMatrix class) 2nd

 creating (NSMatrix class) 2nd 3rd 4th 5th 6th

 manipulating (NSMatrix class)

 modes (NSMatrix class) 2nd

Memento GOF pattern 2nd

memory

 extra bytes allocation (Objective-C) 2nd

memory leaks

 locating (Foundation framework) 2nd

 locating (MallocDebug tool) 2nd

 locating (ObjectAlloc tool) 2nd 3rd 4th

menus

 Aqua developer guidelines

 automatic validation

 disabling 2nd

 Cocoa APIs

 support 2nd

 contextual 2nd

 dock 2nd

 extending 2nd 3rd 4th

 helper objects

 DynamicMenu example

 navigating 2nd

 pop-up list manipulation 2nd

 source code 2nd

 submenu additions 2nd

 explicit disabling

 explicit enabling

 Interface Builder

 connecting items 2nd

 creating new items

 editing 2nd

 menus palette

 renaming items

 reordering items

 items

 disabling

 enabling

 MYDocument class

 validating

 MYDocumentManager class

 validating

 NSMenu class 2nd 3rd

 notifications 2nd

 objects, adding 2nd

 objects, creating

 objects, locating 2nd

 objects, removing

 NSMenuItem class 2nd 3rd

 appearance configuration

 identifier configuration

 images

 item creation 2nd

 key equivalents configuration 2nd

 properties 2nd

 radio groups

 represented objects

 state configuration 2nd

 submenu configuration 2nd

 target configuration

 NSPopUpButton class 2nd

 obsolete classes 2nd 3rd

 submenus

 attaching 2nd

 tear-off 2nd

 validating 2nd 3rd 4th

merthodLists element (Objective-C objects) 2nd

messages

 object orientation 2nd

messaging

 between threads

 NSThread class 2nd 3rd 4th 5th 6th

 dynamic nature of

 Objective-C language

 flexibility

 Objective-C language

 forwarding (NSIInvocation class) 2nd

 Objective-C runtime

 objc_msgSend function 2nd 3rd

 objc_msgSendSuper function 2nd 3rd

 proxies (NSProxy class)

 runtime errors

 Objective-C language

 syntax

 Objective-C language

meta tags

 Apple Help

 CFBundleHelpBookFolder key 2nd

 CFBundleHelpBookName key 2nd

 help books (Apple Help) 2nd 3rd 4th 5th 6th

methods

 analysis (gprof tool) 2nd

 class (Objective\#208C) 2nd 3rd 4th 5th

 classes

 Objective-C language) 2nd 3rd 4th 5th 6th

 instance (Objective\#208C) 2nd 3rd 4th 5th

 listing (MYShowAllMethods function)

 MYDocument class

 -documentPath

 -hasEverBeenSaved

 -initWithPath 2nd 3rd

 -isDocumentEdited

 -myLoadDocumentWithPath 2nd

 -mySetDocumentPath 2nd

 -safeClose 2nd 3rd

 -saveDocument 2nd 3rd 4th

 -saveDocumentAs 2nd 3rd 4th

 -setDocumentEdited

 -validateMenuItem

 MYDocumentManager class

 -activeDocument

 -applicationShouldTerminate

 -dealloc 2nd

 -documentClass 2nd

 -documentExtensions 2nd

 -documentWillClose 2nd

 -existingOpenDocuments

 -makeDocumentActive

 -myInitInstanceVariables 2nd

 -myNextUntitledDocumentName

 -myRegisterDocument

 -newDocument

 -openDocument

 -saveAllDocuments

 -validateMenuItem 2nd

 NSApplication class

 -abortModal

 -applicationOpenFile 2nd

 -applicationShouldTerminate 2nd

 -runModalForWindow

 -stopModalWithCode

 NSAttributedString class

 -attributedSubstringFromRange 2nd 3rd 4th

 -attributesAtIndex 2nd 3rd 4th

 -initWithPath 2nd

 -initWithString 2nd 3rd

 -isequaltoAttributedString 2nd 3rd 4th

 -length 2nd 3rd 4th

 NSBox class

 -setBorderType 2nd

 -setNoBorder

 -setTitle 2nd

 NSBrowser class

 -loadColumnZero

 -reloadColumn

 -scrollColumnToVisible

 -selectedCell

 -selectedColumn

 -setAcceptsArrowKeys

 -setAllowsBranchSelection

 -setAllowsEmptySelection

 -setAllowsMultipleSelection

 -setDoubleAction

 -setMaxVisibleColumns

 -setPath

 -setSeparatesColumns

 -setTitle

 NSButton class

 -alternateClass

 -alternateTitle

 -attributedTitle

 -keyEquivalent

 -nextState

 -setBezelStyle

 -setBordered

 -setGradientType

 -setHighlightsBy

 -setImagePosition

 -setState

 -setTransparent

 -showsStateBy

 -sound

 NSCell class

 -initImageCell

 -initTextCell

 -setBordered

 -setControlSize

 -setControlTint

 -setHighlighted

 -setTitle

 -setType

 NSComboBox class

 -deselectItemAtIndex 2nd

 -numberOfItems

 -selectItemAtIndex 2nd

 -setHasVerticalScroller

 -setIntercellSpacing

 -setItemHeight

 NSControl class

 +cellClass

 +setCellClass

 -acceptsFirstResponder

 -isContinuous

 -sendActionOn

 -setAction

 -setAlignment 2nd

 -setAttributedStringValue 2nd

 -setCell

 -setContinuous

 -setEnabled

 -setFont

 -setIgnoresMultiClick

 -setObjectValue 2nd

 -setTag

 -setTarget

 -tag

 NSDistributedNotificationCenter class

 -addObserver

 -postNotificationName 2nd

 -removeObserver

 -setSuspended 2nd

 NSDocument class

 -preparePageLayout

 -printInfo

 -printShowingPrintPanel 2nd

 -runPageLayout 2nd

 -setPrintInfo

 -shouldChangePrintInfo

 NSFont class

 +fontWithName

 +setUserFont

 +systemFontOfSize

 +systemFontSize

 +userFontOfSize

 -ascender

 -capHeight

 -descender

 -displayName

 -familyName

 -pointSize

 NSFontManager class

 +sharedFontPanel

 -addFontTrait

 -availableFonts

 -changeFont 2nd

 -convertFont 2nd 3rd 4th

 -fontMenu 2nd

 -fontPanel 2nd

 -modifyFont 2nd

 -orderFrontFontPanel

 -panelConvertFont

 -setSelectedFont 2nd

 -worksWhenModal

 NSForm class

 -addEntry

 -cellAtIndex

 -setEntryWidth

 -setTextAlignment

 -setTextFont

 -setTitleAlignment

 -setTitleFont

 NSFormatter class

 -getObjectValue 2nd

 -isPartialStringValid 2nd 3rd 4th 5th

 -stringForObjectValue

 NSFormCell class

 -setTitle

 -setTitleWidth

 NSHost class

 +currentHost

 +hostWithAddress

 +hostWithName

 -addresses

 -name

 NSImageView class

 -setImage

 -setImageAlignment

 -setImageFrameStyle

 -setImageScaling

 NSMailDelivery class

 +deliverMessage 2nd 3rd

 NSMatrix class

 -addColumn

 -addRow

 -deselectSelectedCell

 -removeColumn

 -removeRow

 -selectCell

 -setAutosizesCells

 -setBackgroundColor

 -setCellSize

 -setDoubleAction

 -setDrawsBackground

 -setPrototype

 NSMenu class

 -applicationDockMenu 2nd

 -indexOfItem

 -insertItemWithTitle 2nd

 -itemArray

 -itemWithTag

 -numberOfItems

 -removeItemAtIndex

 -setAutoenablesItems 2nd

 -setSubmenu 2nd

 -title

 NSMenuItem class

 -setImage

 -setKeyEquivalent 2nd

 -setRepresentedObject

 -setState 2nd

 -setSubmenu 2nd

 -setTag

 -setTarget

 -setTitle

 -validateMenuItem 2nd 3rd

 NSMutableAttributedString class

 -addAttributes

 -appendAttributedString

 -deleteCharactersInRange

 -fixAttributesInRange

 -fixFontAttributeInRange

 -mutableString

 -readFromURL

 -replaceCharactersInRange

 -setAlignment

 -setAttributes

 -superscriptRange

 NSOutlineView class

 -itemAtRow 2nd

 -levelForRow

 -rowForRow

 NSPageLayout class

 +pageLayout

 -runModalWithPrintInfo 2nd

 -runPageLayout 2nd

 -setAccessoryView

 NSPasteboard class

 +generalPasteboard

 +pasteboardWithName

 +pasteboardWithUniqueName

 -addTypes.owners

 -declareTypes.owners 2nd

 -writeTo.pasteboard

 filters 2nd

 NSPopUpButton class

 -addPopUpColor 2nd

 -selectItem

 -selectItemAtIndex

 -setMenu

 -setPullsDown

 NSPopUpButtonCell class

 -setArrowPosition

 NSPrinter class

 +printersName

 +printerWithName

 +printerWithType

 NSPrintInfo class

 -adjustPageHeight 2nd 3rd

 -adjustPageWidth 2nd 3rd

 -initWithDictionary 2nd

 -jobDisposition

 -paperName 2nd

 -paperSize 2nd

 -printer

 -setHorizontalPagination 2nd 3rd 4th 5th 6th

 -setVerticalPagination 2nd 3rd 4th 5th 6th

 NSPrintOperation class

 +printOperationWithView

 -printInfo

 -runOperation 2nd

 -setAccessoryView

 -setPageOrder

 EPSOperationWithView

 PDFOperationWithView

 NSPrintPanel class

 -print 2nd

 NSProcessInfo class

 -arguments

 -environment

 -globallyUniqueString

 -hostName

 -operatingSystem

 -processIdentifier

 NSProgressIndicator class

 -animationDelay

 -incrementBy 2nd

 -setUsesThreadedAnimation

 -startAnimation

 NSScreen class

 +deepestScreen

 +mainScreen

 NSScrollView class

 -setBackgroundColor

 -setBorderType

 -setContentView 2nd

 -setDocumentView 2nd

 -setHasHorizontalScroller

 -setHasVerticalScroller

 -setHorizontalRulerView 2nd

 -setLineScroll

 -setPageScroll

 -setVerticalRulerView 2nd

 -toggleRuler

 NSSlider class

 -isVertical 2nd

 -knobThickness

 -setFloatValue

 -setKnobThickness

 -setMaxValue

 -setMinValue

 -setNumberOfTicks 2nd

 -setTickMarkPosition 2nd

 NSSplitView class

 -setDelegate

 -setsIsPaneSplitter 2nd

 -setVertical 2nd

 NSStepper class

 -setMaxValue

 -setMinValue

 -setTag

 NSTableColumn class

 -dataCellForRow

 -textColorForRow

 NSTableView class

 -numberOfRowsInTableView

 -rowsCount 2nd

 NSTabView class

 -addTabViewItem 2nd

 -removeTabViewItem 2nd

 -selectFirstTabViewItem

 -selectLastTabViewItem

 -selectPreviousTabViewItem

 -selectTabViewItemAtIndex 2nd

 -selectTabViewItemWithIdentifier 2nd

 -setAllowsTruncatedLabels

 -setDelegate 2nd

 -setDrawsBackground

 -setTabViewType

 -tabViewType

 NSText class

 -textDidBeginEditing

 -textDidChange

 -textShouldBeginEditing

 -textShouldEndEditing

 NSTextField class

 -selectText

 -setBackgroundColor

 -setBezeled

 -setBordered

 -setDelegate

 -setEditable

 -setScrollable

 -setTextColor

 -setWraps

 NSTextStorage class

 -beginEditing 2nd

 -endEditing 2nd

 NSTextView class

 -changeFont

 -clickedOnCell

 -clickedOnLink

 -doCommandBySelector 2nd

 -doubleClickedOnCell

 -draggedCell

 -removeTextContainerAtIndex

 -replaceCharacters 2nd

 -setAlignment

 -setFont

 -setSelectedRange

 -setString

 -setText

 -shouldChangeTextInRange

 -superscript

 -textContainer

 -textContainerChangedTextView

 -textStorage

 -textViewDidChangeSelection

 -underline

 -undoManagerForTextView

 -willChangeSelectionFromCharacterRange

 -writeCell

 NSToolbar class

 -initWithIdentifier

 -removeItemAtIndex

 -setAllowsUserCustomization

 -setAutosavesConfiguration

 -setDelegate

 -setDisplayMode

 -setVisible

 -validateToolbarItem 2nd

 -visibleItems

 NSToolbarItem class

 -setImage

 -setLabel

 -setPaletteLabel

 -setView

 NSURL class

 -fragment

 -host

 -initWithScheme 2nd 3rd 4th

 -initWithString 2nd 3rd 4th

 -parameterString

 -password

 -path

 -port

 -query

 -relativePath 2nd 3rd

 -relativeString 2nd 3rd

 -resourceDataUsingCache

 -standardizedURL

 -user

 NSView class

 -beginDocument

 -beginPageInRect

 -drawPageBorderWithSize

 -endPage

 -knowsPageRange 2nd 3rd

 -printJobTitle

 -rectForPage 2nd 3rd

 NSWindow class

 -saveFrameUsingName

 -setAlphaValue

 -setBackgroundColor

 -setFrameAutosaveName

 -setFrameUsingName

 -setHasShadow

 -setOpaque

 -windowDidBecomeKey 2nd

 -windowShouldClose 2nd 3rd 4th

 delegates 2nd 3rd 4th

 NSWorkspace class

 +sharedWorkspace 2nd 3rd

 -checkForRemovableMedia

 -findApplications

 -fullPathForApplication

 -iconForFile

 -launchApplication

 -mountedLocalVolumePaths

 -performFileOperation

 -selectFileInViewerRootedAtPath

 searching (Objective-C runtime) 2nd

MiscHelpManager class (Carbon)

 source code example 2nd 3rd 4th 5th 6th 7th 8th

MiscKit

 third party help resource

MiscKit Web site

 frameworks

modal loops

 Apple Developer Web site

 documentation

 launching

 uses

modal windows

 versus sheets 2nd

Model layer

 application design pattern

 text system

 classes 2nd 3rd 4th

Model-View-Controller (MVC)

 font classes

 architecture

 Model layer 2nd 3rd 4th

 text system architecture 2nd 3rd

Model-View-Controller design pattern

 application types 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

modifying

 fonts

 NSFontManager class 2nd 3rd

modularity

 object orientation

MOKit framework

 string processing of regular expressions

MOKit Web site

 frameworks

Montage Tech Web site

 MTLibrarian tool

mouse

 ToolTips

 appearance of

MTLibrarian tool

Mulle-Kybernetik Web site

 frameworks 2nd

Mulle-Kybernetik.com Web site

 low-level optimization resources

multimedia

 3D graphics

 OpenGL 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 QuickTime

 file format support

 NSMovie class 2nd 3rd

 NSMovieView class 2nd 3rd 4th 5th

 sound

 Core Audio Framework 2nd

 Core MIDI Framework 2nd

 NSSound class 2nd 3rd 4th 5th

 Speech Recognition Manager 2nd

 Speech Synthesis Manager 2nd

multiple column browser delegates

 ClassBrowser example 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 NSBrowser class 2nd

multiple inheritance (object orientation)

multiple-interface inheritance

 protocols (Objective-C extensions)

MultiplicationTable example

 configuring (Interface Builder) 2nd

 creating (Interface Builder) 2nd 3rd 4th

 custom cell formatting (Interface Builder)

 data sources (Interface Builder) 2nd

 source code

 table views

 column selectability 2nd

multithreading

 issues

 critical code section considerations 2nd

 deadlocks 2nd 3rd 4th 5th

 debugging 2nd

 global variables 2nd

 performance considerations 2nd

 race conditions

Music Kit Web site

mutable attributed strings

 implementing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

mutable classes

 Foundation framework 2nd

 overuse of

mutable instance variables

 Foundation framework 2nd 3rd 4th

mutex

 locked threads

MYDocument class

 delegate methods

 -windowDidBecomeKey 2nd

 -windowShouldClose 2nd

 -windowWillClose 2nd

 documents

 management methods 2nd 3rd 4th

 menu validation

 save methods 2nd 3rd 4th

 status methods 2nd

 doucment paths 2nd

 file types

 images

 loading 2nd

 ImageViewer application

 multidocument support 2nd 3rd

 instances

 initializing 2nd 3rd

 methods

 -documentClass 2nd

 -documentPath

 -hasEverBeenSaved

 -initWithPath 2nd 3rd

 -isDocumentEdited

 -safeClose 2nd 3rd

 -saveDocument 2nd 3rd 4th

 -saveDocumentAs 2nd 3rd 4th

 -setDocumentEdited

 -validateMenuItem

 MYDocument.h file 2nd

 localized strings 2nd

 MYDocument.m file 2nd

 localized strings 2nd

 NSWindow delegate methods 2nd 3rd 4th

 sheets

 support of 2nd 3rd 4th 5th 6th

 windows

 configuring 2nd 3rd 4th

MYDocumentManager class

 documents

 access methods

 activating

 closing

 information methods 2nd

 menu validation

 new instance creation 2nd 3rd 4th

 save methods

 Image Viewer application

 adding to 2nd 3rd 4th 5th

 ImageViewer application

 multidocument support 2nd 3rd

 instances

 creating 2nd 3rd 4th 5th

 initializing 2nd

 methods

 -activeDocument

 -applicationOpenFile 2nd

 -applicationShouldTerminate 2nd 3rd

 -dealloc 2nd

 -documentExtensions 2nd

 -documentWillClose 2nd

 -existingOpenDocuments

 -makeDocumentActive

 -myInitInstanceVariables 2nd

 -myNextUntitledDocumentName

 -myRegisterDocument

 -newDocument

 -openDocument

 -saveAllDocuments

 -validateMenuItem 2nd

 MYDocumentManager.h file 2nd 3rd

 MYDocumentManager.m file 2nd 3rd

 sheets

 support of 2nd 3rd

MYDoucment class

 methods

 -myLoadDocumentWithPath 2nd

 -mySetDocumentPath 2nd

MYMasterController class 2nd 3rd 4th 5th

MYMessageServer class 2nd 3rd 4th 5th

MYSendMessageToAClass function (Objective-C runtime)

MYServiceProvider class

 methods 2nd 3rd

 objects

 declaring 2nd

 defining 2nd

 pasteboards 2nd 3rd 4th 5th

 user interface 2nd 3rd

MYShortString class

 dynamic memory allocation

 avoiding 2nd 3rd 4th 5th 6th 7th 8th 9th

MYShowAllClasses() function

 Objective-C runtime 2nd

MYShowAllInstanceVariables() function

 Objective-C runtime

MYShowAllMethods() function

 Objective-C runtime

MyWord class

 LotsOfWords application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

MyWordController class

 LotsOfWords application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

MyWordView class

 LotsOfWords application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

MYWorkspaceNotificationObserver class 2nd 3rd 4th 5th

name element (Objective-C objects)

name mangling (Objective-C++)

naming

 files

 Objective-C language 2nd

NetInfo (directory service)

Network domain

 files

 location and contents 2nd 3rd 4th 5th

networks

 Darwin components

 directory services

 function of 2nd

New Project command (File menu-Project Builder)

NeXTSTEP

 Cocoa development

 early applications

 Interface Builder

 Lotus Improv 2nd

NFS (Network File System) 2nd

nongraphical code

 optimization issues 2nd 3rd 4th 5th 6th

 dynamic memory allocation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 gprof tool 2nd

 rules of thumb 2nd

notifications

 design patterns

 application types 2nd

 limitations

 Foundation framework 2nd

 NSNotification class 2nd

 NSNotificationCenter class 2nd 3rd

 menus

 NSMenu class 2nd

NSActionCell class

NSApplication class

 delegate methods 2nd 3rd 4th 5th 6th 7th 8th

 methods

 -abortModal

 -applicationOpenFile 2nd

 -applicationShouldTerminate 2nd

 -runModalForWindow

 -stopModalWithCode

 modal loops 2nd

 sample code resources

NSArray class

 class clusters

NSAssert() macro

 Image Viewer

 debugging 2nd

NSAttributedString class

 methods

 -attributedSubstringFromRange 2nd 3rd 4th

 -attributesAtIndex 2nd 3rd 4th

 -initWithPath 2nd

 -initWithString 2nd 3rd

 -isEqualToAttributedString 2nd 3rd 4th

 -length 2nd 3rd 4th

 Web links

 inserting 2nd

NSAutoPagination constant

 NSPrintInfo class

NSBeginAlertSheet() function 2nd 3rd 4th 5th

NSBox class 2nd 3rd 4th 5th 6th 7th 8th 9th

 methods

 -setBorderType 2nd

 -setContentView

 -setNoBorder

 -setTitle

NSBrowser class 2nd 3rd 4th 5th 6th 7th 8th 9th

 browser views

 uses

 delegates

 active 2nd 3rd

 multiple column 2nd

 passive 2nd 3rd

 single column 2nd 3rd

 methods

 -loadColumnZero

 -reloadColumn

 -scrollColumnToVisible

 -selectedCell

 -selectedColumn

 -setAcceptsArrowKeys

 -setAllowsBranchSelection

 -setAllowsEmptySelection

 -setAllowsMultipleSelection

 -setDoubleAction

 -setMaxVisibleColumns

 -setPath

 -setSeparatesColumns

 -setTitle

 user interface

 configuring (Interface Builder) 2nd 3rd 4th

NSBrowserCell class 2nd

NSBundle class 2nd 3rd

 -infoDictionary method

 -load method 2nd

 -principalClass method

NSButton class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th 17th 18th 19th 20th 21st 22nd 23rd

 methods

 -alternateTitle 2nd

 -attributedTitle

 -keyEquivalent

 -nextState

 -setBezelStyle

 -setBordered

 -setGradientType

 -setHighlightsBy

 -setImagePosition

 -setState

 -setTransparent

 -showsStateBy

 -sound

NSButtonCell class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th 17th 18th 19th 20th 21st 22nd 23rd

NSCalendarDate class 2nd

NSCell class 2nd 3rd 4th 5th 6th 7th 8th 9th

 custom cells

 drawing in 2nd

 event handling 2nd 3rd

 initialization of 2nd

 methods

 -initImageCell

 -initTextCell

 -setBordered

 -setControlSize

 -setControlTint

 -setHighlighted

 -setTitle

 -setType

 subclassing (PieWidget example) 2nd 3rd 4th 5th 6th 7th 8th 9th

NSCharacterSet class

 class clusters

 Foundation framework 2nd

NSClassFromString function (Objective-C runtime)

NSClassFromString() function

NSClipPagination constant

 NSPrintInfo class

NSColor class

 color objects

 creating 2nd 3rd 4th 5th 6th 7th

 color space conversion 2nd

 colors

 retrieving 2nd

 storing 2nd

 derived colors

 creating 2nd 3rd

 settings

 querying 2nd

 system color notification

 system color values

 visual representations of

NSColorList class 2nd 3rd

NSColorPanel class 2nd 3rd 4th 5th

 colors

 dragging 2nd

NSColorPboardType constant (pasteboards)

NSColorPicker class

 colors

 custom pickers 2nd 3rd 4th 5th 6th

NSColorWell class

 color wells

 visual states 2nd 3rd 4th

NSComboBox class

 combo boxes

 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 methods

 -deselectItemAtIndex 2nd

 -numberOfItems

 -selectItemAtIndex 2nd

 -setHasVertical Scroller

 -setIntercellSpacing

 -setItemHeight

NSComboBoxCell class

 combo boxes

 creating 2nd 3rd 4th

NSConditionLock class

 threads

 locking 2nd 3rd 4th 5th 6th

NSConnection class

 distributed objects

 network connections 2nd

NSControl class

 function of 2nd

 methods

 +cellClass

 +setCellClass

 -acceptsFirstResponder

 -isContinuous

 -sendActionOn

 -setAction

 -setAlignment 2nd

 -setAttributedStringValue 2nd

 -setCell

 -setContinuous

 -setEnabled

 -setFont

 -setIgnoresMultiClick

 -setObjectValue 2nd

 -setTag

 -setTarget

 -tag

 NSColorWell subclass 2nd 3rd

 subclassing (PieWidget example) 2nd

NSData class

 arbitrary byte encapsulation 2nd

 class clusters

 NSMutableData subclass 2nd

NSDate class

NSDateFormatter class 2nd 3rd 4th

NSDebug.h file (Foundation framework)

 memory management functions 2nd

NSDeciamlNumber subclass (NSValue class) 2nd

NSDictionary class 2nd

 class clusters

NSDistributedLock class

 threads

 locking 2nd 3rd

NSDistributedNotificationCenter class

 methods

 -addObserver

 -postNotificationName 2nd

 -removeObserver

 -setSuspended 2nd

NSDocument class

 ImageViewer application

 multidocument support 2nd

 methods

 -preparePageLayout

 -printInfo

 -printShowingPrintPanel 2nd

 -runPageLayout 2nd

 -setPrintInfo

 -shouldChangePrintInfo

 ScoreTable example 2nd 3rd 4th

 action methods 2nd

 undo-redo support 2nd

NSDocumentController class

 ImageViewer application

 multidocument support 2nd

NSDraggingDestination protocol

 drag and drop pasteboards 2nd 3rd 4th 5th 6th 7th 8th 9th

NSDraggingInfo protocol

 drag and drop pasteboards 2nd

NSDraggingSource protocol

 drag and drop pasteboards 2nd 3rd 4th 5th

NSDragOperationCopy constant

 drag and drop pasteboards

NSDragOperationDelete constant

 drag and drop pasteboards

NSDragOperationGeneric constant

 drag and drop pasteboards

NSDragOperationLink constant

 drag and drop pasteboards

NSDragOperationMove constant

 drag and drop pasteboards

NSDragOperationName constant

 drag and drop pasteboards

NSDragOperationPrivate constant

 drag and drop pasteboards

NSDragPboard class 2nd

NSDragPboard constant (pasteboards)

NSFileContentsPboardType constant (pasteboards)

NSFileHandle class

 Apple Developer Web site resources

 Foundation framework 2nd 3rd

NSFileManager class

 Foundation framework 2nd

NSFileManager component

 Mac OS X version 10.2

NSFilenamesPboardType constant (pasteboards)

NSFileWrapper class

 Foundation framework 2nd

NSFindPoard constant (pasteboards)

NSFitPagination constant

 NSPrintInfo class

NSFont class 2nd

 Apple Developer Web site documentation

 information

 obtaining 2nd 3rd

 instances

 obtaining 2nd

 methods

 +fontWithName

 +setUserFont

 +systemFontOfSize

 +systemFontSize

 +userFontOfSize

 -ascender

 -capHeight

 -descender

 -displayName

 -familyName

 -pointSize

NSFontManager class 2nd 3rd

 font availability

 determining

 fonts

 converting 2nd 3rd

 modifying 2nd 3rd

 selecting 2nd

 user interfaces 2nd

 methods

 +sharedFontPanel

 -addFontTrait

 -availableFonts

 -changeFont 2nd

 -convertFont 2nd 3rd 4th

 -fontMenu 2nd

 -fontPanel 2nd

 -modifyFont 2nd

 -orderFrontFontPanel

 -panelConvertFont

 -setSelectedFont 2nd

 -worksWhenModal

NSFontPanel class

 fonts

 user interfaces 2nd 3rd 4th

NSFontPboard constant (pasteboards)

NSFontPboardType constant (pasteboards)

NSFontTraitMask class

 trait values 2nd 3rd

NSForm class

 compound controls 2nd 3rd 4th

 methods

 -addEntry

 -cellAtIndex

 -setEntryWidth

 -setTextAlignment

 -setTextFont

 -setTitleAlignment

 -setTitleFont

NSFormatter class 2nd 3rd

 Apple Developer Web site tutorial

 Foundation framework

 string formatting

 methods

 -getObjectValue 2nd

 -isPartialStringValid 2nd 3rd 4th 5th

 -stringForObjectValue

 Phone Number Formatter application 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

NSFormCell class

 compound controls

 methods

 -setTitle

 -setTitleWidth

NSFullUserName() function

NSGeneralPboard constant (pasteboards)

NSGeometry class

 Foundation framework 2nd 3rd

NSHelpManager class

 ToolTips

 methods 2nd

NSHomeDirectory() function

NSHost class

 methods

 +currentHost

 +hostWithAddress

 +hostWithName

 -addresses

 -name

NSHTMLPboardType constant (pasteboards)

NSImageCell class 2nd 3rd 4th 5th 6th

NSImageView class 2nd 3rd 4th 5th 6th

 methods

 -setImage

 -setImageAlignment

 -setImageFrameStyle

 -setImageScaling

NSInputManager class 2nd

NSInputServer class 2nd

NSInvocation class

 message forwarding 2nd

NSLayoutManager class

 Control layer (MVC) 2nd 3rd

NSLocalizedString() macro 2nd

NSLock class

 threads

 locking 2nd

NSMailDelivery class

 email messages

 creating without user email client 2nd 3rd

 methods

 +deliverMessage 2nd 3rd

NSMatrix class

 compound controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 event handling 2nd

 methods

 -addColumn

 -addRow

 -deselectSelectedCell

 -removeColumn

 -removeRow

 -selectCell

 -setAutosizesCells

 -setBackgroundColor

 -setCellSize

 -setDoubleAction

 -setDrawsBackground

 -setPrototype

NSMenu class 2nd 3rd

 DynamicMenu example

 navigating 2nd

 pop-up list manipulation 2nd

 submenu additions 2nd

 menu notifications 2nd

 methods

 -applicationDockMenu 2nd

 -indexOfItem

 -insertItemWithTitle 2nd

 -itemArray

 -itemWithTag

 -numberOfItems

 -removeItemAtIndex

 -setAutoenablesItems 2nd

 -setSubmenu 2nd

 -title

 objects

 adding 2nd

 creating

 locating 2nd

 removing

 submenus

 attaching 2nd

NSMenuItem class 2nd 3rd

 images

 items

 appearance configuration

 creating 2nd

 identifier configuration

 key equivalents configuration 2nd

 state configuration 2nd

 submenu configuration 2nd

 target configuration

 methods

 -setImage

 -setKeyEquivalent 2nd

 -setRepresentedObject

 -setState 2nd

 -setSubmenu 2nd

 -setTag

 -setTarget

 -setTitle

 -validateMenuItem 2nd 3rd

 properties 2nd

 radio groups

 represented objects

NSMenuItem dictionary key

NSMessage dictionary key 2nd

NSMovie class 2nd 3rd

 sample movies (Apple Developers Web site)

NSMovieView class 2nd 3rd 4th 5th

NSMutableArray class

NSMutableAttributedString class

 methods

 -addAttributes

 -appendAttributedString

 -deleteCharactersInRange

 -fixAttributesInRange

 -fixFontAttributeInRange

 -mutableString

 -readFromURL

 -replaceCharactersInRange

 -setAlignment

 -setAttributes

 -superscriptRange

 Model layer (MVC) 2nd 3rd 4th

NSMutableData subclass (NSData class) 2nd

NSMutableDictionary class 2nd

NSMutableSet class

NSMutableString subclass

NSNetServices component

 Mac OS X version 10.2

NSNotification class

 Foundation framework 2nd

NSNotificationCenter class

 Foundation framework 2nd 3rd

NSNumber subclass (NSValue class)

NSNumberFormatter class 2nd 3rd 4th

NSObject class

 Objective-C language 2nd 3rd

 +initialize method

 +load method

 message forwarding 2nd 3rd

 object comparisions 2nd

 object introspection 2nd 3rd

 optimization 2nd

 performing

 posing

 runtime integration 2nd 3rd 4th 5th 6th 7th

NSOpenGLContext class 2nd

NSOpenGLPixelFormat class 2nd 3rd 4th

NSOpenGLView class 2nd 3rd 4th 5th

NSOutlineView class 2nd 3rd 4th 5th 6th 7th 8th 9th

 methods

 -itemAtRow 2nd

 -levelForRow

 -rowForRow

 outline views

 columns 2nd

 data sources 2nd 3rd 4th

 delegate methods 2nd

 optional methods 2nd 3rd

 required methods 2nd

 TaskOutliner example 2nd

 uses

NSPageLayout class

 methods

 +pageLayout

 -runModalWithPrintInfo 2nd

 -runPageLayout 2nd

 -setAccessoryView

NSPanel class

 Apple Developer Web site 2nd

 Apple Developer Web site documentation 2nd

 NSColorPanel subclass 2nd 3rd 4th 5th 6th 7th

 subclasses 2nd

NSParagraphStyle class

NSPasteboard class 2nd

 cut, copy & pasteboards 2nd

 data

 reading from 2nd 3rd

 writing to 2nd 3rd 4th

 filters

 methods 2nd

 methods

 +generalPasteboard

 +pasteboardWithName

 +pasteboardWithUniqueName

 -addTypes.owner

 -declareTypes.owner 2nd

 -writeTo.pasteboard

NSPathUtilities.h file

NSPDFPboardType constant (pasteboards)

NSPerformService() function 2nd

NSPICTPboardType constant (pasteboards)

NSPopUpButton class 2nd

 compound controls 2nd 3rd 4th 5th 6th

 methods

 -addPopUpColor 2nd

 -selectItem

 -selectItemAtIndex

 -setMenu

 -setPullsDown

NSPopUpButtonCell class

 methods

 -setArrowPosition

NSPortName dictionary key

NSPostScriptPboardType constant (pasteboards)

NSPrinter class

 methods

 +printersName

 +printerWithName

 +printerWithType

 PostScript Printer Description (PPD)

NSPrintInfo class

 dictionary keys 2nd

 instances

 creating 2nd

 job disposition

 methods

 -adjustPageHeight 2nd 3rd

 -adjustPageWidth 2nd 3rd

 -initWithDictionary 2nd

 -jobDisposition

 -paperName 2nd

 -paperSize 2nd

 -printer

 -setHorizintalPagination 2nd

 -setHorizontalPagination 2nd 3rd 4th

 -setVerticalPagination 2nd 3rd 4th 5th 6th

 pagination attributes 2nd

 pagination constants

 NSAutoPagination

 NSClipPagination

 NSFitPagination

 paper attributes 2nd

 printer access

NSPrintingPageOrder constants

 NSPrintOperation class

NSPrintOperation class

 executing operations 2nd

 instances

 creating 2nd

 methods

 +EPSOperationWithView

 +PDFOperationWithView

 +printOperationWithView

 -printInfo

 -runOperation 2nd

 -setAccessoryView

 -setPageOrder

 NSPrintingPageOrder constants

 operation attributes

 PDF/EPS representations 2nd

NSPrintPanel class

 methods

 -print 2nd

NSProcessInfo class 2nd 3rd

 methods

 -arguments

 -environment

 -globallyUniqueString

 -hostName

 -operatingSystem

 -processIdentifier

NSProgressIndicator class

 methods

 -animationDelay

 -incrementBy 2nd

 -setUsesThreadedAnimation

 -startAnimation

NSProxy class 2nd 3rd

NSQuickDrawView class 2nd

NSRange class

 Foundation framework 2nd

NSRecursiveLock class

NSReturnTypes dictionary key

NSRTFDPboardType constant (pasteboards)

NSRTFPboardType constant (pasteboards)

NSRulerPboard constant (pasteboards)

NSRulerPboardType constant (pasteboards)

NSRunAlertPanel() macro

 alert panels

 creating (Image Viewer) 2nd

NSRunLoop class

 Foundation framework 2nd

NSScanner class

 class clusters

 Foundation framework 2nd

NSScreen class

 Apple Developer Web site resources

 methods

 +deepestScreen

 +mainScreen

NSScroller class

NSScrollView class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 methods

 -setBackgroundColor

 -setBorderType

 -setContentView 2nd

 -setDocumentView 2nd

 -setHasHorizontalScroller

 -setHasVerticalScroller

 -setHorizontalRulerView 2nd

 -setLineScroll

 -setPageScroll

 -setVerticalRulerView 2nd

 -toggleRuler

NSSecureTextField class 2nd

NSSelectorFromString function (Objective-C runtime)

NSSelectorFromString() function

NSSendTypes dictionary key

NSSet class 2nd 3rd

NSSlider class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 methods

 -isVertical 2nd

 -knobThickness

 -setFloatValue

 -setKnobThickness

 -setMaxValue

 -setMinValue

 -setNumberOfTicks 2nd

 -setTickMarkPosition 2nd

NSSocketPort class

NSSound class 2nd 3rd 4th 5th

NSSplitView class 2nd 3rd 4th 5th 6th

 methods

 -setDelegate

 -setIsPaneSplitter 2nd

 -setVertical 2nd

NSStatusBar class

 status bars

NSStatusItem class

 menu-based status items 2nd

 status bars

 configuring 2nd

 creating 2nd

 removing

 view-based status items 2nd

NSStepper class

 compound controls 2nd 3rd 4th

 methods

 -setMaxValue

 -setMinValue

 -setTag

NSString class

 categories 2nd 3rd

 convienence allocators 2nd

 Foundation framework

 instances 2nd 3rd 4th

 regular expressions 2nd

 methods 2nd 3rd

 NSMutableString subclass

NSStringEncoding class

 values

NSStringFromSelector function (Objective-C runtime)

NSStringFromSelector() function

NSStringPboardType constant (pasteboards)

NSTableColumn class

 methods

 -dataCellForRow

 -textColorForRow

 subclassing 2nd 3rd 4th 5th

NSTableView class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 columns

 controlling selectability of 2nd

 methods

 -numberOfRowsInTableView

 -rowsCount 2nd

 MultiplicationTable example

 configuring 2nd

 creating 2nd 3rd 4th

 custom cell formatting

 data sources 2nd

 overview 2nd

 ScoreTable example 2nd 3rd 4th

 table views

 creating

 uses

NSTabularTextPboardType constant (pasteboards)

NSTabView class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th

 methods

 -addTabViewItem 2nd

 -removeTabViewItem 2nd

 -selectFirstTabViewItem

 -selectLastTabViewItem

 -selectPreviousTabViewItem

 -selectTabViewItemAtIndex 2nd

 -selectTabViewItemWithIdentifier 2nd

 -setAllowsTruncatedLabels

 -setDelegate 2nd

 -setDrawsBackground

 -setTabViewType

 -tabViewType

NSTask class

 Animal example

 delegate methods 2nd

 user interface 2nd 3rd

 asynchronous tasks 2nd 3rd 4th 5th 6th 7th

 Calendar example

 CalendarController class 2nd 3rd

 complete source code

 user interface 2nd 3rd

 cleanup 2nd

 data transmittal 2nd

 overview 2nd

 parsing output 2nd

 pausing 2nd

 phases

 cleanup 2nd

 execution 2nd

 setup 2nd

 receiving output 2nd

 restarting 2nd

 signaling 2nd

 stopping 2nd

 synchronous tasks 2nd 3rd 4th 5th

 terminating 2nd

 termination status 2nd

 Unix commands

 wrapping

 versus NSWorkspace class

NSText class

 delegate methods 2nd 3rd 4th 5th

 methods

 -textDidBeginEditing

 -textDidChange

 -textShouldBeginEditing

 -textShouldEndEditing

NSText component

 Mac OS X version 10.2

NSText Field class

 methods

 -selectText

 -setBackgroundColor

 -setBezeled

 -setBordered

 -setEditable

 -setScrollable

 -setTextColor

 -setWraps

NSTextAttachment class

NSTextContainer class

NSTextField class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th 17th 18th

 methods

 -setDelegate

NSTextStorage class

 methods

 -endEditing 2nd

 Model layer (MVC) 2nd 3rd 4th

NSTextView class 2nd 3rd 4th

 delegate methods 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 documentation

 image attachments

 appending 2nd

 inserting 2nd

 input managers 2nd

 methods

 -changeFont

 -clickedOnCell

 -clickedOnLink

 -doCommandBySelector 2nd

 -doubleClickedOnCell

 -draggedCell

 -removeTextContainerAtIndex

 -replaceCharacters 2nd

 -setAlignment

 -setFont

 -setSelectedRange

 -setString

 -setText

 -shouldChangeTextInRange

 -superscript

 -textContainer

 -textContainerChangedTextView

 -textStorage

 -textViewDidChangeSelection

 -underline

 -undoManagerForTextView

 -willChangeSelectionFromCharacterRange

 -writeCell

 programmatically end to editing 2nd

 setting text to display 2nd 3rd

 text

 appending 2nd

 inserting 2nd

 replacing 2nd

 View layer (MVC) 2nd 3rd

NSThread class 2nd

 ThreadExample program

 ServerObject subclass 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

14th 15th 16th 17th

 user interface 2nd

NSThread component

 Mac OS X version 10.2

NSTIFFPboardType constant (pasteboards)

NSTimeInterval type

NSTimeout dictionary key

NSTimer class

 Foundation framework 2nd

NSTimers class

 versus threads 2nd

NSTimeZone class

NSToolbar class 2nd 3rd 4th 5th

 delegates

 creating 2nd 3rd 4th 5th

 item validation 2nd

 methods

 -initWithIdentifier

 -removeItemAtIndex

 -setAllowsUserCustomization

 -setAutosavesConfiguration

 -setDelegate

 -setDisplayMode

 -setVisible

 -validateToolbarItem 2nd

 -visibleItems

NSToolbarItem class 2nd

 instance configuration 2nd

 item identifiers 2nd

 methods

 -setImage

 -setLabel

 -setPaletteLabel

 -setView

NSURL class

 components 2nd 3rd 4th

 data

 downloading 2nd 3rd 4th 5th

 email messages

 creating in user email client 2nd

 mailto parameter 2nd

 instances

 creating 2nd 3rd 4th

 methods

 -fragment

 -host

 -initWithScheme 2nd 3rd 4th

 -initWithString 2nd 3rd 4th

 -parameterString

 -password

 -path

 -port

 -query

 -relativePath 2nd 3rd

 -relativeString 2nd 3rd

 -resourceDataUsingCache

 -standardizedURL

 -user

NSURLHandle class

 data

 downloading 2nd 3rd 4th 5th 6th 7th 8th 9th

 instances

 creating 2nd 3rd 4th

 subclassing

NSURLHandle component

 Mac OS X version 10.2

NSURLHandleClient protocol

 asynchronous downloading 2nd

NSURLPboardType constant (pasteboards)

NSUserData dictionary key

NSUserDefaults class

 Foundation framework 2nd 3rd

NSUserDefaults component

 Mac OS X version 10.2

NSUserName() function

NSValue class

 methods 2nd

 NSDecimalNumber subclass 2nd

 NSNumber subclass

 stored data types 2nd

NSView class

 methods

 -beginDocument

 -beginPageInRect

 -drawPageBorderWithSize

 -drawRect 2nd 3rd

 -endPage

 -knowsPageRange 2nd 3rd

 -print

 -printJobTitle

 -rectForPage 2nd 3rd

 print capabilities 2nd 3rd 4th

 subclasses

 NSControl 2nd

 ToolTips

 methods 2nd 3rd 4th 5th

NSWindow class

 methods

 -saveFrameUsingName

 -setFrameAutosaveName

 -setFrameUsingName

 -windowDidBecomeKey 2nd

 -windowShouldClose 2nd

 -windowWillClose 2nd

 methods-setAlphaValue

 methods-setBackgroundColor

 methods-setHasShadow

 methods-setOpaque

 MYDocument class instances 2nd 3rd 4th

NSWorkspace class 2nd

 methods

 +sharedWorkspace 2nd 3rd

 -checkForRemovableMedia

 -findApplications

 -fullPathForApplication

 -iconForFile

 -launchApplication

 -mountedLocalVolumePaths

 -performFileOperation

 -selectFileInViewerRootedAtPath

 notifications 2nd 3rd 4th 5th 6th

 versus NSTask class

objc.h file (Objective-C objects) 2nd

objc_category structure (Objective-C) 2nd

objc_class structure (Objective-C) 2nd

objc_msgSend function 2nd 3rd

objc_msgSendSuper function 2nd 3rd

object orientation

 classes

 defined

 encapsulation 2nd

 goals of

 inheritance

 instances 2nd 3rd

 messages 2nd

 modularity

 polymorphism 2nd

 reuse of objects

 specialization 2nd

object serialization 2nd

ObjectAlloc tool

 memory leaks

 locating 2nd 3rd 4th

Objective-C

 (Cocoa) 2nd

 classes

 accessing from scripting languages 2nd

 degree of code reuse

 features

 instance variables

 private 2nd 3rd

 protected 2nd 3rd

 public 2nd 3rd

 memory

 extra bytes allocation 2nd

 objects

 cache element 2nd

 categories 2nd

 Class structure 2nd

 info element

 instance_size element

 isa element

 ivars element 2nd

 methodLists element 2nd

 name element

 objc.h file 2nd

 protocols element

 super_class element 2nd

 version element

 runtime

 manipulation advantages

 messaging functions 2nd 3rd

 methods, replacing 2nd 3rd 4th 5th

 methods, searching 2nd

 MYSendMessageToAClass function

 MYShowAllClasses() function 2nd

 MYShowAllInstanceVariables() function

 MYShowAllMethods() function

 NSClassFromString function

 NSSelectorFromString function

 NSStringFromSelector function

 uses

 selection criteria

 pros/cons 2nd 3rd 4th 5th

Objective-C keywords

 distributed messaging

 bycopy 2nd

 in 2nd

 inout 2nd

 oneway

 out 2nd

Objective-C language 2nd

 advantages

 ANSI C superset

 automatic garbage collection support

 basis in ANSI C language 2nd

 benefits in Cocoa implementations

 classes

 categories

 declaring 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 implementing 2nd 3rd 4th

 methods 2nd 3rd 4th 5th 6th

 posing

 closed world applications 2nd

 Cocoa frameworks 2nd

 extensions

 categories 2nd 3rd

 constant\#208string objects 2nd

 protocols 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 type encoding 2nd

 features

 files

 importing 2nd

 naming 2nd

 flexibility of

 GNU Compiler Collection (gcc)

 id type 2nd

 instances

 creating

 messaging

 dynamic nature of

 flexibility

 runtime errors

 syntax

 new additions

 NSObject class 2nd 3rd

 +initialize method

 +load method

 message forwarding 2nd 3rd

 object comparisons 2nd

 object introspection 2nd 3rd

 optimization 2nd

 performing

 posing

 runtime integration 2nd 3rd 4th 5th 6th 7th

 object polymorphism 2nd

 Objective-C++ variant

 objects

 interaction with Java objects (Java Bridge)

 invokation

 open world applications 2nd 3rd

 protocols

 role in Java creation

 runtime features

 runtime functions

 NSClassFromString()

 NSSelectorFromString()

 NSStringFromSelector()

 self keyword 2nd

 static typing 2nd 3rd

 super keyword 2nd

Objective-C++ language

 name mangling

 online documentation

 variant of Objective-C language

objects

 class clusters

 design patterns 2nd

 classes

 declaring (Objective-C language) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 immutable 2nd

 implementing (Objective-C language) 2nd 3rd 4th

 instance creation (Objective-C language)

 methods (Objective-C language) 2nd 3rd 4th 5th 6th

 mutable 2nd

 color

 creating (NSColor class) 2nd 3rd 4th 5th 6th 7th

 delegate messages 2nd 3rd

 enumerators 2nd 3rd

 fragile base class problem 2nd 3rd

 freezing 2nd

 id type

 Objective-C language 2nd

 invokation

 Objective-C language

 Java

 automatic garbage collection

 interfaces 2nd

 Java Bridge

 security/safety issues

 notification centers 2nd

 notifications

 Foundation framework 2nd 3rd 4th 5th 6th 7th

 NSObject class

 +initialize method (Objective-C)

 +load method (Objective-C)

 comparisons (Objective-C) 2nd

 introspection (Objective-C) 2nd 3rd

 messageging forwarding (Objective-C) 2nd 3rd

 Objective-C language 2nd 3rd

 optimization (Objective-C) 2nd

 performing (Objective-C)

 posing (Objective-C)

 runtime integration (Objective-C) 2nd 3rd 4th 5th 6th 7th

 NSTask class

 cleanup 2nd

 data transmittal 2nd

 output receiving 2nd

 parsing output 2nd

 pausing 2nd

 restarting 2nd

 signaling 2nd

 stopping 2nd

 termination status 2nd

 protocols (Objective-C extensions) 2nd

 shared

 design patterns 2nd 3rd

 static typing

 Objective-C language 2nd 3rd

 targets/actions design pattern 2nd 3rd

objects (Objective-C)

 cache element 2nd

 categories 2nd

 Class structure 2nd

 info element

 instance_size element

 isa element

 ivars element 2nd

 methodLists element 2nd

 name element

 objc.h file 2nd

 protocols element

 super_class element 2nd

 version element

Observer GOF pattern 2nd 3rd

obtaining

 pasteboards 2nd 3rd

Omni Group Web site

 frameworks 2nd

 MOKit framework

oneway keyword (Objective-C)

 distributed messaging

OÕReilly Mac DevCenter Web site

open world applications

 Objective-C 2nd 3rd

OpenGL

 2D/3D accelerated graphics

 3D graphics sample applications

 GL Utility Kit (GLUT) 2nd

 NSOpenGLContext class 2nd

 NSOpenGLPixelFormat class 2nd 3rd 4th

 NSOpenGLView class 2nd 3rd 4th 5th

OpenGL Accelerated 2D

 Quartz Extreme (Mac OS X version 10.2) 2nd

OpenGL Reference Manual Third Edition (Addison-Wesley)

OpenGL.org Web site

OpenLDAP (directory service)

OpenType fonts

 text system support

operating system

 authentication 2nd

operating systems

 information

 retrieving 2nd 3rd 4th 5th 6th

 NSProcessInfo class 2nd 3rd

 security

 privileges 2nd

 users

 identifying

optimization

 80/20 rule 2nd

 graphics

 application time comsumption 2nd 3rd

 Quartz Debug tool

 issues

 80/20 rule 2nd

 premature optimization 2nd

 LotsOfWords application

 complete source code

 MyWord class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 MyWordController class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 MyWordView class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 Quartz Debug tool 2nd 3rd 4th 5th 6th 7th 8th

 memory leaks

 locating 2nd 3rd 4th 5th 6th 7th 8th

 nongraphical code 2nd 3rd 4th 5th 6th

 dynamic memory allocation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 gprof tool 2nd

 performance bottlenecks 2nd 3rd 4th 5th

 rules of thumb 2nd

 overview

 premature optimization 2nd

 resources

 Apple Developer Web site

out keyword (Objective-C)

 distributed messaging 2nd

outline views

 data sources

 NSOutlineView class 2nd 3rd 4th

 drag and drop pasteboards 2nd 3rd

 NSOutlineView class

 uses

 TaskOutliner example (NSOutlineView class) 2nd

 columns 2nd

 delegate methods 2nd

 optional methods 2nd 3rd

 required methods 2nd

output

 receiving (NSTask class) 2nd

Page Setup panel

 presenting (NSPageLayout class) 2nd

pagination attributes

 NSPrintInfo class 2nd

PaginationDemos example 2nd

 alternative pagination

 automatic pagination 2nd 3rd 4th 5th 6th 7th

 custom pagination 2nd

panels

 NSPanel class 2nd

 uses

 versus windows

paper attributes

 NSPrintInfo class 2nd

parsing

 output

 NSTask class object 2nd

passive delegates

 browser views 2nd 3rd

passive widgets 2nd

pasteboard

 drag and drop

 NSDraggingDestination protocol 2nd 3rd 4th 5th 6th 7th 8th 9th

 NSDraggingInfo protocol 2nd

 NSDraggingSource protocol 2nd 3rd 4th 5th

 outline view 2nd 3rd

 table view 2nd 3rd 4th 5th

pasteboards

 constants

 NSColorPboardType

 NSDragPboard

 NSFileContentsPboardType

 NSfilenamesPboardType

 NSFindPboard

 NSFontPboard

 NSFontPboardType

 NSGeneralPboard

 NSHTMLPboardType

 NSPDFPboardType

 NSPICTPboardType

 NSPostScriptPboardType

 NSRTFDPboardType

 NSRTFPboardType

 NSRulerPboard

 NSRulerPboardType

 NSStringPboardType

 NSTabularTextPboardType

 NSTIFFPboardType

 NSURLPboardType

 cut, copy & paste 2nd 3rd

 data

 providing lazily 2nd

 writing to 2nd 3rd 4th

 data filters 2nd

 data types 2nd

 lazy evaluations 2nd

 richness of 2nd

 drag and drop

 drags, initiating 2nd 3rd

 implementing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

 NSDragOperationCopy constant

 NSDragOperationDelete constant

 NSDragOperationGeneric constant

 NSDragOperationLink constant

 NSDragOperationMove constant

 NSDragOperationName constant

 NSDragOperationPrivate constant

 filter services

 creating 2nd

 filters 2nd

 general

 multiple

 obtaining 2nd 3rd

 overview 2nd

 resources

 Stepwise.com Web site

 return types

 registering 2nd

 send types

 registering 2nd

 server

 function of 2nd

 service providers

 implementing 2nd 3rd 4th 5th 6th 7th 8th

 objects, declaring 2nd

 objects, definig 2nd

 services 2nd

 implementing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 invoking programmatically 2nd

 menu item validation 2nd

 publishing (Info.plist) 2nd 3rd 4th 5th

 receiving data from

 sending data to 2nd

pausing

 NSTask class 2nd

performance

 multithreading issues 2nd

performance bottlenecks

 optimization issues 2nd 3rd 4th 5th

performing

 classes (Objective-C)

Phone Number Formatter application

 NSFormatter class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

PieWidget example

 NSCell class

 subclassing 2nd 3rd 4th 5th 6th 7th 8th 9th

 NSControl class

 subclassing 2nd

 source code location 2nd

 user-selectable tinting controls 2nd

polymorphism

 object orientation 2nd

pop-up lists

 DynamicMenu example

 manipulating 2nd

Portable Document Format (PDF)

 Core Graphics API compatability

 NSPrintOperation class 2nd

posing

 classes

 Objective-C language

 classes (Objective-C)

posting

 distributed notifications

 interapplication communication 2nd 3rd 4th

postings

 distributed notifications

 interapplication communication 2nd 3rd

PostScript fonts

 text system support

PostScript Printer Description (PPD)

prebinding

 frameworks 2nd 3rd

precompiling

 headers in frameworks 2nd

prefix headers

 frameworks

 precompiling 2nd

premature optimization 2nd

prgrammatic end to editing (text system) 2nd

Print panel

 presenting (NSPrintPanel class) 2nd

printing

 Common Unix Printing Systems (CUPS)

 NSDocument class 2nd 3rd 4th 5th

 NSPageLayout class 2nd 3rd

 NSPrinter class

 NSPrintInfo class

 dictionary keys 2nd

 instance creation 2nd

 job disposition

 pagination attributes 2nd

 paper attributes 2nd

 printer access

 NSPrintOperation class

 executing operations 2nd

 instance creation 2nd

 operation attributes

 PDF/EPS representations 2nd

 NSView class

 -beginDocument method

 -beginPageInRect method

 -drawPageBorderWithSize method

 -drawRect method 2nd 3rd

 -endPage method

 -print method

 -printJobTitle method

 Page Setup panel (NSPageLayout class) 2nd

 PageinationDemos example 2nd

 PaginationDemos example

 alternative pagination

 automatic pagination 2nd 3rd 4th 5th 6th 7th

 custom pagination 2nd

 Print panel (NSPrintPanel class) 2nd

private headers

 frameworks 2nd 3rd

private instance variables

 Objective-C 2nd 3rd

privileges (security)

 set uid applications 2nd 3rd 4th

 users 2nd

procedural APIs

 Core Foundation library 2nd 3rd

processes

 NSTask class

 asynchronous tasks 2nd 3rd 4th 5th 6th

 cleanup 2nd

 data transmittal 2nd

 output receiving 2nd

 overview 2nd

 parsing output 2nd

 pausing 2nd

 restarting 2nd

 signaling 2nd

 stopping 2nd

 synchronous tasks 2nd 3rd 4th 5th

 termination status 2nd

 threads

 function of

progress indicators

 user interface

 creating 2nd 3rd 4th 5th 6th 7th

 determinate

 indeterminate

Project Builder

 frameworks

 creating 2nd 3rd 4th 5th 6th 7th 8th 9th

 install locations 2nd

 mailing list

property lists

 Foundation framework 2nd 3rd

protected instance variables

 Objective-C 2nd 3rd

protocols

 Objective-C

 Objective-C extensions

 adopting 2nd

 declaring 2nd

 distributed messaging 2nd

 distributed messaging optimization

 multiple-interface inheritance

 name conflicts

 objects 2nd

 static-type checking 2nd 3rd

protocols element (Objective-C objects)

Prototype GOF pattern 2nd 3rd

prototypes

 design patterns

 application types 2nd 3rd

proxies

 design patterns

 application types 2nd 3rd

 distributed objects

 interapplication communication 2nd

 NSProxy class 2nd 3rd

Proxy GOF pattern 2nd 3rd

pthreads library

public headers

 frameworks 2nd 3rd

public instance variables

 Objective-C 2nd 3rd

publishing

 services

 Info.plist 2nd 3rd 4th 5th

push buttons

Python

Quartz

 2D graphics features 2nd

 Core Graphics API 2nd

Quartz Debug tool

 folder location

 graphics drawing optimization

Quartz Extreme (Mac OS X version 10.2)

 multiple layers per window

 OpenGL Accelerated 2D 2nd

 required hardware

querying

 NSColor class settings 2nd

QuickDraw example

 source code location 2nd

QuickTime

 API references/samples

 file format support

 NSMovie class 2nd 3rd

 sample movies (Apple Developers Web site)

 NSMovieView class 2nd 3rd 4th 5th

 streaming media fetaures

race conditions

 multithreading issues

 threads

radio buttons

radio groups

 menus

 NSMenuItem class

raw data

 Foundation framework

 NSData class 2nd 3rd 4th

reading

 data

 NSPasteboard class 2nd 3rd

receiving

 data

 service menus (pasteboards)

registering

 pasteboards

 return types 2nd

 send types 2nd

removing

 menu items

 NSMenu class

renaming

 menu items

 Interface Builder

rendering

 buttons 2nd 3rd

 sliders (NSSlider class)

reordering

 menu items

 Interface Builder

replacing

 methods

 Objective-C categories 2nd 3rd 4th 5th

 text

 NSTextView class 2nd

requesting

 workspace operations 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

resources

 documentation

 Apple Web site

 Cocoa development

 Core Frameworks

 CoreFoundation

 developer tools

 MTLibrarian

 release notes

 example code

 Cocoa sample code

 EDCommon frameworks 2nd

 MiscKit frameworks

 MOKIt frameworks

 Omni Group frameworks 2nd

 mailing lists

 cocoa-dev

 macosx-dev

 Project Builder

 Web sites

 Cocoa Programming.net

 CocoaDev

 MacTech

 OÕReilly Mac DevCenter

 Softrak

 Stepwise

responder chain

 design patterns

 application types 2nd

restarting

 NSTask class 2nd

retreiving

 workspace information 2nd 3rd 4th 5th 6th

retrieving

 colors

 NSColor class 2nd

 list of classes

 MYShowAllClasses() function 2nd

 list of instance variables

 MYShowAllInstanceVariables() function

 list of methods

 MYShowAllMethods() function

 MYDocumentManager class document information 2nd

 operating system information 2nd 3rd 4th 5th 6th

RFC 2396

 number of URL characters

Rich Text Format (RTF)

 text system

 class support

round buttons

rounded bevel buttons

RubyCocoa Project Web site

run loops

 Foundation framework

 NSRunLoop class 2nd

runtime

 (Objective-C) 2nd

 classes

 listing (MYShowAllClasses function) 2nd

 functions

 MYSendMessageToAClass

 NSClassFromString

 NSSelectorFromString

 NSStringFromSelector

 instance variables

 listing (MYShowAllInstanceVariables function)

 manipulation advantages

 messaging functions

 objc_msgSend 2nd 3rd

 objc_msgSendSuper 2nd 3rd

 methods

 listing (MYShowAllMethods function)

 replacing via categories 2nd 3rd 4th 5th

 searching 2nd

 Objective-C language

 uses

runtime errors

 messaging

 Objective-C language

runtime functions (Objective-C)

 NSClassFromString

 NSSelectorFromString

 NSStringFromSelector

saving

 MYDocument class documents 2nd 3rd 4th

 MYDocumentManager class documents

 window frames

 Image Viewer application user defaults 2nd

ScoreTable example

 action methods 2nd

 source code location 2nd

 undo/redo support 2nd

screens

 NSScreen class

 attributes

scripting languages

 AppleScript

 classes

 accessing (Objective-C) 2nd

 F-Script

 Python

 RubyCocoa

 selection criteria

 pros/cons 2nd

 TCL

 TCP 2nd

scroll views

 user interface

 creating (NSScrollView class) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

searching

 IMPs

 menu items

 NSMenu class 2nd

 methods

 Objective-C runtime 2nd

security

 operating systems

 authorization

 privileges 2nd

 set uid applications

 vulnerabilities 2nd

Security Server

SEL type (Objective-C language)

selecting

 fonts

 NSFontManager class 2nd

 langauges

 languages

 Java pros/cons 2nd 3rd

 Objective-C pros/cons 2nd 3rd 4th 5th

 scripting languages pros/cons 2nd

 subprocesses

 versus threads 2nd 3rd

 threads

 versus subprocesses 2nd 3rd

selectors

 messaging via (Objective-C runtime) 2nd 3rd 4th 5th

self keyword

 Objective-C 2nd

sending

 data

 service menus (pasteboards) 2nd

serialized threads 2nd

ServerObject class

 subclassing (NSThread class) 2nd 3rd 4th 5th 6th 7th 8th 9th

ServerObject subclass

 ThreadExample program (NSThread class) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

11th 12th 13th 14th 15th 16th 17th

servers

 pasteboards

 function of 2nd

service providers

 pasteboards

 implementing 2nd 3rd 4th 5th 6th 7th 8th

 objects, declaring 2nd

 objects, defining 2nd

services

 applications

 installing to Services folder 2nd

 dictionary keys

 NSKeyEquivalent

 NSMenuItem

 NSMessage

 NSPortName

 NSReturnTypes

 NSSendTypes

 NSTimeout

 NSUserData

 filters

 creating 2nd

 Info.plist

 configuring 2nd 3rd 4th 5th

 pasteboards

 implementing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 invoking programmatically 2nd

 menu item validation 2nd

 receiving data from

 sending data to 2nd

set uid applications 2nd

 security vulnerabilities 2nd

sets

 Foundation framework

 NSMutableSet class

 NSSet class

setting

 framework versions 2nd

 frameworks

 install locations (Project Builder) 2nd

 text

 to display (NSTextView class) 2nd 3rd

 ToolTips (Cocoa APIS) 2nd 3rd 4th 5th

 ToolTips (Interface Builder) 2nd

 limitations of

shallow copying

 versus deep copying (Foundation framework) 2nd

shared objects

 design patterns

 application types 2nd 3rd

sheets

 Apple Developer Web site

 use guidelines

 MYDocument class

 support of 2nd 3rd 4th 5th 6th

 MYDocumentManager class

 support of 2nd 3rd

 versus drawers 2nd

 versus modal windows 2nd

signaling

 NSTask class 2nd

SimpleImageFilter example 2nd

single column browser delegates

 ClassBrowser example 2nd 3rd 4th

 NSBrowser class 2nd 3rd

Singleton GOF pattern

 shared objects 2nd

sliders

 NSScroller class

 NSSlider class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 user interface

 creating 2nd 3rd 4th

 ranges

 rendering

 sizing 2nd

 tick marks 2nd

 titles

Smalltalk language

 Model-View-Controller design pattern 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Softrak Web site

software

 development

 classes (objects)

 encapsulation (objects) 2nd

 inheritance (objects)

 instances (objects) 2nd 3rd

 messages (objects) 2nd

 modularity (objects)

 polymorphism (objects) 2nd

 specialization (objects) 2nd

sound

 Core Audio Framework 2nd

 Core MIDI Framework 2nd

 NSSound class 2nd 3rd 4th 5th

 Speech Recognition Manager 2nd

 Speech Synthesis Manager 2nd

source code

 also check code

 Cocoa Programming.net Web site

 Cocoa samples

 Apple Developer Web site

 EDCommon frameworks 2nd

 MiscHelpManager class 2nd 3rd 4th 5th 6th 7th 8th

 MiscKit frameworks

 MOKit frameworks

 Omni Group frameworks 2nd

 ToolTipExample

 Cocoa APIs 2nd 3rd 4th

specialization

 object orientation 2nd

Speech Recognition Manager 2nd

Speech Synthesis Manager 2nd

spell checking

 Mac OS X version 10.2

split views

 user interface

 creating (NSSplitView class) 2nd 3rd 4th 5th

 delegates (NSSplitView class)

square buttons

standard locations (files)

 domains

 Local 2nd 3rd 4th 5th

 Network 2nd 3rd 4th 5th

 System 2nd 3rd 4th 5th

 User 2nd 3rd 4th 5th

states

 buttons

 configuring 2nd

static typing (Objective-C language) 2nd 3rd

static-type checking

 protocols (Objective-C extensions) 2nd

status bars

 configuring (NSStatusItem class) 2nd

 creating (NSStatusItem class) 2nd

 function of

 limitations of

 menu-based

 NSStatusItem class 2nd

 NSStatusBar class

 NSStatusItem class

 removing (NSStatusItem class)

 view-based

 NSStatusItem class 2nd

StatusItems example

 source code location

steppers

 configuring (Interface Builder) 2nd 3rd 4th

Stepwise Web site

Stepwise.com Web site

 pasteboard resources

stopping

 NSTask class 2nd

storing

 colors

 NSColor class 2nd

 IMPS

 replaced methods (Objective-C runtime) 2nd 3rd 4th 5th

streaming media

 QuickTime features

string processing

 Foundation framework

 formatters

 NSCharacterSet class 2nd

 NSScanner class 2nd

 regular expressions 2nd

strings

 Foundation framework

 NSString class 2nd 3rd 4th

subclassing

 NSCell class

 PieWidget example 2nd 3rd 4th 5th 6th 7th 8th 9th

 NSControl class

 PieWidget example 2nd

 NSTableColumn class 2nd 3rd 4th 5th

 NSURLHandle class

 ServerObject subclass (NSThread class) 2nd 3rd 4th 5th 6th 7th 8th 9th

submenus

 attaching to menus 2nd

 DynamicMenu example

 adding 2nd

subprocesses

 Unix commands

 wrapping

 versus threads

 selecting 2nd 3rd

subviews

 design patterns

 application types 2nd

Sun Hot Spot JIT compiler

super keyword

 Objective-C 2nd

super_class element (Objective-C objects) 2nd

support types

 Foundation framework

 NSGeometry class 2nd 3rd

 NSRange class 2nd

synchronization

 threads

synchronous downloading

 NSURL class

synchronous tasks

 NSTask class 2nd 3rd

system colors

 notifications

 values

System domain

 files

 location and contents 2nd 3rd 4th 5th

tab views

 user interface

 adding (NSTabView class) 2nd

 creating (NSTabView class) 2nd 3rd 4th 5th 6th 7th 8th

 delegates (NSTabView class) 2nd

 removing (NSTabView class) 2nd

 selecting (NSTabView class) 2nd

table views

 columns

 controlling selectability of (NSTableView class) 2nd

 columns (NSTableColumn class) 2nd 3rd 4th 5th

 creating

 drag and drop pasteboards 2nd 3rd 4th 5th

 master-detail interface

 master-detail interfaces

 implementing (NSDocument class) 2nd 3rd 4th 5th 6th 7th 8th

 implementing (NSTableView class) 2nd 3rd 4th

 NSTableView class

 uses

 overview 2nd

tags

 controls

 assigning (NSControl class) 2nd

target-actions

 setting (NSControl class) 2nd 3rd 4th 5th

targets/actions

 design patterns

 application types 2nd 3rd

TaskOutliner example

 NSOutlineView class

 delegate methods 2nd

 optional methods 2nd 3rd

 required methods 2nd

 outline views (NSOutlineView class) 2nd

TCL scripting language 2nd 3rd

tear-off menus 2nd

terminating

 NSTask class 2nd 3rd 4th

text

 appending (NSTextView class) 2nd

 inserting (NSTextView class) 2nd

 modifying via controls 2nd 3rd

 replacing (NSTextView class) 2nd

text fields

 alignment

 border styles

 color selection

 edit field options 2nd

 user interface

 configuring 2nd 3rd 4th

 creating

 delegates

 field editor 2nd

 input managers 2nd

 secure fields 2nd

 tab settings 2nd

 validation 2nd 3rd 4th

text system

 architecture

 Model-View-Controller (MVC) 2nd 3rd

 attributed strings

 implementing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th

 initializing 2nd 3rd 4th 5th

 classes

 HTML support

 NSLayoutManager

 NSParagraphStyle

 NSTextAttachment

 NSTextContainer

 NSTextStorage

 NSTextView 2nd 3rd 4th 5th 6th 7th

 RTF support

 delegate methods

 NSText class 2nd 3rd 4th 5th

 NSTextView class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 fonts

 common traits and restrictions 2nd 3rd

 name syntax

 NSFont class 2nd 3rd 4th 5th 6th 7th

 NSFontManager class 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

14th

 NSFontPanel class 2nd 3rd 4th 5th

 supported formats

 formatters

 NSFormatter class 2nd 3rd

 input managers

 NSTextView class 2nd

 Model-View-Controller (MVC)

 Control layer 2nd 3rd

 Model layer 2nd 3rd 4th

 View layer 2nd 3rd

 mutable attributed strings

 implementing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 overview documentation

 Apple Developer Web site

 programmatically end to editing 2nd

TextEdit application

 contextual menus 2nd

 dock menus 2nd 3rd 4th

 versus SimpleText application 2nd

TextEdit example

 NSLayoutManager class

TextViewConfig example

 NSLayoutManager class

ThreadExample program

 ServerObject subclass (NSThread class) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

12th 13th 14th 15th 16th 17th

 source code download

 user interface (NSThread class) 2nd

threads

 critical code sections 2nd

 deadlock

 detaching (NSThread class) 2nd

 function of

 isolating (Distributed Objects) 2nd

 issues

 critical code sections considerations 2nd

 deadlocks 2nd 3rd 4th 5th

 debugging 2nd

 global variables 2nd

 performance considerations 2nd

 race conditions

 locking 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 interthread communication 2nd

 without blocks 2nd

 messaging between (NSThread class) 2nd 3rd 4th 5th 6th

 multiple CPU usage

 NSConditionLock class

 locking mechanism 2nd 3rd 4th 5th 6th

 NSDistributedLock class

 locking mechanism 2nd 3rd

 NSLock class

 locking mechanism 2nd

 NSRecursiveLock class

 NSThread class 2nd

 ThreadExample program 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

14th 15th 16th 17th 18th 19th 20th

 race conditions

 serialized 2nd

 synchronization

 versus NSTimers class 2nd

 versus subprocesses

 selecting 2nd 3rd

tick marks

 sliders

 configuring (NSSlider class) 2nd

timers

 Foundation framework

 NSTimer class 2nd

tinting controls

 PieWidget example 2nd

titles

 boxes

 sliders

 drawing (NSSlider class)

ToolbarExample

 source code location 2nd

toolbars

 creating 2nd 3rd

 NSToolbar class 2nd 3rd 4th 5th

 delegate creation 2nd 3rd 4th 5th

 item validation 2nd

 NSToolbarItem class 2nd

 instance configuration 2nd

 item identifiers 2nd

ToolTipExample program

 source code (Cocoa APIs) 2nd 3rd 4th

ToolTips

 (help)

 appearance of

 Cocoa APIs

 setting 2nd 3rd 4th 5th

 limitations (Interface Builder)

 NSHelpManager class

 help methods 2nd

 NSView class

 help methods 2nd 3rd 4th 5th

 setting (Interface Builder) 2nd

transmitting

 data

 NSTask class object 2nd

transparent windows

 Image Viewer application

type encoding

 Objective-C extensions 2nd

UFS (Unix File System) 2nd

Uniform Resource Locators, [See URLs]

universal access

 Mac OS X version 10.2 2nd

University of California-Berkeley

 BSD of Unix

Unix

 BSD component

 Mac OS X enhancements

 Mac OS X roots 2nd

URLs

 (Uniform Resource Locators)

 canonical syntax

 components

 NSURL class

 instance creation 2nd 3rd 4th

 NSURLHandle class

 RFC 2396

Usenix Organization Web site

User domain

 files

 location and contents 2nd 3rd 4th 5th

user interface

 Animal example (NSTask class) 2nd 3rd

 buttons

 behavior configuration 2nd

 configuring 2nd 3rd

 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

file:///Volumes/Extra%20Schijf/New%20Downloads/Cocoa/BUSY/CocoaProgramming/pages/U.html#idd1e104281

 key equivalents

 rendering 2nd 3rd

 state configuration 2nd

 Calendar example (NSTask class) 2nd 3rd

 ClassBrowser example

 master-detail relationship 2nd

 multiple column browser implementation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 single column browser implementation 2nd 3rd 4th

 containers

 boxes 2nd 3rd 4th 5th 6th 7th 8th 9th

 controls 2nd

 scroll views 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 split views 2nd 3rd 4th 5th 6th

 tab views 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

16th

 views 2nd

 data sources

 lazy loading 2nd

 hierarchical data

 tree structure 2nd

 images

 displaying 2nd 3rd 4th 5th 6th

 NSBrowser class 2nd 3rd 4th 5th 6th

 configuring (Interface Builder) 2nd 3rd 4th

 NSOutlineView class 2nd 3rd 4th

 NSTableView class 2nd 3rd 4th

 progress indicators

 creating 2nd 3rd 4th 5th 6th 7th

 determinate

 indeterminate

 selection considerations 2nd 3rd

 sliders

 creating 2nd 3rd 4th

 ranges

 rendering

 sizing 2nd

 tick marks 2nd

 titles

 text fields

 alignment

 border styles

 color selection

 configuring 2nd 3rd 4th

 creating

 delegates

 edit field options 2nd

 field editor 2nd

 input managers 2nd

 secure fields 2nd

 tab settings 2nd

 validation 2nd 3rd 4th

 ThreadExample program (NSThread class) 2nd

user interfaces

 color panels

 dragging colors (Interface Builder) 2nd

 color panels (Interface Builder) 2nd 3rd 4th 5th

 color wells (Interface Builder) 2nd 3rd

 controls

 customizing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

 fonts

 NSFontManager class 2nd

users

 operating systems

 identifying

 privileges 2nd

 set uid applications

 security vulnerabilities 2nd

validating

 menus 2nd 3rd 4th

 MYDocumentManager class menus

 service menus

 pasteboards 2nd

 text fields

 user interfaces 2nd 3rd 4th

values

 controls

 setting (NSControl class) 2nd 3rd 4th

 Foundation framework

 NSValue class 2nd 3rd 4th 5th

vCards

 Address Book applciation (Mac OS X version 10.2) 2nd

vending

 distributed objects

 interapplication communication 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

version element (Objective-C objects)

versions

 frameworks

 setting 2nd

View layer

 application design pattern 2nd

 text system

 classes 2nd 3rd

W3C Web site

 commentary from Tim Berners-Lee

Web browsers

 Berners-Lee development

 QuickTime support

Web links

 inserting (NSAttributedString class) 2nd

Web sites

 3D Labs

 AAA+ Software

 Apple

 class cluster documentation

 Apple Darwin Open Source

 Apple Developer 2nd 3rd

 Apple Events documentation

 authentication/authorization documentation

 Carbon Authorizattion Services API

 drawer documentation 2nd

 encoding constants

 input manager documentation

 layout managers 2nd

 localized strings information

 Mach messages/ports resources

 modal loop documentation

 Model-View-Controller (MVC)

 NSFileHandle class resources

 NSFont class documentation

 NSFormatter class tutorial

 NSScreen class

 NSTextView class documentation

 optimization resources

 text system documentation

 transparent windows sample

 Apple Developers

 Core Audio/Core MIDI Framework documentation

 OpenGL 3D sample applications

 Quick Time API references/samples

 speech resources 2nd

 spound playing resources

 Cocoa Programming.net 2nd

 Animal example source code

 Calendar source code

 DockMenu example

 DynamicMenu example 2nd

 LotsOfWords application source code

 PaginationDemos example 2nd

 source code examples

 ThreadExample download

 CocoaDev

 CocoaProgramming.net

 Cris.com

 F-Script

 GCC (GNU Compiler Collection) 2nd

 Gnustep Project

 GNUstep.org

 IMC.org

 vCard resources 2nd

 LowTek

 sockets documentation

 MacTech

 MiscKit

 MOKIt

 Montage Tech

 Mulle-Kybernetik 2nd

 Mulle-Kybernetik.com

 Music Kit

 Omni Group 2nd 3rd

 OÕReilly Mac DevCenter

 OpenGL.org

 RubyCocoa Project

 Softrak

 Stepwise

 Usenix Organization

 W3C

widgets [See also controls]

 interactive 2nd

 passive 2nd

window frames

 Image Viewer

 saving in user defaults 2nd

windows

 configuring (MYDocument class) 2nd 3rd 4th

 Image Viewer

 transparent

Windows TrueType fonts

 text system support

workspace

 communication with 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

15th 16th 17th 18th 19th

 elements

 NSWorkspace class 2nd

 information retrieval 2nd 3rd 4th 5th 6th

 operations requests 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

workspaces

 MYWorkspaceNotificationObserver class 2nd 3rd 4th 5th

wrapping

 Unix commands

 subprocesses

writing

 data

 pasteboards 2nd 3rd 4th

